Properties

Label 24-115e12-1.1-c5e12-0-0
Degree 2424
Conductor 5.350×10245.350\times 10^{24}
Sign 11
Analytic cond. 1.54988×10151.54988\times 10^{15}
Root an. cond. 4.294664.29466
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 22·3-s − 13·4-s + 300·5-s + 176·6-s + 16·7-s − 135·8-s − 417·9-s + 2.40e3·10-s + 132·11-s − 286·12-s − 236·13-s + 128·14-s + 6.60e3·15-s − 363·16-s + 1.66e3·17-s − 3.33e3·18-s + 616·19-s − 3.90e3·20-s + 352·21-s + 1.05e3·22-s − 6.34e3·23-s − 2.97e3·24-s + 4.87e4·25-s − 1.88e3·26-s − 1.06e4·27-s − 208·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.41·3-s − 0.406·4-s + 5.36·5-s + 1.99·6-s + 0.123·7-s − 0.745·8-s − 1.71·9-s + 7.58·10-s + 0.328·11-s − 0.573·12-s − 0.387·13-s + 0.174·14-s + 7.57·15-s − 0.354·16-s + 1.39·17-s − 2.42·18-s + 0.391·19-s − 2.18·20-s + 0.174·21-s + 0.465·22-s − 2.50·23-s − 1.05·24-s + 78/5·25-s − 0.547·26-s − 2.80·27-s − 0.0501·28-s + ⋯

Functional equation

Λ(s)=((5122312)s/2ΓC(s)12L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 23^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}
Λ(s)=((5122312)s/2ΓC(s+5/2)12L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 23^{12}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 2424
Conductor: 51223125^{12} \cdot 23^{12}
Sign: 11
Analytic conductor: 1.54988×10151.54988\times 10^{15}
Root analytic conductor: 4.294664.29466
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (24, 5122312, ( :[5/2]12), 1)(24,\ 5^{12} \cdot 23^{12} ,\ ( \ : [5/2]^{12} ),\ 1 )

Particular Values

L(3)L(3) \approx 649.4330712649.4330712
L(12)L(\frac12) \approx 649.4330712649.4330712
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 (1p2T)12 ( 1 - p^{2} T )^{12}
23 (1+p2T)12 ( 1 + p^{2} T )^{12}
good2 1p3T+77T2585T3+1241p2T435597T5+131803pT6893141pT7+1462311p3T89342617p3T9+29123997p4T1020845425p7T11+239380531p6T1220845425p12T13+29123997p14T149342617p18T15+1462311p23T16893141p26T17+131803p31T1835597p35T19+1241p42T20585p45T21+77p50T22p58T23+p60T24 1 - p^{3} T + 77 T^{2} - 585 T^{3} + 1241 p^{2} T^{4} - 35597 T^{5} + 131803 p T^{6} - 893141 p T^{7} + 1462311 p^{3} T^{8} - 9342617 p^{3} T^{9} + 29123997 p^{4} T^{10} - 20845425 p^{7} T^{11} + 239380531 p^{6} T^{12} - 20845425 p^{12} T^{13} + 29123997 p^{14} T^{14} - 9342617 p^{18} T^{15} + 1462311 p^{23} T^{16} - 893141 p^{26} T^{17} + 131803 p^{31} T^{18} - 35597 p^{35} T^{19} + 1241 p^{42} T^{20} - 585 p^{45} T^{21} + 77 p^{50} T^{22} - p^{58} T^{23} + p^{60} T^{24}
3 122T+901T218352T3+489236T47781758T5+160994594T6233697154p2T7+4333582994p2T84996051264p4T9+93718781893p4T10285324764182p5T11+759308648126p7T12285324764182p10T13+93718781893p14T144996051264p19T15+4333582994p22T16233697154p27T17+160994594p30T187781758p35T19+489236p40T2018352p45T21+901p50T2222p55T23+p60T24 1 - 22 T + 901 T^{2} - 18352 T^{3} + 489236 T^{4} - 7781758 T^{5} + 160994594 T^{6} - 233697154 p^{2} T^{7} + 4333582994 p^{2} T^{8} - 4996051264 p^{4} T^{9} + 93718781893 p^{4} T^{10} - 285324764182 p^{5} T^{11} + 759308648126 p^{7} T^{12} - 285324764182 p^{10} T^{13} + 93718781893 p^{14} T^{14} - 4996051264 p^{19} T^{15} + 4333582994 p^{22} T^{16} - 233697154 p^{27} T^{17} + 160994594 p^{30} T^{18} - 7781758 p^{35} T^{19} + 489236 p^{40} T^{20} - 18352 p^{45} T^{21} + 901 p^{50} T^{22} - 22 p^{55} T^{23} + p^{60} T^{24}
