Properties

Label 115.6.a.e.1.10
Level $115$
Weight $6$
Character 115.1
Self dual yes
Analytic conductor $18.444$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,6,Mod(1,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 115.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4441392785\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 329 x^{10} + 1059 x^{9} + 41059 x^{8} - 99023 x^{7} - 2392947 x^{6} + 3889937 x^{5} + \cdots + 4039776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-7.26134\) of defining polynomial
Character \(\chi\) \(=\) 115.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.26134 q^{2} +12.5950 q^{3} +36.2497 q^{4} +25.0000 q^{5} +104.052 q^{6} +63.2337 q^{7} +35.1081 q^{8} -84.3653 q^{9} +206.533 q^{10} +468.606 q^{11} +456.566 q^{12} +1123.23 q^{13} +522.395 q^{14} +314.876 q^{15} -869.950 q^{16} -601.631 q^{17} -696.970 q^{18} -608.068 q^{19} +906.242 q^{20} +796.430 q^{21} +3871.31 q^{22} -529.000 q^{23} +442.187 q^{24} +625.000 q^{25} +9279.36 q^{26} -4123.17 q^{27} +2292.20 q^{28} +1892.66 q^{29} +2601.29 q^{30} -4457.82 q^{31} -8310.41 q^{32} +5902.10 q^{33} -4970.28 q^{34} +1580.84 q^{35} -3058.22 q^{36} +134.186 q^{37} -5023.45 q^{38} +14147.1 q^{39} +877.702 q^{40} -8546.11 q^{41} +6579.58 q^{42} +1466.08 q^{43} +16986.8 q^{44} -2109.13 q^{45} -4370.25 q^{46} +4434.31 q^{47} -10957.0 q^{48} -12808.5 q^{49} +5163.34 q^{50} -7577.56 q^{51} +40716.6 q^{52} -13348.2 q^{53} -34062.9 q^{54} +11715.1 q^{55} +2220.02 q^{56} -7658.63 q^{57} +15635.9 q^{58} +48451.0 q^{59} +11414.1 q^{60} -37607.9 q^{61} -36827.6 q^{62} -5334.73 q^{63} -40816.7 q^{64} +28080.7 q^{65} +48759.2 q^{66} -12159.5 q^{67} -21808.9 q^{68} -6662.77 q^{69} +13059.9 q^{70} -67887.7 q^{71} -2961.90 q^{72} +69090.1 q^{73} +1108.56 q^{74} +7871.89 q^{75} -22042.3 q^{76} +29631.7 q^{77} +116874. q^{78} -75657.9 q^{79} -21748.8 q^{80} -31430.7 q^{81} -70602.3 q^{82} +57852.2 q^{83} +28870.4 q^{84} -15040.8 q^{85} +12111.8 q^{86} +23838.1 q^{87} +16451.9 q^{88} -70027.0 q^{89} -17424.3 q^{90} +71025.8 q^{91} -19176.1 q^{92} -56146.4 q^{93} +36633.4 q^{94} -15201.7 q^{95} -104670. q^{96} +10083.5 q^{97} -105815. q^{98} -39534.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{2} + 22 q^{3} + 294 q^{4} + 300 q^{5} + 454 q^{6} + 16 q^{7} + 675 q^{8} + 1598 q^{9} + 200 q^{10} + 132 q^{11} + 728 q^{12} - 236 q^{13} + 359 q^{14} + 550 q^{15} + 4514 q^{16} + 1666 q^{17}+ \cdots - 740784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.26134 1.46041 0.730206 0.683227i \(-0.239424\pi\)
0.730206 + 0.683227i \(0.239424\pi\)
\(3\) 12.5950 0.807971 0.403986 0.914765i \(-0.367625\pi\)
0.403986 + 0.914765i \(0.367625\pi\)
\(4\) 36.2497 1.13280
\(5\) 25.0000 0.447214
\(6\) 104.052 1.17997
\(7\) 63.2337 0.487757 0.243879 0.969806i \(-0.421580\pi\)
0.243879 + 0.969806i \(0.421580\pi\)
\(8\) 35.1081 0.193947
\(9\) −84.3653 −0.347182
\(10\) 206.533 0.653116
\(11\) 468.606 1.16769 0.583843 0.811867i \(-0.301548\pi\)
0.583843 + 0.811867i \(0.301548\pi\)
\(12\) 456.566 0.915272
\(13\) 1123.23 1.84336 0.921678 0.387956i \(-0.126819\pi\)
0.921678 + 0.387956i \(0.126819\pi\)
\(14\) 522.395 0.712326
\(15\) 314.876 0.361336
\(16\) −869.950 −0.849561
\(17\) −601.631 −0.504903 −0.252452 0.967610i \(-0.581237\pi\)
−0.252452 + 0.967610i \(0.581237\pi\)
\(18\) −696.970 −0.507029
\(19\) −608.068 −0.386427 −0.193214 0.981157i \(-0.561891\pi\)
−0.193214 + 0.981157i \(0.561891\pi\)
\(20\) 906.242 0.506605
\(21\) 796.430 0.394094
\(22\) 3871.31 1.70530
\(23\) −529.000 −0.208514
\(24\) 442.187 0.156703
\(25\) 625.000 0.200000
\(26\) 9279.36 2.69206
\(27\) −4123.17 −1.08848
\(28\) 2292.20 0.552533
\(29\) 1892.66 0.417905 0.208952 0.977926i \(-0.432995\pi\)
0.208952 + 0.977926i \(0.432995\pi\)
\(30\) 2601.29 0.527699
\(31\) −4457.82 −0.833141 −0.416570 0.909103i \(-0.636768\pi\)
−0.416570 + 0.909103i \(0.636768\pi\)
\(32\) −8310.41 −1.43466
\(33\) 5902.10 0.943456
\(34\) −4970.28 −0.737366
\(35\) 1580.84 0.218132
\(36\) −3058.22 −0.393289
\(37\) 134.186 0.0161140 0.00805701 0.999968i \(-0.497435\pi\)
0.00805701 + 0.999968i \(0.497435\pi\)
\(38\) −5023.45 −0.564343
\(39\) 14147.1 1.48938
\(40\) 877.702 0.0867356
\(41\) −8546.11 −0.793979 −0.396989 0.917823i \(-0.629945\pi\)
−0.396989 + 0.917823i \(0.629945\pi\)
\(42\) 6579.58 0.575539
\(43\) 1466.08 0.120917 0.0604583 0.998171i \(-0.480744\pi\)
0.0604583 + 0.998171i \(0.480744\pi\)
\(44\) 16986.8 1.32276
\(45\) −2109.13 −0.155265
\(46\) −4370.25 −0.304517
\(47\) 4434.31 0.292807 0.146404 0.989225i \(-0.453230\pi\)
0.146404 + 0.989225i \(0.453230\pi\)
\(48\) −10957.0 −0.686421
\(49\) −12808.5 −0.762093
\(50\) 5163.34 0.292082
\(51\) −7577.56 −0.407947
\(52\) 40716.6 2.08816
\(53\) −13348.2 −0.652728 −0.326364 0.945244i \(-0.605824\pi\)
−0.326364 + 0.945244i \(0.605824\pi\)
\(54\) −34062.9 −1.58964
\(55\) 11715.1 0.522205
\(56\) 2220.02 0.0945989
\(57\) −7658.63 −0.312222
\(58\) 15635.9 0.610313
\(59\) 48451.0 1.81206 0.906031 0.423212i \(-0.139098\pi\)
0.906031 + 0.423212i \(0.139098\pi\)
\(60\) 11414.1 0.409322
\(61\) −37607.9 −1.29406 −0.647029 0.762465i \(-0.723989\pi\)
−0.647029 + 0.762465i \(0.723989\pi\)
\(62\) −36827.6 −1.21673
\(63\) −5334.73 −0.169341
\(64\) −40816.7 −1.24563
\(65\) 28080.7 0.824374
