Properties

Label 4-114e2-1.1-c5e2-0-0
Degree $4$
Conductor $12996$
Sign $1$
Analytic cond. $334.295$
Root an. cond. $4.27595$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 18·3-s + 48·4-s − 49·5-s − 144·6-s − 105·7-s − 256·8-s + 243·9-s + 392·10-s + 725·11-s + 864·12-s − 56·13-s + 840·14-s − 882·15-s + 1.28e3·16-s + 1.52e3·17-s − 1.94e3·18-s − 722·19-s − 2.35e3·20-s − 1.89e3·21-s − 5.80e3·22-s + 1.70e3·23-s − 4.60e3·24-s − 3.42e3·25-s + 448·26-s + 2.91e3·27-s − 5.04e3·28-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.876·5-s − 1.63·6-s − 0.809·7-s − 1.41·8-s + 9-s + 1.23·10-s + 1.80·11-s + 1.73·12-s − 0.0919·13-s + 1.14·14-s − 1.01·15-s + 5/4·16-s + 1.27·17-s − 1.41·18-s − 0.458·19-s − 1.31·20-s − 0.935·21-s − 2.55·22-s + 0.670·23-s − 1.63·24-s − 1.09·25-s + 0.129·26-s + 0.769·27-s − 1.21·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12996 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12996 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12996\)    =    \(2^{2} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(334.295\)
Root analytic conductor: \(4.27595\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12996,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.213547065\)
\(L(\frac12)\) \(\approx\) \(2.213547065\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{2} T )^{2} \)
3$C_1$ \( ( 1 - p^{2} T )^{2} \)
19$C_1$ \( ( 1 + p^{2} T )^{2} \)
good5$D_{4}$ \( 1 + 49 T + 5828 T^{2} + 49 p^{5} T^{3} + p^{10} T^{4} \)
7$D_{4}$ \( 1 + 15 p T + 10814 T^{2} + 15 p^{6} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 - 725 T + 452486 T^{2} - 725 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 + 56 T + 334470 T^{2} + 56 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 - 1521 T + 1863232 T^{2} - 1521 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 - 1700 T - 160210 T^{2} - 1700 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 - 12724 T + 81235646 T^{2} - 12724 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 - 8558 T + 58292118 T^{2} - 8558 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 - 12434 T + 135627114 T^{2} - 12434 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 - 20230 T + 259503602 T^{2} - 20230 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 - 4895 T + 299556330 T^{2} - 4895 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 - 21059 T + 555084302 T^{2} - 21059 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 - 25196 T + 966248606 T^{2} - 25196 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 - 1560 T + 1429410214 T^{2} - 1560 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 + 2123 T - 588325956 T^{2} + 2123 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 + 46968 T + 3250701686 T^{2} + 46968 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 - 60056 T + 2271003086 T^{2} - 60056 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 + 57177 T + 4702746212 T^{2} + 57177 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 + 99368 T + 8517934254 T^{2} + 99368 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 + 21780 T - 3626701658 T^{2} + 21780 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 + 11856 T + 2415361198 T^{2} + 11856 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 77068 T - 559666266 T^{2} + 77068 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59077662442301502535017374809, −12.34699905643317480108195750971, −11.66689302118222171502422080708, −11.53877921073748755680088974846, −10.38404933270753762296681404857, −10.18348210530864781605951302574, −9.532086136105657560223432370297, −9.191725621198016247111052480499, −8.583966024772736185898767506845, −8.196511280388750974797120557625, −7.56581412496507055927749357261, −7.15622885548722860066789836077, −6.37570646886252990644723498936, −6.03295358005877565783144992649, −4.34245187045827182781694863796, −3.97500465481077572317087483570, −2.99102723988132078536658953077, −2.57445413174859067452073381954, −1.15250050606863482145280041400, −0.812121560386603378916570811270, 0.812121560386603378916570811270, 1.15250050606863482145280041400, 2.57445413174859067452073381954, 2.99102723988132078536658953077, 3.97500465481077572317087483570, 4.34245187045827182781694863796, 6.03295358005877565783144992649, 6.37570646886252990644723498936, 7.15622885548722860066789836077, 7.56581412496507055927749357261, 8.196511280388750974797120557625, 8.583966024772736185898767506845, 9.191725621198016247111052480499, 9.532086136105657560223432370297, 10.18348210530864781605951302574, 10.38404933270753762296681404857, 11.53877921073748755680088974846, 11.66689302118222171502422080708, 12.34699905643317480108195750971, 12.59077662442301502535017374809

Graph of the $Z$-function along the critical line