7 116T+87496T2+31846p2T3+3998198362T4+194916730222T5+130671978637705T6+8957013139627004T7+497132493997888219pT8+ 1 - 16 T + 87496 T^{2} + 31846 p^{2} T^{3} + 3998198362 T^{4} + 194916730222 T^{5} + 130671978637705 T^{6} + 8957013139627004 T^{7} + 497132493997888219 p T^{8} + 25 ⁣ ⁣5625\!\cdots\!56T9+ T^{9} + 78 ⁣ ⁣3578\!\cdots\!35T10+ T^{10} + 53 ⁣ ⁣4453\!\cdots\!44T11+ T^{11} + 20 ⁣ ⁣7220\!\cdots\!72pT12+ p T^{12} + 53 ⁣ ⁣4453\!\cdots\!44p5T13+ p^{5} T^{13} + 78 ⁣ ⁣3578\!\cdots\!35p10T14+ p^{10} T^{14} + 25 ⁣ ⁣5625\!\cdots\!56p15T15+497132493997888219p21T16+8957013139627004p25T17+130671978637705p30T18+194916730222p35T19+3998198362p40T20+31846p47T21+87496p50T2216p55T23+p60T24 p^{15} T^{15} + 497132493997888219 p^{21} T^{16} + 8957013139627004 p^{25} T^{17} + 130671978637705 p^{30} T^{18} + 194916730222 p^{35} T^{19} + 3998198362 p^{40} T^{20} + 31846 p^{47} T^{21} + 87496 p^{50} T^{22} - 16 p^{55} T^{23} + p^{60} T^{24}
11 112pT+401601T2119245828T3+139840894885T441877196876832T5+34298896920081997T612066255089239177584T7+ 1 - 12 p T + 401601 T^{2} - 119245828 T^{3} + 139840894885 T^{4} - 41877196876832 T^{5} + 34298896920081997 T^{6} - 12066255089239177584 T^{7} + 79 ⁣ ⁣0379\!\cdots\!03T8 T^{8} - 25 ⁣ ⁣2825\!\cdots\!28T9+ T^{9} + 15 ⁣ ⁣1415\!\cdots\!14T10 T^{10} - 43 ⁣ ⁣6043\!\cdots\!60pT11+ p T^{11} + 27 ⁣ ⁣2627\!\cdots\!26T12 T^{12} - 43 ⁣ ⁣6043\!\cdots\!60p6T13+ p^{6} T^{13} + 15 ⁣ ⁣1415\!\cdots\!14p10T14 p^{10} T^{14} - 25 ⁣ ⁣2825\!\cdots\!28p15T15+ p^{15} T^{15} + 79 ⁣ ⁣0379\!\cdots\!03p20T1612066255089239177584p25T17+34298896920081997p30T1841877196876832p35T19+139840894885p40T20119245828p45T21+401601p50T2212p56T23+p60T24 p^{20} T^{16} - 12066255089239177584 p^{25} T^{17} + 34298896920081997 p^{30} T^{18} - 41877196876832 p^{35} T^{19} + 139840894885 p^{40} T^{20} - 119245828 p^{45} T^{21} + 401601 p^{50} T^{22} - 12 p^{56} T^{23} + p^{60} T^{24}
13 1+236T+1866727T2+106847184T3+1741189228852T4161364375199720T5+1168342624652329434T6 1 + 236 T + 1866727 T^{2} + 106847184 T^{3} + 1741189228852 T^{4} - 161364375199720 T^{5} + 1168342624652329434 T^{6} - 23 ⁣ ⁣4823\!\cdots\!48T7+ T^{7} + 64 ⁣ ⁣1064\!\cdots\!10T8 T^{8} - 16 ⁣ ⁣8816\!\cdots\!88T9+ T^{9} + 29 ⁣ ⁣0729\!\cdots\!07T10 T^{10} - 83 ⁣ ⁣7283\!\cdots\!72T11+ T^{11} + 11 ⁣ ⁣9411\!\cdots\!94T12 T^{12} - 83 ⁣ ⁣7283\!\cdots\!72p5T13+ p^{5} T^{13} + 29 ⁣ ⁣0729\!\cdots\!07p10T14 p^{10} T^{14} - 16 ⁣ ⁣8816\!\cdots\!88p15T15+ p^{15} T^{15} + 64 ⁣ ⁣1064\!\cdots\!10p20T16 p^{20} T^{16} - 23 ⁣ ⁣4823\!\cdots\!48p25T17+1168342624652329434p30T18161364375199720p35T19+1741189228852p40T20+106847184p45T21+1866727p50T22+236p55T23+p60T24 p^{25} T^{17} + 1168342624652329434 p^{30} T^{18} - 161364375199720 p^{35} T^{19} + 1741189228852 p^{40} T^{20} + 106847184 p^{45} T^{21} + 1866727 p^{50} T^{22} + 236 p^{55} T^{23} + p^{60} T^{24}