\(66\) 48759.2 1.37783
\(67\) −12159.5 −0.330925 −0.165463 0.986216i \(-0.552912\pi\)
−0.165463 + 0.986216i \(0.552912\pi\)
\(68\) −21808.9 −0.571956
\(69\) −6662.77 −0.168474
\(70\) 13059.9 0.318562
\(71\) −67887.7 −1.59825 −0.799126 0.601163i \(-0.794704\pi\)
−0.799126 + 0.601163i \(0.794704\pi\)
\(72\) −2961.90 −0.0673348
\(73\) 69090.1 1.51743 0.758715 0.651423i \(-0.225828\pi\)
0.758715 + 0.651423i \(0.225828\pi\)
\(74\) 1108.56 0.0235331
\(75\) 7871.89 0.161594
\(76\) −22042.3 −0.437746
\(77\) 29631.7 0.569547
\(78\) 116874. 2.17511
\(79\) −75657.9 −1.36391 −0.681956 0.731393i \(-0.738870\pi\)
−0.681956 + 0.731393i \(0.738870\pi\)
\(80\) −21748.8 −0.379935
\(81\) −31430.7 −0.532282
\(82\) −70602.3 −1.15954
\(83\) 57852.2 0.921774 0.460887 0.887459i \(-0.347531\pi\)
0.460887 + 0.887459i \(0.347531\pi\)
\(84\) 28870.4 0.446431
\(85\) −15040.8 −0.225799
\(86\) 12111.8 0.176588
\(87\) 23838.1 0.337655
\(88\) 16451.9 0.226469
\(89\) −70027.0 −0.937110 −0.468555 0.883434i \(-0.655225\pi\)
−0.468555 + 0.883434i \(0.655225\pi\)
\(90\) −17424.3 −0.226750
\(91\) 71025.8 0.899110
\(92\) −19176.1 −0.236206
\(93\) −56146.4 −0.673154
\(94\) 36633.4 0.427619
\(95\) −15201.7 −0.172816
\(96\) −104670. −1.15916
\(97\) 10083.5 0.108813 0.0544064 0.998519i \(-0.482673\pi\)
0.0544064 + 0.998519i \(0.482673\pi\)
\(98\) −105815. −1.11297
\(99\) −39534.1 −0.405400
\(100\) 22656.1 0.226561
\(101\) 42192.8 0.411562 0.205781 0.978598i \(-0.434027\pi\)
0.205781 + 0.978598i \(0.434027\pi\)
\(102\) −62600.8 −0.595771
\(103\) 139491. 1.29554 0.647772 0.761834i \(-0.275701\pi\)
0.647772 + 0.761834i \(0.275701\pi\)
\(104\) 39434.4 0.357513
\(105\) 19910.8 0.176244
\(106\) −110274. −0.953252
\(107\) −183948. −1.55323 −0.776616 0.629974i \(-0.783065\pi\)
−0.776616 + 0.629974i \(0.783065\pi\)
\(108\) −149464. −1.23304
\(109\) −225031. −1.81416 −0.907081 0.420955i \(-0.861695\pi\)
−0.907081 + 0.420955i \(0.861695\pi\)
\(110\) 96782.7 0.762634
\(111\) 1690.08 0.0130197
\(112\) −55010.2 −0.414379
\(113\) 186586. 1.37462 0.687310 0.726364i \(-0.258791\pi\)
0.687310 + 0.726364i \(0.258791\pi\)
\(114\) −63270.5 −0.455973
\(115\) −13225.0 −0.0932505
\(116\) 68608.3 0.473403
\(117\) −94761.4 −0.639981
\(118\) 400270. 2.64636
\(119\) −38043.4 −0.246270
\(120\) 11054.7 0.0700799
\(121\) 58540.3 0.363489
\(122\) −310691. −1.88986
\(123\) −107638. −0.641512
\(124\) −161595. −0.943784
\(125\) 15625.0 0.0894427
\(126\) −44072.0 −0.247307
\(127\) 111792. 0.615040 0.307520 0.951542i \(-0.400501\pi\)
0.307520 + 0.951542i \(0.400501\pi\)
\(128\) −71267.3 −0.384473
\(129\) 18465.3 0.0976972
\(130\) 231984. 1.20393
\(131\) 117161. 0.596490 0.298245 0.954489i \(-0.403599\pi\)
0.298245 + 0.954489i \(0.403599\pi\)
\(132\) 213949. 1.06875
\(133\) −38450.4 −0.188483
\(134\) −100454. −0.483287
\(135\) −103079. −0.486785
\(136\) −21122.1 −0.0979242
\(137\) 26002.1 0.118360 0.0591802 0.998247i \(-0.481151\pi\)
0.0591802 + 0.998247i \(0.481151\pi\)
\(138\) −55043.4 −0.246041
\(139\) 210639. 0.924702 0.462351 0.886697i \(-0.347006\pi\)
0.462351 + 0.886697i \(0.347006\pi\)
\(140\) 57305.1 0.247100
\(141\) 55850.3 0.236580
\(142\) −560843. −2.33411
\(143\) 526351. 2.15246
\(144\) 73393.6 0.294952
\(145\) 47316.4 0.186893
\(146\) 570777. 2.21607
\(147\) −161323. −0.615749
\(148\) 4864.21 0.0182540
\(149\) 233149. 0.860337 0.430169 0.902749i \(-0.358454\pi\)
0.430169 + 0.902749i \(0.358454\pi\)
\(150\) 65032.4 0.235994
\(151\) 515259. 1.83901 0.919503 0.393084i \(-0.128592\pi\)
0.919503 + 0.393084i \(0.128592\pi\)
\(152\) −21348.1 −0.0749463
\(153\) 50756.8 0.175293
\(154\) 244797. 0.831773
\(155\) −111446. −0.372592
\(156\) 512827. 1.68717
\(157\) −43150.9 −0.139714 −0.0698571 0.997557i \(-0.522254\pi\)
−0.0698571 + 0.997557i \(0.522254\pi\)
\(158\) −625035. −1.99187
\(159\) −168121. −0.527386
\(160\) −207760. −0.641597
\(161\) −33450.6 −0.101704
\(162\) −259660. −0.777351
\(163\) 314107. 0.925995 0.462997 0.886360i \(-0.346774\pi\)
0.462997 + 0.886360i \(0.346774\pi\)
\(164\) −309794. −0.899421
\(165\) 147553. 0.421926
\(166\) 477936. 1.34617
\(167\) −220148. −0.610835 −0.305418 0.952219i \(-0.598796\pi\)
−0.305418 + 0.952219i \(0.598796\pi\)
\(168\) 27961.2 0.0764332
\(169\) 890346. 2.39796
\(170\) −124257. −0.329760
\(171\) 51299.8 0.134161
\(172\) 53144.9 0.136975
\(173\) −290644. −0.738324 −0.369162 0.929365i \(-0.620355\pi\)
−0.369162 + 0.929365i \(0.620355\pi\)
\(174\) 196934. 0.493115
\(175\) 39521.1 0.0975514
\(176\) −407664. −0.992020
\(177\) 610242. 1.46409
\(178\) −578517. −1.36857
\(179\) 178931. 0.417401 0.208700 0.977980i \(-0.433077\pi\)
0.208700 + 0.977980i \(0.433077\pi\)
\(180\) −76455.4 −0.175884
\(181\) 589666. 1.33786 0.668928 0.743327i \(-0.266753\pi\)
0.668928 + 0.743327i \(0.266753\pi\)
\(182\) 586768. 1.31307
\(183\) −473672. −1.04556
\(184\) −18572.2 −0.0404407
\(185\) 3354.66 0.00720641
\(186\) −463844. −0.983082
\(187\) −281928. −0.589568
\(188\) 160743. 0.331693
\(189\) −260724. −0.530916
\(190\) −125586. −0.252382
\(191\) −260213. −0.516115 −0.258057 0.966130i \(-0.583082\pi\)
−0.258057 + 0.966130i \(0.583082\pi\)
\(192\) −514087. −1.00643
\(193\) 377194. 0.728906 0.364453 0.931222i \(-0.381256\pi\)
0.364453 + 0.931222i \(0.381256\pi\)
\(194\) 83302.9 0.158912
\(195\) 353677. 0.666070
