L(s) = 1 | + 3-s + 3·5-s + 9-s − 3·11-s − 4·13-s + 3·15-s − 4·19-s + 4·25-s + 27-s − 9·29-s + 31-s − 3·33-s − 8·37-s − 4·39-s + 10·43-s + 3·45-s + 6·47-s + 3·53-s − 9·55-s − 4·57-s + 3·59-s − 10·61-s − 12·65-s + 10·67-s − 6·71-s − 2·73-s + 4·75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.34·5-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 0.774·15-s − 0.917·19-s + 4/5·25-s + 0.192·27-s − 1.67·29-s + 0.179·31-s − 0.522·33-s − 1.31·37-s − 0.640·39-s + 1.52·43-s + 0.447·45-s + 0.875·47-s + 0.412·53-s − 1.21·55-s − 0.529·57-s + 0.390·59-s − 1.28·61-s − 1.48·65-s + 1.22·67-s − 0.712·71-s − 0.234·73-s + 0.461·75-s + ⋯ |
Λ(s)=(=(9408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1 |
good | 5 | 1−3T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+9T+pT2 |
| 31 | 1−T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−10T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−3T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−10T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+T+pT2 |
| 83 | 1+9T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.33394397090324092400049797646, −6.80616770693985958913865603865, −5.78142581425042930916248854062, −5.48030169770383048419949507799, −4.63005992613826729096856469814, −3.80867461709981690563059575879, −2.67612385219831355074975282085, −2.32908448991463422849641030373, −1.54615518523511024726550509475, 0,
1.54615518523511024726550509475, 2.32908448991463422849641030373, 2.67612385219831355074975282085, 3.80867461709981690563059575879, 4.63005992613826729096856469814, 5.48030169770383048419949507799, 5.78142581425042930916248854062, 6.80616770693985958913865603865, 7.33394397090324092400049797646