17 198pT+8176290T214204001204T3+39452050063188T460857551564301814T5+ 1 - 98 p T + 8176290 T^{2} - 14204001204 T^{3} + 39452050063188 T^{4} - 60857551564301814 T^{5} + 12 ⁣ ⁣0312\!\cdots\!03T6 T^{6} - 18 ⁣ ⁣6418\!\cdots\!64T7+ T^{7} + 31 ⁣ ⁣9731\!\cdots\!97T8 T^{8} - 39 ⁣ ⁣9439\!\cdots\!94T9+ T^{9} + 60 ⁣ ⁣2360\!\cdots\!23T10 T^{10} - 69 ⁣ ⁣5469\!\cdots\!54T11+ T^{11} + 94 ⁣ ⁣6094\!\cdots\!60T12 T^{12} - 69 ⁣ ⁣5469\!\cdots\!54p5T13+ p^{5} T^{13} + 60 ⁣ ⁣2360\!\cdots\!23p10T14 p^{10} T^{14} - 39 ⁣ ⁣9439\!\cdots\!94p15T15+ p^{15} T^{15} + 31 ⁣ ⁣9731\!\cdots\!97p20T16 p^{20} T^{16} - 18 ⁣ ⁣6418\!\cdots\!64p25T17+ p^{25} T^{17} + 12 ⁣ ⁣0312\!\cdots\!03p30T1860857551564301814p35T19+39452050063188p40T2014204001204p45T21+8176290p50T2298p56T23+p60T24 p^{30} T^{18} - 60857551564301814 p^{35} T^{19} + 39452050063188 p^{40} T^{20} - 14204001204 p^{45} T^{21} + 8176290 p^{50} T^{22} - 98 p^{56} T^{23} + p^{60} T^{24}
19 1616T+13667577T2+3338434148T3+85709418022413T4+91949555717759184T5+ 1 - 616 T + 13667577 T^{2} + 3338434148 T^{3} + 85709418022413 T^{4} + 91949555717759184 T^{5} + 38 ⁣ ⁣1738\!\cdots\!17T6+ T^{6} + 62 ⁣ ⁣8062\!\cdots\!80T7+ T^{7} + 15 ⁣ ⁣3115\!\cdots\!31T8+ T^{8} + 13 ⁣ ⁣2413\!\cdots\!24pT9+ p T^{9} + 54 ⁣ ⁣4654\!\cdots\!46T10+ T^{10} + 74 ⁣ ⁣0874\!\cdots\!08T11+ T^{11} + 15 ⁣ ⁣3015\!\cdots\!30T12+ T^{12} + 74 ⁣ ⁣0874\!\cdots\!08p5T13+ p^{5} T^{13} + 54 ⁣ ⁣4654\!\cdots\!46p10T14+ p^{10} T^{14} + 13 ⁣ ⁣2413\!\cdots\!24p16T15+ p^{16} T^{15} + 15 ⁣ ⁣3115\!\cdots\!31p20T16+ p^{20} T^{16} + 62 ⁣ ⁣8062\!\cdots\!80p25T17+ p^{25} T^{17} + 38 ⁣ ⁣1738\!\cdots\!17p30T18+91949555717759184p35T19+85709418022413p40T20+3338434148p45T21+13667577p50T22616p55T23+p60T24 p^{30} T^{18} + 91949555717759184 p^{35} T^{19} + 85709418022413 p^{40} T^{20} + 3338434148 p^{45} T^{21} + 13667577 p^{50} T^{22} - 616 p^{55} T^{23} + p^{60} T^{24}
29 1818pT+379525075T24581616530954T3+46230958847336183T413860226607814872580pT5+ 1 - 818 p T + 379525075 T^{2} - 4581616530954 T^{3} + 46230958847336183 T^{4} - 13860226607814872580 p T^{5} + 31 ⁣ ⁣2431\!\cdots\!24T6 T^{6} - 21 ⁣ ⁣8821\!\cdots\!88T7+ T^{7} + 13 ⁣ ⁣2913\!\cdots\!29T8 T^{8} - 81 ⁣ ⁣1881\!\cdots\!18T9+ T^{9} + 44 ⁣ ⁣0944\!\cdots\!09T10 T^{10} - 22 ⁣ ⁣3822\!\cdots\!38T11+ T^{11} + 10 ⁣ ⁣5810\!\cdots\!58T12 T^{12} - 22 ⁣ ⁣3822\!\cdots\!38p5T13+ p^{5} T^{13} + 44 ⁣ ⁣0944\!\cdots\!09p10T14 p^{10} T^{14} - 81 ⁣ ⁣1881\!\cdots\!18p15T15+ p^{15} T^{15} + 13 ⁣ ⁣2913\!\cdots\!29p20T16 p^{20} T^{16} - 21 ⁣ ⁣8821\!\cdots\!88p25T17+ p^{25} T^{17} + 31 ⁣ ⁣2431\!\cdots\!24p30T1813860226607814872580p36T19+46230958847336183p40T204581616530954p45T21+379525075p50T22818p56T23+p60T24 p^{30} T^{18} - 13860226607814872580 p^{36} T^{19} + 46230958847336183 p^{40} T^{20} - 4581616530954 p^{45} T^{21} + 379525075 p^{50} T^{22} - 818 p^{56} T^{23} + p^{60} T^{24}