\(196\) −464304. −0.863301
\(197\) 653546. 1.19980 0.599902 0.800073i \(-0.295206\pi\)
0.599902 + 0.800073i \(0.295206\pi\)
\(198\) −326604. −0.592050
\(199\) 662519. 1.18595 0.592974 0.805221i \(-0.297954\pi\)
0.592974 + 0.805221i \(0.297954\pi\)
\(200\) 21942.6 0.0387893
\(201\) −153150. −0.267378
\(202\) 348569. 0.601050
\(203\) 119680. 0.203836
\(204\) −274684. −0.462124
\(205\) −213653. −0.355078
\(206\) 1.15238e6 1.89203
\(207\) 44629.2 0.0723925
\(208\) −977152. −1.56604
\(209\) −284944. −0.451226
\(210\) 164490. 0.257389
\(211\) −221802. −0.342973 −0.171487 0.985186i \(-0.554857\pi\)
−0.171487 + 0.985186i \(0.554857\pi\)
\(212\) −483867. −0.739412
\(213\) −855048. −1.29134
\(214\) −1.51966e6 −2.26836
\(215\) 36652.0 0.0540756
\(216\) −144757. −0.211108
\(217\) −281885. −0.406370
\(218\) −1.85906e6 −2.64943
\(219\) 870192. 1.22604
\(220\) 424670. 0.591555
\(221\) −675768. −0.930716
\(222\) 13962.3 0.0190141
\(223\) −47494.5 −0.0639560 −0.0319780 0.999489i \(-0.510181\pi\)
−0.0319780 + 0.999489i \(0.510181\pi\)
\(224\) −525498. −0.699763
\(225\) −52728.3 −0.0694365
\(226\) 1.54145e6 2.00751
\(227\) −1.08504e6 −1.39760 −0.698799 0.715318i \(-0.746282\pi\)
−0.698799 + 0.715318i \(0.746282\pi\)
\(228\) −277623. −0.353686
\(229\) −1.48081e6 −1.86599 −0.932996 0.359886i \(-0.882815\pi\)
−0.932996 + 0.359886i \(0.882815\pi\)
\(230\) −109256. −0.136184
\(231\) 373212. 0.460178
\(232\) 66447.6 0.0810512
\(233\) 165975. 0.200287 0.100144 0.994973i \(-0.468070\pi\)
0.100144 + 0.994973i \(0.468070\pi\)
\(234\) −782856. −0.934635
\(235\) 110858. 0.130947
\(236\) 1.75633e6 2.05271
\(237\) −952913. −1.10200
\(238\) −314289. −0.359656
\(239\) −175263. −0.198470 −0.0992352 0.995064i \(-0.531640\pi\)
−0.0992352 + 0.995064i \(0.531640\pi\)
\(240\) −273926. −0.306977
\(241\) 170515. 0.189113 0.0945563 0.995520i \(-0.469857\pi\)
0.0945563 + 0.995520i \(0.469857\pi\)
\(242\) 483621. 0.530844
\(243\) 606061. 0.658416
\(244\) −1.36327e6 −1.46591
\(245\) −320212. −0.340818
\(246\) −889238. −0.936872
\(247\) −682998. −0.712323
\(248\) −156506. −0.161585
\(249\) 728650. 0.744767
\(250\) 129083. 0.130623
\(251\) −571498. −0.572572 −0.286286 0.958144i \(-0.592421\pi\)
−0.286286 + 0.958144i \(0.592421\pi\)
\(252\) −193382. −0.191830
\(253\) −247892. −0.243479
\(254\) 923555. 0.898211
\(255\) −189439. −0.182440
\(256\) 717371. 0.684138
\(257\) 832132. 0.785886 0.392943 0.919563i \(-0.371457\pi\)
0.392943 + 0.919563i \(0.371457\pi\)
\(258\) 152548. 0.142678
\(259\) 8485.10 0.00785973
\(260\) 1.01792e6 0.933853
\(261\) −159675. −0.145089
\(262\) 967903. 0.871121
\(263\) 235655. 0.210081 0.105041 0.994468i \(-0.466503\pi\)
0.105041 + 0.994468i \(0.466503\pi\)
\(264\) 207212. 0.182980
\(265\) −333704. −0.291909
\(266\) −317652. −0.275262
\(267\) −881992. −0.757158
\(268\) −440779. −0.374873
\(269\) 2.07196e6 1.74582 0.872911 0.487879i \(-0.162229\pi\)
0.872911 + 0.487879i \(0.162229\pi\)
\(270\) −851573. −0.710907
\(271\) 1.96875e6 1.62842 0.814212 0.580568i \(-0.197169\pi\)
0.814212 + 0.580568i \(0.197169\pi\)
\(272\) 523389. 0.428946
\(273\) 894572. 0.726455
\(274\) 214812. 0.172855
\(275\) 292879. 0.233537
\(276\) −241523. −0.190847
\(277\) −754291. −0.590662 −0.295331 0.955395i \(-0.595430\pi\)
−0.295331 + 0.955395i \(0.595430\pi\)
\(278\) 1.74016e6 1.35045
\(279\) 376085. 0.289252
\(280\) 55500.4 0.0423059
\(281\) 252483. 0.190751 0.0953754 0.995441i \(-0.469595\pi\)
0.0953754 + 0.995441i \(0.469595\pi\)
\(282\) 461398. 0.345504
\(283\) −1.23325e6 −0.915342 −0.457671 0.889122i \(-0.651316\pi\)
−0.457671 + 0.889122i \(0.651316\pi\)
\(284\) −2.46091e6 −1.81050
\(285\) −191466. −0.139630
\(286\) 4.34836e6 3.14348
\(287\) −540402. −0.387269
\(288\) 701110. 0.498087
\(289\) −1.05790e6 −0.745073
\(290\) 390897. 0.272940
\(291\) 127001. 0.0879177
\(292\) 2.50449e6 1.71895
\(293\) 350407. 0.238453 0.119227 0.992867i \(-0.461958\pi\)
0.119227 + 0.992867i \(0.461958\pi\)
\(294\) −1.33275e6 −0.899248
\(295\) 1.21128e6 0.810378
\(296\) 4711.03 0.00312526
\(297\) −1.93214e6 −1.27101
\(298\) 1.92613e6 1.25645
\(299\) −594187. −0.384366
\(300\) 285354. 0.183054
\(301\) 92705.6 0.0589780
\(302\) 4.25673e6 2.68571
\(303\) 531420. 0.332530
\(304\) 528989. 0.328294
\(305\) −940197. −0.578721
\(306\) 419319. 0.256001
\(307\) −708307. −0.428920 −0.214460 0.976733i \(-0.568799\pi\)
−0.214460 + 0.976733i \(0.568799\pi\)
\(308\) 1.07414e6 0.645184
\(309\) 1.75689e6 1.04676
\(310\) −920689. −0.544138
\(311\) −46185.3 −0.0270771 −0.0135386 0.999908i \(-0.504310\pi\)
−0.0135386 + 0.999908i \(0.504310\pi\)
\(312\) 496677. 0.288860
\(313\) −3.32846e6 −1.92036 −0.960179 0.279386i \(-0.909869\pi\)
−0.960179 + 0.279386i \(0.909869\pi\)
\(314\) −356484. −0.204040
\(315\) −133368. −0.0757314
\(316\) −2.74257e6 −1.54504
\(317\) 1.61877e6 0.904768 0.452384 0.891823i \(-0.350574\pi\)
0.452384 + 0.891823i \(0.350574\pi\)
\(318\) −1.38890e6 −0.770200
\(319\) 886910. 0.487981
\(320\) −1.02042e6 −0.557061
\(321\) −2.31683e6 −1.25497
\(322\) −276347. −0.148530
\(323\) 365832. 0.195108
\(324\) −1.13935e6 −0.602971
\(325\) 702017. 0.368671
\(326\) 2.59494e6 1.35233
\(327\) −2.83427e6 −1.46579
\(328\) −300038. −0.153989
\(329\) 280398. 0.142819
\(330\) 1.21898e6 0.616186
\(331\) −3.25860e6 −1.63479 −0.817393 0.576081i \(-0.804581\pi\)
