Properties

Label 114.6.a.f
Level $114$
Weight $6$
Character orbit 114.a
Self dual yes
Analytic conductor $18.284$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [114,6,Mod(1,114)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(114, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("114.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 114 = 2 \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 114.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.2837554587\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4089}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1022 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{4089})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 9 q^{3} + 16 q^{4} + ( - \beta - 24) q^{5} - 36 q^{6} + ( - 5 \beta - 50) q^{7} - 64 q^{8} + 81 q^{9} + (4 \beta + 96) q^{10} + (\beta + 362) q^{11} + 144 q^{12} + (20 \beta - 38) q^{13}+ \cdots + (81 \beta + 29322) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 18 q^{3} + 32 q^{4} - 49 q^{5} - 72 q^{6} - 105 q^{7} - 128 q^{8} + 162 q^{9} + 196 q^{10} + 725 q^{11} + 288 q^{12} - 56 q^{13} + 420 q^{14} - 441 q^{15} + 512 q^{16} + 1521 q^{17} - 648 q^{18}+ \cdots + 58725 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
32.4726
−31.4726
−4.00000 9.00000 16.0000 −56.4726 −36.0000 −212.363 −64.0000 81.0000 225.891
1.2 −4.00000 9.00000 16.0000 7.47264 −36.0000 107.363 −64.0000 81.0000 −29.8906
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 114.6.a.f 2
3.b odd 2 1 342.6.a.j 2
4.b odd 2 1 912.6.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.f 2 1.a even 1 1 trivial
342.6.a.j 2 3.b odd 2 1
912.6.a.h 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 49T_{5} - 422 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(114))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 49T - 422 \) Copy content Toggle raw display
$7$ \( T^{2} + 105T - 22800 \) Copy content Toggle raw display
$11$ \( T^{2} - 725T + 130384 \) Copy content Toggle raw display
$13$ \( T^{2} + 56T - 408116 \) Copy content Toggle raw display
$17$ \( T^{2} - 1521 T - 976482 \) Copy content Toggle raw display
$19$ \( (T + 361)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 1700 T - 13032896 \) Copy content Toggle raw display
$29$ \( T^{2} - 12724 T + 40213348 \) Copy content Toggle raw display
$31$ \( T^{2} - 8558 T + 1033816 \) Copy content Toggle raw display
$37$ \( T^{2} - 12434 T - 3060800 \) Copy content Toggle raw display
$41$ \( T^{2} - 20230 T + 27791200 \) Copy content Toggle raw display
$43$ \( T^{2} - 4895 T + 5539444 \) Copy content Toggle raw display
$47$ \( T^{2} - 21059 T + 96394288 \) Copy content Toggle raw display
$53$ \( T^{2} - 25196 T + 129857620 \) Copy content Toggle raw display
$59$ \( T^{2} - 1560 T - 438384 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 2277518558 \) Copy content Toggle raw display
$67$ \( T^{2} + 46968 T + 550451472 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1337455616 \) Copy content Toggle raw display
$73$ \( T^{2} + 57177 T + 556603026 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 2363821456 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 11504782944 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 8752757700 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 17734346780 \) Copy content Toggle raw display
show more
show less