31 118446T+397191600T24956317975360T3+63545443895996129T4 1 - 18446 T + 397191600 T^{2} - 4956317975360 T^{3} + 63545443895996129 T^{4} - 61 ⁣ ⁣5661\!\cdots\!56T5+ T^{5} + 59 ⁣ ⁣3959\!\cdots\!39T6 T^{6} - 46 ⁣ ⁣0046\!\cdots\!00T7+ T^{7} + 36 ⁣ ⁣5336\!\cdots\!53T8 T^{8} - 79 ⁣ ⁣2079\!\cdots\!20pT9+ p T^{9} + 16 ⁣ ⁣4616\!\cdots\!46T10 T^{10} - 95 ⁣ ⁣5895\!\cdots\!58T11+ T^{11} + 54 ⁣ ⁣0454\!\cdots\!04T12 T^{12} - 95 ⁣ ⁣5895\!\cdots\!58p5T13+ p^{5} T^{13} + 16 ⁣ ⁣4616\!\cdots\!46p10T14 p^{10} T^{14} - 79 ⁣ ⁣2079\!\cdots\!20p16T15+ p^{16} T^{15} + 36 ⁣ ⁣5336\!\cdots\!53p20T16 p^{20} T^{16} - 46 ⁣ ⁣0046\!\cdots\!00p25T17+ p^{25} T^{17} + 59 ⁣ ⁣3959\!\cdots\!39p30T18 p^{30} T^{18} - 61 ⁣ ⁣5661\!\cdots\!56p35T19+63545443895996129p40T204956317975360p45T21+397191600p50T2218446p55T23+p60T24 p^{35} T^{19} + 63545443895996129 p^{40} T^{20} - 4956317975360 p^{45} T^{21} + 397191600 p^{50} T^{22} - 18446 p^{55} T^{23} + p^{60} T^{24}
37 110394T+547466285T24984377865934T3+146918590426568612T4 1 - 10394 T + 547466285 T^{2} - 4984377865934 T^{3} + 146918590426568612 T^{4} - 12 ⁣ ⁣7012\!\cdots\!70T5+ T^{5} + 25 ⁣ ⁣6125\!\cdots\!61T6 T^{6} - 19 ⁣ ⁣1019\!\cdots\!10T7+ T^{7} + 33 ⁣ ⁣1533\!\cdots\!15T8 T^{8} - 22 ⁣ ⁣6022\!\cdots\!60T9+ T^{9} + 32 ⁣ ⁣2232\!\cdots\!22T10 T^{10} - 19 ⁣ ⁣5619\!\cdots\!56T11+ T^{11} + 25 ⁣ ⁣0025\!\cdots\!00T12 T^{12} - 19 ⁣ ⁣5619\!\cdots\!56p5T13+ p^{5} T^{13} + 32 ⁣ ⁣2232\!\cdots\!22p10T14 p^{10} T^{14} - 22 ⁣ ⁣6022\!\cdots\!60p15T15+ p^{15} T^{15} + 33 ⁣ ⁣1533\!\cdots\!15p20T16 p^{20} T^{16} - 19 ⁣ ⁣1019\!\cdots\!10p25T17+ p^{25} T^{17} + 25 ⁣ ⁣6125\!\cdots\!61p30T18 p^{30} T^{18} - 12 ⁣ ⁣7012\!\cdots\!70p35T19+146918590426568612p40T204984377865934p45T21+547466285p50T2210394p55T23+p60T24 p^{35} T^{19} + 146918590426568612 p^{40} T^{20} - 4984377865934 p^{45} T^{21} + 547466285 p^{50} T^{22} - 10394 p^{55} T^{23} + p^{60} T^{24}
41 148232T+1466849146T233533168064242T3+658401161955640795T4 1 - 48232 T + 1466849146 T^{2} - 33533168064242 T^{3} + 658401161955640795 T^{4} - 11 ⁣ ⁣5411\!\cdots\!54T5+ T^{5} + 18 ⁣ ⁣1918\!\cdots\!19T6 T^{6} - 26 ⁣ ⁣8226\!\cdots\!82T7+ T^{7} + 36 ⁣ ⁣5136\!\cdots\!51T8 T^{8} - 46 ⁣ ⁣7046\!\cdots\!70T9+ T^{9} + 57 ⁣ ⁣0057\!\cdots\!00T10 T^{10} - 66 ⁣ ⁣6066\!\cdots\!60T11+ T^{11} + 73 ⁣ ⁣9673\!\cdots\!96T12 T^{12} - 66 ⁣ ⁣6066\!\cdots\!60p5T13+ p^{5} T^{13} + 57 ⁣ ⁣0057\!\cdots\!00p10T14 p^{10} T^{14} - 46 ⁣ ⁣7046\!\cdots\!70p15T15+ p^{15} T^{15} + 36 ⁣ ⁣5136\!\cdots\!51p20T16 p^{20} T^{16} - 26 ⁣ ⁣8226\!\cdots\!82p25T17+ p^{25} T^{17} + 18 ⁣ ⁣1918\!\cdots\!19p30T18 p^{30} T^{18} - 11 ⁣ ⁣5411\!\cdots\!54p35T19+658401161955640795p40T2033533168064242p45T21+1466849146p50T2248232p55T23+p60T24 p^{35} T^{19} + 658401161955640795 p^{40} T^{20} - 33533168064242 p^{45} T^{21} + 1466849146 p^{50} T^{22} - 48232 p^{55} T^{23} + p^{60} T^{24}
43 110732T+1196666312T215398859374460T3+697838564583220922T4 1 - 10732 T + 1196666312 T^{2} - 15398859374460 T^{3} + 697838564583220922 T^{4} - 98 ⁣ ⁣9698\!\cdots\!96T5+ T^{5} + 26 ⁣ ⁣4826\!\cdots\!48T6 T^{6} - 37 ⁣ ⁣0437\!\cdots\!04T7+ T^{7} + 76 ⁣ ⁣9576\!\cdots\!95T8 T^{8} - 99 ⁣ ⁣2099\!\cdots\!20T9+ T^{9} + 16 ⁣ ⁣1216\!\cdots\!12T10 T^{10} - 19 ⁣ ⁣2019\!\cdots\!20T11+ T^{11} + 27 ⁣ ⁣8427\!\cdots\!84T12 T^{12} - 19 ⁣ ⁣2019\!\cdots\!20p5T13+ p^{5} T^{13} + 16 ⁣ ⁣1216\!\cdots\!12p10T14 p^{10} T^{14} - 99 ⁣ ⁣2099\!\cdots\!20p15T15+ p^{15} T^{15} + 76 ⁣ ⁣9576\!\cdots\!95p20T16 p^{20} T^{16} - 37 ⁣ ⁣0437\!\cdots\!04p25T17+ p^{25} T^{17} + 26 ⁣ ⁣4826\!\cdots\!48p30T18 p^{30} T^{18} - 98 ⁣ ⁣9698\!\cdots\!96p35T19+697838564583220922p40T2015398859374460p45T21+1196666312p50T2210732p55T23+p60T24 p^{35} T^{19} + 697838564583220922 p^{40} T^{20} - 15398859374460 p^{45} T^{21} + 1196666312 p^{50} T^{22} - 10732 p^{55} T^{23} + p^{60} T^{24}