−0.817393 + 0.576081i \(0.804581\pi\)
\(332\) 2.09712e6 1.04419
\(333\) −11320.7 −0.00559450
\(334\) −1.81872e6 −0.892071
\(335\) −303988. −0.147994
\(336\) −692855. −0.334807
\(337\) 370879. 0.177893 0.0889463 0.996036i \(-0.471650\pi\)
0.0889463 + 0.996036i \(0.471650\pi\)
\(338\) 7.35545e6 3.50201
\(339\) 2.35005e6 1.11065
\(340\) −545223. −0.255786
\(341\) −2.08896e6 −0.972846
\(342\) 423805. 0.195930
\(343\) −1.87270e6 −0.859473
\(344\) 51471.2 0.0234514
\(345\) −166569. −0.0753437
\(346\) −2.40111e6 −1.07826
\(347\) −958308. −0.427249 −0.213625 0.976916i \(-0.568527\pi\)
−0.213625 + 0.976916i \(0.568527\pi\)
\(348\) 864123. 0.382496
\(349\) −3.02928e6 −1.33130 −0.665650 0.746265i \(-0.731845\pi\)
−0.665650 + 0.746265i \(0.731845\pi\)
\(350\) 326497. 0.142465
\(351\) −4.63126e6 −2.00646
\(352\) −3.89431e6 −1.67523
\(353\) 1.62357e6 0.693479 0.346739 0.937961i \(-0.387289\pi\)
0.346739 + 0.937961i \(0.387289\pi\)
\(354\) 5.04141e6 2.13818
\(355\) −1.69719e6 −0.714760
\(356\) −2.53846e6 −1.06156
\(357\) −479157. −0.198979
\(358\) 1.47821e6 0.609577
\(359\) −97815.9 −0.0400565 −0.0200283 0.999799i \(-0.506376\pi\)
−0.0200283 + 0.999799i \(0.506376\pi\)
\(360\) −74047.6 −0.0301131
\(361\) −2.10635e6 −0.850674
\(362\) 4.87143e6 1.95382
\(363\) 737316. 0.293689
\(364\) 2.57466e6 1.01851
\(365\) 1.72725e6 0.678615
\(366\) −3.91316e6 −1.52695
\(367\) −2.42352e6 −0.939249 −0.469624 0.882866i \(-0.655611\pi\)
−0.469624 + 0.882866i \(0.655611\pi\)
\(368\) 460204. 0.177146
\(369\) 720995. 0.275655
\(370\) 27714.0 0.0105243
\(371\) −844055. −0.318373
\(372\) −2.03529e6 −0.762551
\(373\) 1.31572e6 0.489658 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(374\) −2.32910e6 −0.861012
\(375\) 196797. 0.0722672
\(376\) 155680. 0.0567890
\(377\) 2.12588e6 0.770347
\(378\) −2.15393e6 −0.775356
\(379\) −206664. −0.0739039 −0.0369519 0.999317i \(-0.511765\pi\)
−0.0369519 + 0.999317i \(0.511765\pi\)
\(380\) −551057. −0.195766
\(381\) 1.40803e6 0.496934
\(382\) −2.14971e6 −0.753740
\(383\) 822751. 0.286597 0.143298 0.989680i \(-0.454229\pi\)
0.143298 + 0.989680i \(0.454229\pi\)
\(384\) −897614. −0.310643
\(385\) 740792. 0.254709
\(386\) 3.11613e6 1.06450
\(387\) −123686. −0.0419801
\(388\) 365522. 0.123264
\(389\) 3.91075e6 1.31034 0.655172 0.755479i \(-0.272596\pi\)
0.655172 + 0.755479i \(0.272596\pi\)
\(390\) 2.92184e6 0.972737
\(391\) 318263. 0.105280
\(392\) −449682. −0.147805
\(393\) 1.47564e6 0.481947
\(394\) 5.39916e6 1.75221
\(395\) −1.89145e6 −0.609960
\(396\) −1.43310e6 −0.459238
\(397\) −3.62697e6 −1.15496 −0.577480 0.816404i \(-0.695964\pi\)
−0.577480 + 0.816404i \(0.695964\pi\)
\(398\) 5.47330e6 1.73197
\(399\) −484284. −0.152289
\(400\) −543719. −0.169912
\(401\) 4.76269e6 1.47908 0.739540 0.673113i \(-0.235043\pi\)
0.739540 + 0.673113i \(0.235043\pi\)
\(402\) −1.26522e6 −0.390482
\(403\) −5.00715e6 −1.53578
\(404\) 1.52948e6 0.466218
\(405\) −785768. −0.238044
\(406\) 988715. 0.297684
\(407\) 62880.5 0.0188161
\(408\) −266034. −0.0791200
\(409\) 3.11683e6 0.921307 0.460654 0.887580i \(-0.347615\pi\)
0.460654 + 0.887580i \(0.347615\pi\)
\(410\) −1.76506e6 −0.518560
\(411\) 327497. 0.0956318
\(412\) 5.05649e6 1.46760
\(413\) 3.06374e6 0.883846
\(414\) 368697. 0.105723
\(415\) 1.44630e6 0.412230
\(416\) −9.33448e6 −2.64458
\(417\) 2.65300e6 0.747133
\(418\) −2.35402e6 −0.658975
\(419\) 3.22635e6 0.897793 0.448897 0.893584i \(-0.351817\pi\)
0.448897 + 0.893584i \(0.351817\pi\)
\(420\) 721759. 0.199650
\(421\) 638097. 0.175461 0.0877307 0.996144i \(-0.472039\pi\)
0.0877307 + 0.996144i \(0.472039\pi\)
\(422\) −1.83238e6 −0.500882
\(423\) −374102. −0.101658
\(424\) −468629. −0.126594
\(425\) −376019. −0.100981
\(426\) −7.06384e6 −1.88589
\(427\) −2.37809e6 −0.631187
\(428\) −6.66807e6 −1.75951
\(429\) 6.62940e6 1.73913
\(430\) 302794. 0.0789726
\(431\) 1.08234e6 0.280654 0.140327 0.990105i \(-0.455185\pi\)
0.140327 + 0.990105i \(0.455185\pi\)
\(432\) 3.58696e6 0.924734
\(433\) 3.47077e6 0.889623 0.444812 0.895624i \(-0.353271\pi\)
0.444812 + 0.895624i \(0.353271\pi\)
\(434\) −2.32874e6 −0.593468
\(435\) 595952. 0.151004
\(436\) −8.15731e6 −2.05509
\(437\) 321668. 0.0805757
\(438\) 7.18895e6 1.79052
\(439\) −5.62564e6 −1.39319 −0.696595 0.717464i \(-0.745303\pi\)
−0.696595 + 0.717464i \(0.745303\pi\)
\(440\) 411296. 0.101280
\(441\) 1.08059e6 0.264585
\(442\) −5.58275e6 −1.35923
\(443\) 269762. 0.0653086 0.0326543 0.999467i \(-0.489604\pi\)
0.0326543 + 0.999467i \(0.489604\pi\)
\(444\) 61264.9 0.0147487
\(445\) −1.75068e6 −0.419088
\(446\) −392368. −0.0934020
\(447\) 2.93652e6 0.695128
\(448\) −2.58099e6 −0.607563
\(449\) 271606. 0.0635805 0.0317902 0.999495i \(-0.489879\pi\)
0.0317902 + 0.999495i \(0.489879\pi\)
\(450\) −435606. −0.101406
\(451\) −4.00476e6 −0.927117
\(452\) 6.76368e6 1.55717
\(453\) 6.48970e6 1.48586
\(454\) −8.96390e6 −2.04107
\(455\) 1.77565e6 0.402094
\(456\) −268880. −0.0605545
\(457\) −5.71667e6 −1.28042 −0.640211 0.768199i \(-0.721153\pi\)
−0.640211 + 0.768199i \(0.721153\pi\)
\(458\) −1.22334e7 −2.72512
\(459\) 2.48063e6 0.549579
\(460\) −479402. −0.105634
\(461\) 1.34860e6 0.295549 0.147774 0.989021i \(-0.452789\pi\)
0.147774 + 0.989021i \(0.452789\pi\)
\(462\) 3.08323e6 0.672049
