gp: [N,k,chi] = [9408,2,Mod(1,9408)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9408, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9408.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,1,0,3,0,0,0,1,0,-3,0,-4,0,3,0,0,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 9408 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(9408)) S 2 n e w ( Γ 0 ( 9 4 0 8 ) ) :
T 5 − 3 T_{5} - 3 T 5 − 3
T5 - 3
T 11 + 3 T_{11} + 3 T 1 1 + 3
T11 + 3
T 13 + 4 T_{13} + 4 T 1 3 + 4
T13 + 4
T 17 T_{17} T 1 7
T17
T 19 + 4 T_{19} + 4 T 1 9 + 4
T19 + 4
T 31 − 1 T_{31} - 1 T 3 1 − 1
T31 - 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 1 T - 1 T − 1
T - 1
5 5 5
T − 3 T - 3 T − 3
T - 3
7 7 7
T T T
T
11 11 1 1
T + 3 T + 3 T + 3
T + 3
13 13 1 3
T + 4 T + 4 T + 4
T + 4
17 17 1 7
T T T
T
19 19 1 9
T + 4 T + 4 T + 4
T + 4
23 23 2 3
T T T
T
29 29 2 9
T + 9 T + 9 T + 9
T + 9
31 31 3 1
T − 1 T - 1 T − 1
T - 1
37 37 3 7
T + 8 T + 8 T + 8
T + 8
41 41 4 1
T T T
T
43 43 4 3
T − 10 T - 10 T − 1 0
T - 10
47 47 4 7
T − 6 T - 6 T − 6
T - 6
53 53 5 3
T − 3 T - 3 T − 3
T - 3
59 59 5 9
T − 3 T - 3 T − 3
T - 3
61 61 6 1
T + 10 T + 10 T + 1 0
T + 10
67 67 6 7
T − 10 T - 10 T − 1 0
T - 10
71 71 7 1
T + 6 T + 6 T + 6
T + 6
73 73 7 3
T + 2 T + 2 T + 2
T + 2
79 79 7 9
T + 1 T + 1 T + 1
T + 1
83 83 8 3
T + 9 T + 9 T + 9
T + 9
89 89 8 9
T + 6 T + 6 T + 6
T + 6
97 97 9 7
T − 1 T - 1 T − 1
T - 1
show more
show less