47 1+30448T+1329044246T2+22171644694036T3+599803107520591487T4+ 1 + 30448 T + 1329044246 T^{2} + 22171644694036 T^{3} + 599803107520591487 T^{4} + 61 ⁣ ⁣5661\!\cdots\!56T5+ T^{5} + 16 ⁣ ⁣1816\!\cdots\!18T6+ T^{6} + 10 ⁣ ⁣3210\!\cdots\!32T7+ T^{7} + 37 ⁣ ⁣3537\!\cdots\!35T8+ T^{8} + 67 ⁣ ⁣6867\!\cdots\!68T9+ T^{9} + 65 ⁣ ⁣3665\!\cdots\!36T10 T^{10} - 40 ⁣ ⁣2440\!\cdots\!24T11+ T^{11} + 10 ⁣ ⁣3410\!\cdots\!34T12 T^{12} - 40 ⁣ ⁣2440\!\cdots\!24p5T13+ p^{5} T^{13} + 65 ⁣ ⁣3665\!\cdots\!36p10T14+ p^{10} T^{14} + 67 ⁣ ⁣6867\!\cdots\!68p15T15+ p^{15} T^{15} + 37 ⁣ ⁣3537\!\cdots\!35p20T16+ p^{20} T^{16} + 10 ⁣ ⁣3210\!\cdots\!32p25T17+ p^{25} T^{17} + 16 ⁣ ⁣1816\!\cdots\!18p30T18+ p^{30} T^{18} + 61 ⁣ ⁣5661\!\cdots\!56p35T19+599803107520591487p40T20+22171644694036p45T21+1329044246p50T22+30448p55T23+p60T24 p^{35} T^{19} + 599803107520591487 p^{40} T^{20} + 22171644694036 p^{45} T^{21} + 1329044246 p^{50} T^{22} + 30448 p^{55} T^{23} + p^{60} T^{24}
53 136494T+3778631593T2120274490282822T3+6924165786606754752T4 1 - 36494 T + 3778631593 T^{2} - 120274490282822 T^{3} + 6924165786606754752 T^{4} - 19 ⁣ ⁣1419\!\cdots\!14T5+ T^{5} + 81 ⁣ ⁣7781\!\cdots\!77T6 T^{6} - 20 ⁣ ⁣5820\!\cdots\!58T7+ T^{7} + 67 ⁣ ⁣2767\!\cdots\!27T8 T^{8} - 14 ⁣ ⁣1214\!\cdots\!12T9+ T^{9} + 42 ⁣ ⁣1042\!\cdots\!10T10 T^{10} - 82 ⁣ ⁣0082\!\cdots\!00T11+ T^{11} + 20 ⁣ ⁣6020\!\cdots\!60T12 T^{12} - 82 ⁣ ⁣0082\!\cdots\!00p5T13+ p^{5} T^{13} + 42 ⁣ ⁣1042\!\cdots\!10p10T14 p^{10} T^{14} - 14 ⁣ ⁣1214\!\cdots\!12p15T15+ p^{15} T^{15} + 67 ⁣ ⁣2767\!\cdots\!27p20T16 p^{20} T^{16} - 20 ⁣ ⁣5820\!\cdots\!58p25T17+ p^{25} T^{17} + 81 ⁣ ⁣7781\!\cdots\!77p30T18 p^{30} T^{18} - 19 ⁣ ⁣1419\!\cdots\!14p35T19+6924165786606754752p40T20120274490282822p45T21+3778631593p50T2236494p55T23+p60T24 p^{35} T^{19} + 6924165786606754752 p^{40} T^{20} - 120274490282822 p^{45} T^{21} + 3778631593 p^{50} T^{22} - 36494 p^{55} T^{23} + p^{60} T^{24}
59 1+23870T+3673078265T2+29016398394666T3+6145829118402594652T4 1 + 23870 T + 3673078265 T^{2} + 29016398394666 T^{3} + 6145829118402594652 T^{4} - 16 ⁣ ⁣5016\!\cdots\!50T5+ T^{5} + 79 ⁣ ⁣9379\!\cdots\!93T6 T^{6} - 67 ⁣ ⁣1067\!\cdots\!10T7+ T^{7} + 87 ⁣ ⁣9987\!\cdots\!99T8 T^{8} - 94 ⁣ ⁣2494\!\cdots\!24T9+ T^{9} + 81 ⁣ ⁣5081\!\cdots\!50T10 T^{10} - 86 ⁣ ⁣6086\!\cdots\!60T11+ T^{11} + 64 ⁣ ⁣8064\!\cdots\!80T12 T^{12} - 86 ⁣ ⁣6086\!\cdots\!60p5T13+ p^{5} T^{13} + 81 ⁣ ⁣5081\!\cdots\!50p10T14 p^{10} T^{14} - 94 ⁣ ⁣2494\!\cdots\!24p15T15+ p^{15} T^{15} + 87 ⁣ ⁣9987\!\cdots\!99p20T16 p^{20} T^{16} - 67 ⁣ ⁣1067\!\cdots\!10p25T17+ p^{25} T^{17} + 79 ⁣ ⁣9379\!\cdots\!93p30T18 p^{30} T^{18} - 16 ⁣ ⁣5016\!\cdots\!50p35T19+6145829118402594652p40T20+29016398394666p45T21+3673078265p50T22+23870p55T23+p60T24 p^{35} T^{19} + 6145829118402594652 p^{40} T^{20} + 29016398394666 p^{45} T^{21} + 3673078265 p^{50} T^{22} + 23870 p^{55} T^{23} + p^{60} T^{24}