\(463\) −796195. −0.172611 −0.0863053 0.996269i \(-0.527506\pi\)
−0.0863053 + 0.996269i \(0.527506\pi\)
\(464\) −1.64652e6 −0.355035
\(465\) −1.40366e6 −0.301044
\(466\) 1.37118e6 0.292502
\(467\) 922263. 0.195687 0.0978436 0.995202i \(-0.468806\pi\)
0.0978436 + 0.995202i \(0.468806\pi\)
\(468\) −3.43507e6 −0.724972
\(469\) −768893. −0.161411
\(470\) 915834. 0.191237
\(471\) −543487. −0.112885
\(472\) 1.70102e6 0.351443
\(473\) 687013. 0.141193
\(474\) −7.87233e6 −1.60938
\(475\) −380042. −0.0772855
\(476\) −1.37906e6 −0.278975
\(477\) 1.12612e6 0.226616
\(478\) −1.44791e6 −0.289848
\(479\) −9.14492e6 −1.82113 −0.910565 0.413365i \(-0.864353\pi\)
−0.910565 + 0.413365i \(0.864353\pi\)
\(480\) −2.61675e6 −0.518392
\(481\) 150722. 0.0297039
\(482\) 1.40868e6 0.276182
\(483\) −421312. −0.0821742
\(484\) 2.12207e6 0.411761
\(485\) 252086. 0.0486626
\(486\) 5.00687e6 0.961558
\(487\) 1.61494e6 0.308556 0.154278 0.988028i \(-0.450695\pi\)
0.154278 + 0.988028i \(0.450695\pi\)
\(488\) −1.32034e6 −0.250978
\(489\) 3.95619e6 0.748177
\(490\) −2.64538e6 −0.497735
\(491\) −3.36320e6 −0.629577 −0.314788 0.949162i \(-0.601934\pi\)
−0.314788 + 0.949162i \(0.601934\pi\)
\(492\) −3.90186e6 −0.726707
\(493\) −1.13868e6 −0.211001
\(494\) −5.64248e6 −1.04029
\(495\) −988351. −0.181300
\(496\) 3.87808e6 0.707804
\(497\) −4.29279e6 −0.779559
\(498\) 6.01962e6 1.08767
\(499\) 4.12967e6 0.742445 0.371222 0.928544i \(-0.378939\pi\)
0.371222 + 0.928544i \(0.378939\pi\)
\(500\) 566401. 0.101321
\(501\) −2.77277e6 −0.493537
\(502\) −4.72134e6 −0.836191
\(503\) −7.88098e6 −1.38887 −0.694433 0.719557i \(-0.744345\pi\)
−0.694433 + 0.719557i \(0.744345\pi\)
\(504\) −187292. −0.0328430
\(505\) 1.05482e6 0.184056
\(506\) −2.04792e6 −0.355580
\(507\) 1.12139e7 1.93748
\(508\) 4.05244e6 0.696718
\(509\) 7.94501e6 1.35925 0.679626 0.733559i \(-0.262142\pi\)
0.679626 + 0.733559i \(0.262142\pi\)
\(510\) −1.56502e6 −0.266437
\(511\) 4.36882e6 0.740137
\(512\) 8.20700e6 1.38360
\(513\) 2.50717e6 0.420620
\(514\) 6.87452e6 1.14772
\(515\) 3.48727e6 0.579385
\(516\) 669361. 0.110672
\(517\) 2.07795e6 0.341907
\(518\) 70098.3 0.0114784
\(519\) −3.66068e6 −0.596544
\(520\) 985859. 0.159885
\(521\) 1.21250e7 1.95698 0.978491 0.206288i \(-0.0661385\pi\)
0.978491 + 0.206288i \(0.0661385\pi\)
\(522\) −1.31913e6 −0.211890
\(523\) 4.37509e6 0.699412 0.349706 0.936860i \(-0.386282\pi\)
0.349706 + 0.936860i \(0.386282\pi\)
\(524\) 4.24703e6 0.675706
\(525\) 497769. 0.0788188
\(526\) 1.94682e6 0.306805
\(527\) 2.68196e6 0.420655
\(528\) −5.13453e6 −0.801523
\(529\) 279841. 0.0434783
\(530\) −2.75684e6 −0.426307
\(531\) −4.08758e6 −0.629116
\(532\) −1.39381e6 −0.213514
\(533\) −9.59922e6 −1.46359
\(534\) −7.28644e6 −1.10576
\(535\) −4.59871e6 −0.694627
\(536\) −426898. −0.0641819
\(537\) 2.25364e6 0.337248
\(538\) 1.71171e7 2.54962
\(539\) −6.00213e6 −0.889885
\(540\) −3.73659e6 −0.551432
\(541\) 4.37003e6 0.641936 0.320968 0.947090i \(-0.395992\pi\)
0.320968 + 0.947090i \(0.395992\pi\)
\(542\) 1.62645e7 2.37817
\(543\) 7.42685e6 1.08095
\(544\) 4.99980e6 0.724362
\(545\) −5.62578e6 −0.811318
\(546\) 7.39036e6 1.06092
\(547\) 2.33085e6 0.333078 0.166539 0.986035i \(-0.446741\pi\)
0.166539 + 0.986035i \(0.446741\pi\)
\(548\) 942566. 0.134079
\(549\) 3.17280e6 0.449274
\(550\) 2.41957e6 0.341060
\(551\) −1.15086e6 −0.161490
\(552\) −233917. −0.0326749
\(553\) −4.78413e6 −0.665258
\(554\) −6.23145e6 −0.862610
\(555\) 42252.0 0.00582257
\(556\) 7.63560e6 1.04751
\(557\) −4.33859e6 −0.592530 −0.296265 0.955106i \(-0.595741\pi\)
−0.296265 + 0.955106i \(0.595741\pi\)
\(558\) 3.10697e6 0.422427
\(559\) 1.64674e6 0.222892
\(560\) −1.37525e6 −0.185316
\(561\) −3.55089e6 −0.476354
\(562\) 2.08585e6 0.278575
\(563\) −1.38036e7 −1.83536 −0.917681 0.397317i \(-0.869941\pi\)
−0.917681 + 0.397317i \(0.869941\pi\)
\(564\) 2.02456e6 0.267998
\(565\) 4.66465e6 0.614749
\(566\) −1.01883e7 −1.33678
\(567\) −1.98748e6 −0.259624
\(568\) −2.38341e6 −0.309976
\(569\) 6.68069e6 0.865049 0.432524 0.901622i \(-0.357623\pi\)
0.432524 + 0.901622i \(0.357623\pi\)
\(570\) −1.58176e6 −0.203917
\(571\) −1.00163e7 −1.28563 −0.642817 0.766019i \(-0.722235\pi\)
−0.642817 + 0.766019i \(0.722235\pi\)
\(572\) 1.90800e7 2.43831
\(573\) −3.27739e6 −0.417006
\(574\) −4.46445e6 −0.565572
\(575\) −330625. −0.0417029
\(576\) 3.44351e6 0.432459
\(577\) −1.05421e7 −1.31822 −0.659108 0.752048i \(-0.729066\pi\)
−0.659108 + 0.752048i \(0.729066\pi\)
\(578\) −8.73964e6 −1.08811
\(579\) 4.75077e6 0.588935
\(580\) 1.71521e6 0.211712
\(581\) 3.65821e6 0.449602
\(582\) 1.04920e6 0.128396
\(583\) −6.25503e6 −0.762181
\(584\) 2.42562e6 0.294300
\(585\) −2.36903e6 −0.286208
\(586\) 2.89483e6 0.348240
\(587\) −1.22129e7 −1.46293 −0.731465 0.681880i \(-0.761163\pi\)
−0.731465 + 0.681880i \(0.761163\pi\)
\(588\) −5.84792e6 −0.697522
\(589\) 2.71066e6 0.321949
\(590\) 1.00068e7 1.18349
\(591\) 8.23143e6 0.969407
\(592\) −116735. −0.0136898
\(593\) −6.09666e6 −0.711959 −0.355980 0.934494i \(-0.615853\pi\)
−0.355980 + 0.934494i \(0.615853\pi\)
\(594\) −1.59621e7 −1.85619
\(595\) −951084. −0.110135
\(596\) 8.45159e6 0.974592
\(597\) 8.34445e6 0.958213
\(598\) −4.90878e6 −0.561333
\(599\) −5.61018e6 −0.638865 −0.319433 0.947609i \(-0.603492\pi\)
−0.319433 + 0.947609i \(0.603492\pi\)
