Properties

Label 114.6.a.f
Level 114114
Weight 66
Character orbit 114.a
Self dual yes
Analytic conductor 18.28418.284
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [114,6,Mod(1,114)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(114, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("114.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 114=2319 114 = 2 \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 114.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.283755458718.2837554587
Analytic rank: 00
Dimension: 22
Coefficient field: Q(4089)\Q(\sqrt{4089})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1022 x^{2} - x - 1022 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+4089)\beta = \frac{1}{2}(1 + \sqrt{4089}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4q2+9q3+16q4+(β24)q536q6+(5β50)q764q8+81q9+(4β+96)q10+(β+362)q11+144q12+(20β38)q13++(81β+29322)q99+O(q100) q - 4 q^{2} + 9 q^{3} + 16 q^{4} + ( - \beta - 24) q^{5} - 36 q^{6} + ( - 5 \beta - 50) q^{7} - 64 q^{8} + 81 q^{9} + (4 \beta + 96) q^{10} + (\beta + 362) q^{11} + 144 q^{12} + (20 \beta - 38) q^{13}+ \cdots + (81 \beta + 29322) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q2+18q3+32q449q572q6105q7128q8+162q9+196q10+725q11+288q1256q13+420q14441q15+512q16+1521q17648q18++58725q99+O(q100) 2 q - 8 q^{2} + 18 q^{3} + 32 q^{4} - 49 q^{5} - 72 q^{6} - 105 q^{7} - 128 q^{8} + 162 q^{9} + 196 q^{10} + 725 q^{11} + 288 q^{12} - 56 q^{13} + 420 q^{14} - 441 q^{15} + 512 q^{16} + 1521 q^{17} - 648 q^{18}+ \cdots + 58725 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
32.4726
−31.4726
−4.00000 9.00000 16.0000 −56.4726 −36.0000 −212.363 −64.0000 81.0000 225.891
1.2 −4.00000 9.00000 16.0000 7.47264 −36.0000 107.363 −64.0000 81.0000 −29.8906
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.6.a.f 2
3.b odd 2 1 342.6.a.j 2
4.b odd 2 1 912.6.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.f 2 1.a even 1 1 trivial
342.6.a.j 2 3.b odd 2 1
912.6.a.h 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+49T5422 T_{5}^{2} + 49T_{5} - 422 acting on S6new(Γ0(114))S_{6}^{\mathrm{new}}(\Gamma_0(114)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
33 (T9)2 (T - 9)^{2} Copy content Toggle raw display
55 T2+49T422 T^{2} + 49T - 422 Copy content Toggle raw display
77 T2+105T22800 T^{2} + 105T - 22800 Copy content Toggle raw display
1111 T2725T+130384 T^{2} - 725T + 130384 Copy content Toggle raw display
1313 T2+56T408116 T^{2} + 56T - 408116 Copy content Toggle raw display
1717 T21521T976482 T^{2} - 1521 T - 976482 Copy content Toggle raw display
1919 (T+361)2 (T + 361)^{2} Copy content Toggle raw display
2323 T21700T13032896 T^{2} - 1700 T - 13032896 Copy content Toggle raw display
2929 T212724T+40213348 T^{2} - 12724 T + 40213348 Copy content Toggle raw display
3131 T28558T+1033816 T^{2} - 8558 T + 1033816 Copy content Toggle raw display
3737 T212434T3060800 T^{2} - 12434 T - 3060800 Copy content Toggle raw display
4141 T220230T+27791200 T^{2} - 20230 T + 27791200 Copy content Toggle raw display
4343 T24895T+5539444 T^{2} - 4895 T + 5539444 Copy content Toggle raw display
4747 T221059T+96394288 T^{2} - 21059 T + 96394288 Copy content Toggle raw display
5353 T225196T+129857620 T^{2} - 25196 T + 129857620 Copy content Toggle raw display
5959 T21560T438384 T^{2} - 1560 T - 438384 Copy content Toggle raw display
6161 T2+2277518558 T^{2} + \cdots - 2277518558 Copy content Toggle raw display
6767 T2+46968T+550451472 T^{2} + 46968 T + 550451472 Copy content Toggle raw display
7171 T2+1337455616 T^{2} + \cdots - 1337455616 Copy content Toggle raw display
7373 T2+57177T+556603026 T^{2} + 57177 T + 556603026 Copy content Toggle raw display
7979 T2++2363821456 T^{2} + \cdots + 2363821456 Copy content Toggle raw display
8383 T2+11504782944 T^{2} + \cdots - 11504782944 Copy content Toggle raw display
8989 T2+8752757700 T^{2} + \cdots - 8752757700 Copy content Toggle raw display
9797 T2+17734346780 T^{2} + \cdots - 17734346780 Copy content Toggle raw display
show more
show less