61 130862T+2189810935T280470422914680T3+4825425766672464609T4 1 - 30862 T + 2189810935 T^{2} - 80470422914680 T^{3} + 4825425766672464609 T^{4} - 17 ⁣ ⁣8817\!\cdots\!88T5+ T^{5} + 71 ⁣ ⁣8771\!\cdots\!87T6 T^{6} - 25 ⁣ ⁣0225\!\cdots\!02T7+ T^{7} + 94 ⁣ ⁣9594\!\cdots\!95T8 T^{8} - 31 ⁣ ⁣6031\!\cdots\!60T9+ T^{9} + 98 ⁣ ⁣5898\!\cdots\!58T10 T^{10} - 31 ⁣ ⁣2031\!\cdots\!20T11+ T^{11} + 92 ⁣ ⁣5492\!\cdots\!54T12 T^{12} - 31 ⁣ ⁣2031\!\cdots\!20p5T13+ p^{5} T^{13} + 98 ⁣ ⁣5898\!\cdots\!58p10T14 p^{10} T^{14} - 31 ⁣ ⁣6031\!\cdots\!60p15T15+ p^{15} T^{15} + 94 ⁣ ⁣9594\!\cdots\!95p20T16 p^{20} T^{16} - 25 ⁣ ⁣0225\!\cdots\!02p25T17+ p^{25} T^{17} + 71 ⁣ ⁣8771\!\cdots\!87p30T18 p^{30} T^{18} - 17 ⁣ ⁣8817\!\cdots\!88p35T19+4825425766672464609p40T2080470422914680p45T21+2189810935p50T2230862p55T23+p60T24 p^{35} T^{19} + 4825425766672464609 p^{40} T^{20} - 80470422914680 p^{45} T^{21} + 2189810935 p^{50} T^{22} - 30862 p^{55} T^{23} + p^{60} T^{24}
67 1+71910T+7551371465T2+250330491218034T3+14546431907159558084T4+ 1 + 71910 T + 7551371465 T^{2} + 250330491218034 T^{3} + 14546431907159558084 T^{4} + 63 ⁣ ⁣1863\!\cdots\!18T5+ T^{5} + 12 ⁣ ⁣0112\!\cdots\!01T6 T^{6} - 20 ⁣ ⁣2620\!\cdots\!26T7+ T^{7} + 33 ⁣ ⁣9133\!\cdots\!91T8+ T^{8} + 31 ⁣ ⁣0431\!\cdots\!04T9+ T^{9} + 10 ⁣ ⁣4210\!\cdots\!42pT10+ p T^{10} + 34 ⁣ ⁣5634\!\cdots\!56T11+ T^{11} + 85 ⁣ ⁣2885\!\cdots\!28T12+ T^{12} + 34 ⁣ ⁣5634\!\cdots\!56p5T13+ p^{5} T^{13} + 10 ⁣ ⁣4210\!\cdots\!42p11T14+ p^{11} T^{14} + 31 ⁣ ⁣0431\!\cdots\!04p15T15+ p^{15} T^{15} + 33 ⁣ ⁣9133\!\cdots\!91p20T16 p^{20} T^{16} - 20 ⁣ ⁣2620\!\cdots\!26p25T17+ p^{25} T^{17} + 12 ⁣ ⁣0112\!\cdots\!01p30T18+ p^{30} T^{18} + 63 ⁣ ⁣1863\!\cdots\!18p35T19+14546431907159558084p40T20+250330491218034p45T21+7551371465p50T22+71910p55T23+p60T24 p^{35} T^{19} + 14546431907159558084 p^{40} T^{20} + 250330491218034 p^{45} T^{21} + 7551371465 p^{50} T^{22} + 71910 p^{55} T^{23} + p^{60} T^{24}
71 1167158T+22198128592T22113141119217732T3+ 1 - 167158 T + 22198128592 T^{2} - 2113141119217732 T^{3} + 17 ⁣ ⁣2917\!\cdots\!29T4 T^{4} - 12 ⁣ ⁣9212\!\cdots\!92T5+ T^{5} + 82 ⁣ ⁣3582\!\cdots\!35T6 T^{6} - 48 ⁣ ⁣1248\!\cdots\!12T7+ T^{7} + 26 ⁣ ⁣5726\!\cdots\!57T8 T^{8} - 13 ⁣ ⁣2813\!\cdots\!28T9+ T^{9} + 64 ⁣ ⁣3864\!\cdots\!38T10 T^{10} - 29 ⁣ ⁣5829\!\cdots\!58T11+ T^{11} + 12 ⁣ ⁣5612\!\cdots\!56T12 T^{12} - 29 ⁣ ⁣5829\!\cdots\!58p5T13+ p^{5} T^{13} + 64 ⁣ ⁣3864\!\cdots\!38p10T14 p^{10} T^{14} - 13 ⁣ ⁣2813\!\cdots\!28p15T15+ p^{15} T^{15} + 26 ⁣ ⁣5726\!\cdots\!57p20T16 p^{20} T^{16} - 48 ⁣ ⁣1248\!\cdots\!12p25T17+ p^{25} T^{17} + 82 ⁣ ⁣3582\!\cdots\!35p30T18 p^{30} T^{18} - 12 ⁣ ⁣9212\!\cdots\!92p35T19+ p^{35} T^{19} + 17 ⁣ ⁣2917\!\cdots\!29p40T202113141119217732p45T21+22198128592p50T22167158p55T23+p60T24 p^{40} T^{20} - 2113141119217732 p^{45} T^{21} + 22198128592 p^{50} T^{22} - 167158 p^{55} T^{23} + p^{60} T^{24}