\(600\) 276367. 0.0313407
\(601\) 1.21279e7 1.36962 0.684809 0.728723i \(-0.259886\pi\)
0.684809 + 0.728723i \(0.259886\pi\)
\(602\) 765872. 0.0861321
\(603\) 1.02584e6 0.114891
\(604\) 1.86780e7 2.08323
\(605\) 1.46351e6 0.162557
\(606\) 4.39024e6 0.485631
\(607\) 1.46018e7 1.60855 0.804276 0.594255i \(-0.202553\pi\)
0.804276 + 0.594255i \(0.202553\pi\)
\(608\) 5.05329e6 0.554390
\(609\) 1.50737e6 0.164694
\(610\) −7.76728e6 −0.845171
\(611\) 4.98074e6 0.539748
\(612\) 1.83992e6 0.198573
\(613\) 1.34736e7 1.44821 0.724104 0.689691i \(-0.242254\pi\)
0.724104 + 0.689691i \(0.242254\pi\)
\(614\) −5.85157e6 −0.626399
\(615\) −2.69096e6 −0.286893
\(616\) 1.04031e6 0.110462
\(617\) 1.86160e7 1.96867 0.984334 0.176314i \(-0.0564174\pi\)
0.984334 + 0.176314i \(0.0564174\pi\)
\(618\) 1.45142e7 1.52870
\(619\) −5.17151e6 −0.542489 −0.271244 0.962510i \(-0.587435\pi\)
−0.271244 + 0.962510i \(0.587435\pi\)
\(620\) −4.03987e6 −0.422073
\(621\) 2.18116e6 0.226965
\(622\) −381552. −0.0395437
\(623\) −4.42807e6 −0.457082
\(624\) −1.23073e7 −1.26532
\(625\) 390625. 0.0400000
\(626\) −2.74975e7 −2.80451
\(627\) −3.58888e6 −0.364577
\(628\) −1.56421e6 −0.158269
\(629\) −80730.7 −0.00813602
\(630\) −1.10180e6 −0.110599
\(631\) −5.55004e6 −0.554910 −0.277455 0.960739i \(-0.589491\pi\)
−0.277455 + 0.960739i \(0.589491\pi\)
\(632\) −2.65620e6 −0.264526
\(633\) −2.79361e6 −0.277113
\(634\) 1.33732e7 1.32133
\(635\) 2.79481e6 0.275054
\(636\) −6.09432e6 −0.597424
\(637\) −1.43869e7 −1.40481
\(638\) 7.32706e6 0.712653
\(639\) 5.72737e6 0.554885
\(640\) −1.78168e6 −0.171941
\(641\) 1.49507e7 1.43720 0.718599 0.695425i \(-0.244784\pi\)
0.718599 + 0.695425i \(0.244784\pi\)
\(642\) −1.91401e7 −1.83277
\(643\) −1.09430e7 −1.04378 −0.521891 0.853012i \(-0.674773\pi\)
−0.521891 + 0.853012i \(0.674773\pi\)
\(644\) −1.21258e6 −0.115211
\(645\) 461632. 0.0436915
\(646\) 3.02227e6 0.284939
\(647\) 1.88954e7 1.77458 0.887291 0.461210i \(-0.152585\pi\)
0.887291 + 0.461210i \(0.152585\pi\)
\(648\) −1.10347e6 −0.103234
\(649\) 2.27044e7 2.11592
\(650\) 5.79960e6 0.538412
\(651\) −3.55035e6 −0.328336
\(652\) 1.13863e7 1.04897
\(653\) 593534. 0.0544706 0.0272353 0.999629i \(-0.491330\pi\)
0.0272353 + 0.999629i \(0.491330\pi\)
\(654\) −2.34149e7 −2.14066
\(655\) 2.92901e6 0.266758
\(656\) 7.43469e6 0.674533
\(657\) −5.82881e6 −0.526825
\(658\) 2.31646e6 0.208574
\(659\) 890782. 0.0799020 0.0399510 0.999202i \(-0.487280\pi\)
0.0399510 + 0.999202i \(0.487280\pi\)
\(660\) 5.34873e6 0.477959
\(661\) −5.10517e6 −0.454472 −0.227236 0.973840i \(-0.572969\pi\)
−0.227236 + 0.973840i \(0.572969\pi\)
\(662\) −2.69204e7 −2.38746
\(663\) −8.51132e6 −0.751992
\(664\) 2.03108e6 0.178775
\(665\) −961260. −0.0842921
\(666\) −93523.9 −0.00817028
\(667\) −1.00122e6 −0.0871391
\(668\) −7.98030e6 −0.691956
\(669\) −598194. −0.0516746
\(670\) −2.51135e6 −0.216133
\(671\) −1.76233e7 −1.51105
\(672\) −6.61866e6 −0.565389
\(673\) −1.41252e7 −1.20215 −0.601073 0.799194i \(-0.705260\pi\)
−0.601073 + 0.799194i \(0.705260\pi\)
\(674\) 3.06396e6 0.259796
\(675\) −2.57698e6 −0.217697
\(676\) 3.22748e7 2.71642
\(677\) −1.21847e7 −1.02174 −0.510872 0.859657i \(-0.670677\pi\)
−0.510872 + 0.859657i \(0.670677\pi\)
\(678\) 1.94146e7 1.62201
\(679\) 637615. 0.0530743
\(680\) −528053. −0.0437931
\(681\) −1.36661e7 −1.12922
\(682\) −1.72576e7 −1.42076
\(683\) −2.12485e7 −1.74292 −0.871458 0.490470i \(-0.836825\pi\)
−0.871458 + 0.490470i \(0.836825\pi\)
\(684\) 1.85960e6 0.151978
\(685\) 650051. 0.0529324
\(686\) −1.54710e7 −1.25519
\(687\) −1.86508e7 −1.50767
\(688\) −1.27542e6 −0.102726
\(689\) −1.49930e7 −1.20321
\(690\) −1.37608e6 −0.110033
\(691\) −1.59280e6 −0.126902 −0.0634508 0.997985i \(-0.520211\pi\)
−0.0634508 + 0.997985i \(0.520211\pi\)
\(692\) −1.05358e7 −0.836375
\(693\) −2.49989e6 −0.197737
\(694\) −7.91691e6 −0.623960
\(695\) 5.26598e6 0.413539
\(696\) 836909. 0.0654870
\(697\) 5.14161e6 0.400882
\(698\) −2.50259e7 −1.94424
\(699\) 2.09046e6 0.161826
\(700\) 1.43263e6 0.110507
\(701\) 2.27090e7 1.74543 0.872716 0.488228i \(-0.162356\pi\)
0.872716 + 0.488228i \(0.162356\pi\)
\(702\) −3.82604e7 −2.93026
\(703\) −81594.4 −0.00622690
\(704\) −1.91269e7 −1.45450
\(705\) 1.39626e6 0.105802
\(706\) 1.34128e7 1.01276
\(707\) 2.66801e6 0.200742
\(708\) 2.21211e7 1.65853
\(709\) 7.00561e6 0.523396 0.261698 0.965150i \(-0.415718\pi\)
0.261698 + 0.965150i \(0.415718\pi\)
\(710\) −1.40211e7 −1.04384
\(711\) 6.38290e6 0.473526
\(712\) −2.45852e6 −0.181749
\(713\) 2.35819e6 0.173722
\(714\) −3.95848e6 −0.290592
\(715\) 1.31588e7 0.962609
\(716\) 6.48620e6 0.472833
\(717\) −2.20744e6 −0.160358
\(718\) −808090. −0.0584990
\(719\) 2.00896e7 1.44927 0.724633 0.689135i \(-0.242009\pi\)
0.724633 + 0.689135i \(0.242009\pi\)
\(720\) 1.83484e6 0.131907
\(721\) 8.82051e6 0.631911
\(722\) −1.74013e7 −1.24233
\(723\) 2.14764e6 0.152798
\(724\) 2.13752e7 1.51553
\(725\) 1.18291e6 0.0835809
\(726\) 6.09122e6 0.428907
\(727\) −2.05660e7 −1.44316 −0.721578 0.692333i \(-0.756583\pi\)
−0.721578 + 0.692333i \(0.756583\pi\)
\(728\) 2.49358e6 0.174379
\(729\) 1.52710e7 1.06426
\(730\) 1.42694e7 0.991058
\(731\) −882038. −0.0610512
\(732\) −1.71705e7 −1.18442
\(733\) −5.53202e6 −0.380298 −0.190149 0.981755i \(-0.560897\pi\)
