L(s) = 1 | + 3-s + 3·5-s + 9-s − 3·11-s − 4·13-s + 3·15-s − 4·19-s + 4·25-s + 27-s − 9·29-s + 31-s − 3·33-s − 8·37-s − 4·39-s + 10·43-s + 3·45-s + 6·47-s + 3·53-s − 9·55-s − 4·57-s + 3·59-s − 10·61-s − 12·65-s + 10·67-s − 6·71-s − 2·73-s + 4·75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.34·5-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 0.774·15-s − 0.917·19-s + 4/5·25-s + 0.192·27-s − 1.67·29-s + 0.179·31-s − 0.522·33-s − 1.31·37-s − 0.640·39-s + 1.52·43-s + 0.447·45-s + 0.875·47-s + 0.412·53-s − 1.21·55-s − 0.529·57-s + 0.390·59-s − 1.28·61-s − 1.48·65-s + 1.22·67-s − 0.712·71-s − 0.234·73-s + 0.461·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 3 T + p T^{2} \) |
| 11 | \( 1 + 3 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 9 T + p T^{2} \) |
| 31 | \( 1 - T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 10 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - 3 T + p T^{2} \) |
| 59 | \( 1 - 3 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 - 10 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 + 9 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.33394397090324092400049797646, −6.80616770693985958913865603865, −5.78142581425042930916248854062, −5.48030169770383048419949507799, −4.63005992613826729096856469814, −3.80867461709981690563059575879, −2.67612385219831355074975282085, −2.32908448991463422849641030373, −1.54615518523511024726550509475, 0,
1.54615518523511024726550509475, 2.32908448991463422849641030373, 2.67612385219831355074975282085, 3.80867461709981690563059575879, 4.63005992613826729096856469814, 5.48030169770383048419949507799, 5.78142581425042930916248854062, 6.80616770693985958913865603865, 7.33394397090324092400049797646