73 152152T+14181050674T2540944500541420T3+92270694180069877915T4 1 - 52152 T + 14181050674 T^{2} - 540944500541420 T^{3} + 92270694180069877915 T^{4} - 26 ⁣ ⁣0426\!\cdots\!04T5+ T^{5} + 38 ⁣ ⁣7838\!\cdots\!78T6 T^{6} - 82 ⁣ ⁣6882\!\cdots\!68T7+ T^{7} + 12 ⁣ ⁣1912\!\cdots\!19T8 T^{8} - 21 ⁣ ⁣5621\!\cdots\!56T9+ T^{9} + 33 ⁣ ⁣3233\!\cdots\!32T10 T^{10} - 49 ⁣ ⁣4849\!\cdots\!48T11+ T^{11} + 74 ⁣ ⁣3074\!\cdots\!30T12 T^{12} - 49 ⁣ ⁣4849\!\cdots\!48p5T13+ p^{5} T^{13} + 33 ⁣ ⁣3233\!\cdots\!32p10T14 p^{10} T^{14} - 21 ⁣ ⁣5621\!\cdots\!56p15T15+ p^{15} T^{15} + 12 ⁣ ⁣1912\!\cdots\!19p20T16 p^{20} T^{16} - 82 ⁣ ⁣6882\!\cdots\!68p25T17+ p^{25} T^{17} + 38 ⁣ ⁣7838\!\cdots\!78p30T18 p^{30} T^{18} - 26 ⁣ ⁣0426\!\cdots\!04p35T19+92270694180069877915p40T20540944500541420p45T21+14181050674p50T2252152p55T23+p60T24 p^{35} T^{19} + 92270694180069877915 p^{40} T^{20} - 540944500541420 p^{45} T^{21} + 14181050674 p^{50} T^{22} - 52152 p^{55} T^{23} + p^{60} T^{24}
79 1+123092T+26277809936T2+2441433115904612T3+ 1 + 123092 T + 26277809936 T^{2} + 2441433115904612 T^{3} + 31 ⁣ ⁣4231\!\cdots\!42T4+ T^{4} + 23 ⁣ ⁣1623\!\cdots\!16T5+ T^{5} + 23 ⁣ ⁣5223\!\cdots\!52T6+ T^{6} + 15 ⁣ ⁣5215\!\cdots\!52T7+ T^{7} + 13 ⁣ ⁣3913\!\cdots\!39T8+ T^{8} + 76 ⁣ ⁣6476\!\cdots\!64T9+ T^{9} + 55 ⁣ ⁣4855\!\cdots\!48T10+ T^{10} + 29 ⁣ ⁣1229\!\cdots\!12T11+ T^{11} + 19 ⁣ ⁣8419\!\cdots\!84T12+ T^{12} + 29 ⁣ ⁣1229\!\cdots\!12p5T13+ p^{5} T^{13} + 55 ⁣ ⁣4855\!\cdots\!48p10T14+ p^{10} T^{14} + 76 ⁣ ⁣6476\!\cdots\!64p15T15+ p^{15} T^{15} + 13 ⁣ ⁣3913\!\cdots\!39p20T16+ p^{20} T^{16} + 15 ⁣ ⁣5215\!\cdots\!52p25T17+ p^{25} T^{17} + 23 ⁣ ⁣5223\!\cdots\!52p30T18+ p^{30} T^{18} + 23 ⁣ ⁣1623\!\cdots\!16p35T19+ p^{35} T^{19} + 31 ⁣ ⁣4231\!\cdots\!42p40T20+2441433115904612p45T21+26277809936p50T22+123092p55T23+p60T24 p^{40} T^{20} + 2441433115904612 p^{45} T^{21} + 26277809936 p^{50} T^{22} + 123092 p^{55} T^{23} + p^{60} T^{24}
83 189322T+21820280997T21394317019545918T3+ 1 - 89322 T + 21820280997 T^{2} - 1394317019545918 T^{3} + 22 ⁣ ⁣9222\!\cdots\!92T4 T^{4} - 10 ⁣ ⁣1410\!\cdots\!14T5+ T^{5} + 13 ⁣ ⁣8913\!\cdots\!89T6 T^{6} - 41 ⁣ ⁣1441\!\cdots\!14T7+ T^{7} + 58 ⁣ ⁣7958\!\cdots\!79T8 T^{8} - 65 ⁣ ⁣6065\!\cdots\!60T9+ T^{9} + 19 ⁣ ⁣5019\!\cdots\!50T10+ T^{10} + 15 ⁣ ⁣9615\!\cdots\!96T11+ T^{11} + 67 ⁣ ⁣0867\!\cdots\!08T12+ T^{12} + 15 ⁣ ⁣9615\!\cdots\!96p5T13+ p^{5} T^{13} + 19 ⁣ ⁣5019\!\cdots\!50p10T14 p^{10} T^{14} - 65 ⁣ ⁣6065\!\cdots\!60p15T15+ p^{15} T^{15} + 58 ⁣ ⁣7958\!\cdots\!79p20T16 p^{20} T^{16} - 41 ⁣ ⁣1441\!\cdots\!14p25T17+ p^{25} T^{17} + 13 ⁣ ⁣8913\!\cdots\!89p30T18 p^{30} T^{18} - 10 ⁣ ⁣1410\!\cdots\!14p35T19+ p^{35} T^{19} + 22 ⁣ ⁣9222\!\cdots\!92p40T201394317019545918p45T21+21820280997p50T2289322p55T23+p60T24 p^{40} T^{20} - 1394317019545918 p^{45} T^{21} + 21820280997 p^{50} T^{22} - 89322 p^{55} T^{23} + p^{60} T^{24}
89 1+46184T+32602289908T2+1113130267171624T3+ 1 + 46184 T + 32602289908 T^{2} + 1113130267171624 T^{3} + 54 ⁣ ⁣7054\!\cdots\!70T4+ T^{4} + 14 ⁣ ⁣4414\!\cdots\!44T5+ T^{5} + 64 ⁣ ⁣6464\!\cdots\!64T6+ T^{6} + 13 ⁣ ⁣3613\!\cdots\!36T7+ T^{7} + 58 ⁣ ⁣5958\!\cdots\!59T8+ T^{8} + 10 ⁣ ⁣5610\!\cdots\!56T9+ T^{9} + 43 ⁣ ⁣0843\!\cdots\!08T10+ T^{10} + 68 ⁣ ⁣8468\!\cdots\!84T11+ T^{11} + 26 ⁣ ⁣8026\!\cdots\!80T12+ T^{12} + 68 ⁣ ⁣8468\!\cdots\!84p5T13+ p^{5} T^{13} + 43 ⁣ ⁣0843\!\cdots\!08p10T14+ p^{10} T^{14} + 10 ⁣ ⁣5610\!\cdots\!56p15T15+ p^{15} T^{15} + 58 ⁣ ⁣5958\!\cdots\!59p20T16+ p^{20} T^{16} + 13 ⁣ ⁣3613\!\cdots\!36p25T17+ p^{25} T^{17} + 64 ⁣ ⁣6464\!\cdots\!64p30T18+ p^{30} T^{18} + 14 ⁣ ⁣4414\!\cdots\!44p35T19+ p^{35} T^{19} + 54 ⁣ ⁣7054\!\cdots\!70p40T20+1113130267171624p45T21+32602289908p50T22+46184p55T23+p60T24 p^{40} T^{20} + 1113130267171624 p^{45} T^{21} + 32602289908 p^{50} T^{22} + 46184 p^{55} T^{23} + p^{60} T^{24}