−0.190149 + 0.981755i \(0.560897\pi\)
\(734\) −2.00215e7 −1.37169
\(735\) −4.03308e6 −0.275371
\(736\) 4.39621e6 0.299146
\(737\) −5.69803e6 −0.386417
\(738\) 5.95638e6 0.402570
\(739\) −1.41125e7 −0.950591 −0.475296 0.879826i \(-0.657659\pi\)
−0.475296 + 0.879826i \(0.657659\pi\)
\(740\) 121605. 0.00816344
\(741\) −8.60238e6 −0.575537
\(742\) −6.97302e6 −0.464955
\(743\) 2.36569e7 1.57212 0.786062 0.618148i \(-0.212117\pi\)
0.786062 + 0.618148i \(0.212117\pi\)
\(744\) −1.97119e6 −0.130556
\(745\) 5.82874e6 0.384754
\(746\) 1.08696e7 0.715102
\(747\) −4.88071e6 −0.320024
\(748\) −1.02198e7 −0.667864
\(749\) −1.16317e7 −0.757600
\(750\) 1.62581e6 0.105540
\(751\) −1.64044e7 −1.06135 −0.530677 0.847574i \(-0.678062\pi\)
−0.530677 + 0.847574i \(0.678062\pi\)
\(752\) −3.85763e6 −0.248758
\(753\) −7.19803e6 −0.462622
\(754\) 1.75626e7 1.12502
\(755\) 1.28815e7 0.822428
\(756\) −9.45115e6 −0.601423
\(757\) 2.16303e7 1.37190 0.685949 0.727649i \(-0.259387\pi\)
0.685949 + 0.727649i \(0.259387\pi\)
\(758\) −1.70732e6 −0.107930
\(759\) −3.12221e6 −0.196724
\(760\) −533702. −0.0335170
\(761\) 7.82013e6 0.489500 0.244750 0.969586i \(-0.421294\pi\)
0.244750 + 0.969586i \(0.421294\pi\)
\(762\) 1.16322e7 0.725729
\(763\) −1.42296e7 −0.884871
\(764\) −9.43265e6 −0.584656
\(765\) 1.26892e6 0.0783936
\(766\) 6.79702e6 0.418549
\(767\) 5.44215e7 3.34027
\(768\) 9.03531e6 0.552764
\(769\) 2.00595e7 1.22322 0.611608 0.791161i \(-0.290523\pi\)
0.611608 + 0.791161i \(0.290523\pi\)
\(770\) 6.11993e6 0.371980
\(771\) 1.04807e7 0.634973
\(772\) 1.36732e7 0.825706
\(773\) 6.86430e6 0.413188 0.206594 0.978427i \(-0.433762\pi\)
0.206594 + 0.978427i \(0.433762\pi\)
\(774\) −1.02181e6 −0.0613082
\(775\) −2.78614e6 −0.166628
\(776\) 354011. 0.0211039
\(777\) 106870. 0.00635044
\(778\) 3.23080e7 1.91364
\(779\) 5.19661e6 0.306815
\(780\) 1.28207e7 0.754526
\(781\) −3.18126e7 −1.86626
\(782\) 2.62928e6 0.153752
\(783\) −7.80376e6 −0.454883
\(784\) 1.11428e7 0.647444
\(785\) −1.07877e6 −0.0624821
\(786\) 1.21908e7 0.703841
\(787\) −2.32633e7 −1.33886 −0.669430 0.742875i \(-0.733462\pi\)
−0.669430 + 0.742875i \(0.733462\pi\)
\(788\) 2.36908e7 1.35914
\(789\) 2.96808e6 0.169740
\(790\) −1.56259e7 −0.890793
\(791\) 1.17985e7 0.670481
\(792\) −1.38797e6 −0.0786259
\(793\) −4.22422e7 −2.38541
\(794\) −2.99636e7 −1.68672
\(795\) −4.20302e6 −0.235854
\(796\) 2.40161e7 1.34345
\(797\) −1.67412e7 −0.933556 −0.466778 0.884375i \(-0.654585\pi\)
−0.466778 + 0.884375i \(0.654585\pi\)
\(798\) −4.00083e6 −0.222404
\(799\) −2.66782e6 −0.147839
\(800\) −5.19401e6 −0.286931
\(801\) 5.90785e6 0.325348
\(802\) 3.93462e7 2.16006
\(803\) 3.23760e7 1.77188
\(804\) −5.55163e6 −0.302887
\(805\) −836266. −0.0454836
\(806\) −4.13657e7 −2.24286
\(807\) 2.60964e7 1.41057
\(808\) 1.48131e6 0.0798210
\(809\) 4.90961e6 0.263740 0.131870 0.991267i \(-0.457902\pi\)
0.131870 + 0.991267i \(0.457902\pi\)
\(810\) −6.49150e6 −0.347642
\(811\) −1.43179e7 −0.764411 −0.382206 0.924077i \(-0.624835\pi\)
−0.382206 + 0.924077i \(0.624835\pi\)
\(812\) 4.33836e6 0.230906
\(813\) 2.47965e7 1.31572
\(814\) 519477. 0.0274793
\(815\) 7.85267e6 0.414117
\(816\) 6.59210e6 0.346576
\(817\) −891475. −0.0467255
\(818\) 2.57492e7 1.34549
\(819\) −5.99212e6 −0.312155
\(820\) −7.74485e6 −0.402233
\(821\) −2.36515e7 −1.22462 −0.612310 0.790618i \(-0.709759\pi\)
−0.612310 + 0.790618i \(0.709759\pi\)
\(822\) 2.70556e6 0.139662
\(823\) 2.95081e7 1.51859 0.759297 0.650744i \(-0.225543\pi\)
0.759297 + 0.650744i \(0.225543\pi\)
\(824\) 4.89725e6 0.251266
\(825\) 3.68881e6 0.188691
\(826\) 2.53106e7 1.29078
\(827\) 1.08770e7 0.553025 0.276513 0.961010i \(-0.410821\pi\)
0.276513 + 0.961010i \(0.410821\pi\)
\(828\) 1.61780e6 0.0820064
\(829\) −3.03437e7 −1.53349 −0.766746 0.641951i \(-0.778125\pi\)
−0.766746 + 0.641951i \(0.778125\pi\)
\(830\) 1.19484e7 0.602025
\(831\) −9.50031e6 −0.477238
\(832\) −4.58464e7 −2.29613
\(833\) 7.70599e6 0.384783
\(834\) 2.19174e7 1.09112
\(835\) −5.50371e6 −0.273174
\(836\) −1.03291e7 −0.511150
\(837\) 1.83804e7 0.906861
\(838\) 2.66540e7 1.31115
\(839\) −747249. −0.0366488 −0.0183244 0.999832i \(-0.505833\pi\)
−0.0183244 + 0.999832i \(0.505833\pi\)
\(840\) 699029. 0.0341820
\(841\) −1.69290e7 −0.825356
\(842\) 5.27154e6 0.256246
\(843\) 3.18003e6 0.154121
\(844\) −8.04027e6 −0.388521
\(845\) 2.22587e7 1.07240
\(846\) −3.09058e6 −0.148462
\(847\) 3.70172e6 0.177294
\(848\) 1.16122e7 0.554532
\(849\) −1.55328e7 −0.739570
\(850\) −3.10642e6 −0.147473
\(851\) −70984.6 −0.00336001
\(852\) −3.09952e7 −1.46284
\(853\) 1.54381e7 0.726474 0.363237 0.931697i \(-0.381672\pi\)
0.363237 + 0.931697i \(0.381672\pi\)
\(854\) −1.96462e7 −0.921792
\(855\) 1.28250e6 0.0599985
\(856\) −6.45807e6 −0.301244
\(857\) −1.91262e7 −0.889563 −0.444782 0.895639i \(-0.646719\pi\)
−0.444782 + 0.895639i \(0.646719\pi\)
\(858\) 5.47677e7 2.53984
\(859\) 2.27475e7 1.05184 0.525922 0.850533i \(-0.323720\pi\)
0.525922 + 0.850533i \(0.323720\pi\)
\(860\) 1.32862e6 0.0612569
\(861\) −6.80638e6 −0.312902
\(862\) 8.94160e6 0.409871
\(863\) 1.36087e7 0.621998 0.310999 0.950410i \(-0.399336\pi\)
0.310999 + 0.950410i \(0.399336\pi\)
\(864\) 3.42653e7 1.56160
\(865\) −7.26611e6 −0.330188
\(866\) 2.86732e7 1.29922
\(867\) −1.33242e7 −0.601998
\(868\) −1.02182e7 −0.460338