97 1+94220T+62993599353T2+4879190803999948T3+ 1 + 94220 T + 62993599353 T^{2} + 4879190803999948 T^{3} + 18 ⁣ ⁣1718\!\cdots\!17T4+ T^{4} + 11 ⁣ ⁣9211\!\cdots\!92T5+ T^{5} + 34 ⁣ ⁣4534\!\cdots\!45T6+ T^{6} + 18 ⁣ ⁣2418\!\cdots\!24T7+ T^{7} + 47 ⁣ ⁣5547\!\cdots\!55T8+ T^{8} + 23 ⁣ ⁣5623\!\cdots\!56T9+ T^{9} + 54 ⁣ ⁣5854\!\cdots\!58T10+ T^{10} + 24 ⁣ ⁣3624\!\cdots\!36T11+ T^{11} + 51 ⁣ ⁣9851\!\cdots\!98T12+ T^{12} + 24 ⁣ ⁣3624\!\cdots\!36p5T13+ p^{5} T^{13} + 54 ⁣ ⁣5854\!\cdots\!58p10T14+ p^{10} T^{14} + 23 ⁣ ⁣5623\!\cdots\!56p15T15+ p^{15} T^{15} + 47 ⁣ ⁣5547\!\cdots\!55p20T16+ p^{20} T^{16} + 18 ⁣ ⁣2418\!\cdots\!24p25T17+ p^{25} T^{17} + 34 ⁣ ⁣4534\!\cdots\!45p30T18+ p^{30} T^{18} + 11 ⁣ ⁣9211\!\cdots\!92p35T19+ p^{35} T^{19} + 18 ⁣ ⁣1718\!\cdots\!17p40T20+4879190803999948p45T21+62993599353p50T22+94220p55T23+p60T24 p^{40} T^{20} + 4879190803999948 p^{45} T^{21} + 62993599353 p^{50} T^{22} + 94220 p^{55} T^{23} + p^{60} T^{24}
show more
show less
   L(s)=p j=124(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.86312064518784024257907871651, −3.28441480810567847629992578349, −3.27399172510939614173976212975, −3.25456618889138848997649467802, −3.17658714567202750440037304184, −3.08264107323508528913634128295, −3.04209281694334763307050090347, −2.84884640112079949887932365631, −2.66343616253587915401980321269, −2.47420444457956940407434633430, −2.47304259523790880671345865537, −2.34390612092424597879213929784, −2.18389088613828110160197080291, −2.07581304571033395672063556741, −1.97695302924953878943791026876, −1.78226617409113099548997557121, −1.61282554563650754054985840383, −1.33099635849868286721949233215, −1.21980223088510120628662331946, −0.978688998892845808788436173562, −0.848566895142459322626031267448, −0.836506830287488842400384665966, −0.68219626799653917970463596921, −0.41353746697234595761918884196, −0.34493055359336298149029354085, 0.34493055359336298149029354085, 0.41353746697234595761918884196, 0.68219626799653917970463596921, 0.836506830287488842400384665966, 0.848566895142459322626031267448, 0.978688998892845808788436173562, 1.21980223088510120628662331946, 1.33099635849868286721949233215, 1.61282554563650754054985840383, 1.78226617409113099548997557121, 1.97695302924953878943791026876, 2.07581304571033395672063556741, 2.18389088613828110160197080291, 2.34390612092424597879213929784, 2.47304259523790880671345865537, 2.47420444457956940407434633430, 2.66343616253587915401980321269, 2.84884640112079949887932365631, 3.04209281694334763307050090347, 3.08264107323508528913634128295, 3.17658714567202750440037304184, 3.25456618889138848997649467802, 3.27399172510939614173976212975, 3.28441480810567847629992578349, 3.86312064518784024257907871651

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.