\(869\) −3.54537e7 −1.59262
\(870\) 4.92336e6 0.220528
\(871\) −1.36579e7 −0.610013
\(872\) −7.90041e6 −0.351851
\(873\) −850694. −0.0377779
\(874\) 2.65741e6 0.117674
\(875\) 988027. 0.0436263
\(876\) 3.15442e7 1.38886
\(877\) −2.75272e7 −1.20855 −0.604273 0.796778i \(-0.706536\pi\)
−0.604273 + 0.796778i \(0.706536\pi\)
\(878\) −4.64753e7 −2.03463
\(879\) 4.41338e6 0.192664
\(880\) −1.01916e7 −0.443645
\(881\) 1.73692e6 0.0753947 0.0376974 0.999289i \(-0.487998\pi\)
0.0376974 + 0.999289i \(0.487998\pi\)
\(882\) 8.92714e6 0.386403
\(883\) −3.26232e6 −0.140807 −0.0704035 0.997519i \(-0.522429\pi\)
−0.0704035 + 0.997519i \(0.522429\pi\)
\(884\) −2.44964e7 −1.05432
\(885\) 1.52560e7 0.654763
\(886\) 2.22859e6 0.0953775
\(887\) −7.87377e6 −0.336027 −0.168013 0.985785i \(-0.553735\pi\)
−0.168013 + 0.985785i \(0.553735\pi\)
\(888\) 59335.5 0.00252512
\(889\) 7.06905e6 0.299990
\(890\) −1.44629e7 −0.612042
\(891\) −1.47286e7 −0.621538
\(892\) −1.72166e6 −0.0724495
\(893\) −2.69636e6 −0.113149
\(894\) 2.42596e7 1.01517
\(895\) 4.47328e6 0.186667
\(896\) −4.50650e6 −0.187529
\(897\) −7.48380e6 −0.310557
\(898\) 2.24383e6 0.0928537
\(899\) −8.43713e6 −0.348173
\(900\) −1.91138e6 −0.0786578
\(901\) 8.03068e6 0.329564
\(902\) −3.30846e7 −1.35397
\(903\) 1.16763e6 0.0476525
\(904\) 6.55067e6 0.266603
\(905\) 1.47416e7 0.598307
\(906\) 5.36136e7 2.16997
\(907\) 3.31823e7 1.33933 0.669666 0.742662i \(-0.266437\pi\)
0.669666 + 0.742662i \(0.266437\pi\)
\(908\) −3.93325e7 −1.58320
\(909\) −3.55961e6 −0.142887
\(910\) 1.46692e7 0.587223
\(911\) 1.25433e7 0.500744 0.250372 0.968150i \(-0.419447\pi\)
0.250372 + 0.968150i \(0.419447\pi\)
\(912\) 6.66263e6 0.265252
\(913\) 2.71099e7 1.07634
\(914\) −4.72274e7 −1.86994
\(915\) −1.18418e7 −0.467590
\(916\) −5.36788e7 −2.11380
\(917\) 7.40850e6 0.290942
\(918\) 2.04933e7 0.802612
\(919\) −2.37627e7 −0.928125 −0.464062 0.885803i \(-0.653609\pi\)
−0.464062 + 0.885803i \(0.653609\pi\)
\(920\) −464305. −0.0180856
\(921\) −8.92115e6 −0.346555
\(922\) 1.11412e7 0.431623
\(923\) −7.62533e7 −2.94615
\(924\) 1.35288e7 0.521290
\(925\) 83866.5 0.00322280
\(926\) −6.57764e6 −0.252082
\(927\) −1.17682e7 −0.449790
\(928\) −1.57288e7 −0.599549
\(929\) −2.78476e7 −1.05864 −0.529321 0.848422i \(-0.677553\pi\)
−0.529321 + 0.848422i \(0.677553\pi\)
\(930\) −1.15961e7 −0.439648
\(931\) 7.78843e6 0.294494
\(932\) 6.01655e6 0.226886
\(933\) −581705. −0.0218775
\(934\) 7.61912e6 0.285784
\(935\) −7.04819e6 −0.263663
\(936\) −3.32689e6 −0.124122
\(937\) 1.36877e7 0.509310 0.254655 0.967032i \(-0.418038\pi\)
0.254655 + 0.967032i \(0.418038\pi\)
\(938\) −6.35208e6 −0.235727
\(939\) −4.19220e7 −1.55159
\(940\) 4.01856e6 0.148338
\(941\) 6.63715e6 0.244347 0.122174 0.992509i \(-0.461013\pi\)
0.122174 + 0.992509i \(0.461013\pi\)
\(942\) −4.48993e6 −0.164859
\(943\) 4.52089e6 0.165556
\(944\) −4.21500e7 −1.53946
\(945\) −6.51809e6 −0.237433
\(946\) 5.67564e6 0.206199
\(947\) 2.64105e7 0.956979 0.478489 0.878093i \(-0.341185\pi\)
0.478489 + 0.878093i \(0.341185\pi\)
\(948\) −3.45428e7 −1.24835
\(949\) 7.76039e7 2.79716
\(950\) −3.13966e6 −0.112869
\(951\) 2.03885e7 0.731027
\(952\) −1.33563e6 −0.0477633
\(953\) −3.65284e7 −1.30286 −0.651430 0.758708i \(-0.725831\pi\)
−0.651430 + 0.758708i \(0.725831\pi\)
\(954\) 9.30328e6 0.330952
\(955\) −6.50533e6 −0.230813
\(956\) −6.35323e6 −0.224828
\(957\) 1.11707e7 0.394275
\(958\) −7.55493e7 −2.65960
\(959\) 1.64421e6 0.0577311
\(960\) −1.28522e7 −0.450089
\(961\) −8.75698e6 −0.305876
\(962\) 1.24516e6 0.0433799
\(963\) 1.55189e7 0.539255
\(964\) 6.18112e6 0.214227
\(965\) 9.42985e6 0.325977
\(966\) −3.48060e6 −0.120008
\(967\) 1.98036e7 0.681050 0.340525 0.940235i \(-0.389395\pi\)
0.340525 + 0.940235i \(0.389395\pi\)
\(968\) 2.05524e6 0.0704975
\(969\) 4.60767e6 0.157642
\(970\) 2.08257e6 0.0710674
\(971\) −3.57591e7 −1.21714 −0.608568 0.793502i \(-0.708256\pi\)
−0.608568 + 0.793502i \(0.708256\pi\)
\(972\) 2.19695e7 0.745855
\(973\) 1.33195e7 0.451030
\(974\) 1.33415e7 0.450618
\(975\) 8.84192e6 0.297876
\(976\) 3.27170e7 1.09938
\(977\) 3.41411e7 1.14430 0.572152 0.820148i \(-0.306109\pi\)
0.572152 + 0.820148i \(0.306109\pi\)
\(978\) 3.26834e7 1.09265
\(979\) −3.28151e7 −1.09425
\(980\) −1.16076e7 −0.386080
\(981\) 1.89848e7 0.629845
\(982\) −2.77845e7 −0.919441
\(983\) −3.35916e7 −1.10878 −0.554392 0.832256i \(-0.687049\pi\)
−0.554392 + 0.832256i \(0.687049\pi\)
\(984\) −3.77898e6 −0.124419
\(985\) 1.63386e7 0.536569
\(986\) −9.40703e6 −0.308149
\(987\) 3.53162e6 0.115394
\(988\) −2.47585e7 −0.806922
\(989\) −775555. −0.0252129
\(990\) −8.16510e6 −0.264773
\(991\) 5.16931e7 1.67205 0.836024 0.548693i \(-0.184874\pi\)
0.836024 + 0.548693i \(0.184874\pi\)
\(992\) 3.70463e7 1.19527
\(993\) −4.10421e7 −1.32086
\(994\) −3.54642e7 −1.13848
\(995\) 1.65630e7 0.530372
\(996\) 2.64133e7 0.843674
\(997\) −2.00025e7 −0.637302 −0.318651 0.947872i \(-0.603230\pi\)
−0.318651 + 0.947872i \(0.603230\pi\)
\(998\) 3.41166e7 1.08428
\(999\) −553274. −0.0175399
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.6.a.e.1.10 12
3.2 odd 2 1035.6.a.m.1.3 12
5.4 even 2 575.6.a.g.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.6.a.e.1.10 12 1.1 even 1 trivial
575.6.a.g.1.3 12 5.4 even 2
1035.6.a.m.1.3 12 3.2 odd 2