L(s) = 1 | + (0.676 + 0.280i)3-s + (1.32 − 3.20i)5-s + (0.280 + 0.676i)7-s + (−1.74 − 1.74i)9-s + (−4.37 + 1.81i)11-s − 1.46i·13-s + (1.79 − 1.79i)15-s + (3.86 − 3.86i)19-s + 0.535i·21-s + (4.37 − 1.81i)23-s + (−4.94 − 4.94i)25-s + (−1.53 − 3.69i)27-s + (1.32 − 3.20i)29-s + (−5.72 − 2.37i)31-s − 3.46·33-s + ⋯ |
L(s) = 1 | + (0.390 + 0.161i)3-s + (0.592 − 1.43i)5-s + (0.105 + 0.255i)7-s + (−0.580 − 0.580i)9-s + (−1.31 + 0.546i)11-s − 0.406i·13-s + (0.462 − 0.462i)15-s + (0.886 − 0.886i)19-s + 0.116i·21-s + (0.911 − 0.377i)23-s + (−0.989 − 0.989i)25-s + (−0.294 − 0.711i)27-s + (0.246 − 0.594i)29-s + (−1.02 − 0.425i)31-s − 0.603·33-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(−0.275+0.961i)Λ(2−s)
Λ(s)=(=(1156s/2ΓC(s+1/2)L(s)(−0.275+0.961i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
−0.275+0.961i
|
Analytic conductor: |
9.23070 |
Root analytic conductor: |
3.03820 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(757,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :1/2), −0.275+0.961i)
|
Particular Values
L(1) |
≈ |
1.552006463 |
L(21) |
≈ |
1.552006463 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.676−0.280i)T+(2.12+2.12i)T2 |
| 5 | 1+(−1.32+3.20i)T+(−3.53−3.53i)T2 |
| 7 | 1+(−0.280−0.676i)T+(−4.94+4.94i)T2 |
| 11 | 1+(4.37−1.81i)T+(7.77−7.77i)T2 |
| 13 | 1+1.46iT−13T2 |
| 19 | 1+(−3.86+3.86i)T−19iT2 |
| 23 | 1+(−4.37+1.81i)T+(16.2−16.2i)T2 |
| 29 | 1+(−1.32+3.20i)T+(−20.5−20.5i)T2 |
| 31 | 1+(5.72+2.37i)T+(21.9+21.9i)T2 |
| 37 | 1+(10.5+4.38i)T+(26.1+26.1i)T2 |
| 41 | 1+(2.29+5.54i)T+(−28.9+28.9i)T2 |
| 43 | 1+(−8.76−8.76i)T+43iT2 |
| 47 | 1−6.92iT−47T2 |
| 53 | 1+(0.656−0.656i)T−53iT2 |
| 59 | 1+(6.69+6.69i)T+59iT2 |
| 61 | 1+(−2.85−6.89i)T+(−43.1+43.1i)T2 |
| 67 | 1+1.07T+67T2 |
| 71 | 1+(2.02+0.840i)T+(50.2+50.2i)T2 |
| 73 | 1+(−0.765+1.84i)T+(−51.6−51.6i)T2 |
| 79 | 1+(1.66−0.690i)T+(55.8−55.8i)T2 |
| 83 | 1+(−6.69+6.69i)T−83iT2 |
| 89 | 1+9.46iT−89T2 |
| 97 | 1+(3.41−8.24i)T+(−68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.214599605353705209776549672573, −9.008425166806110335184597092153, −8.078646350298396871417752106839, −7.25290325264930211675683651513, −5.84131242469744154993064627964, −5.27877785187410774627692358717, −4.55054788421398675815075590861, −3.14064074045583148888326586653, −2.14947643926354139004776962426, −0.60935028652092943295597539169,
1.85338561561460647775937631935, 2.89165020422722743005005287679, 3.43580425308207998314122047496, 5.19518847943290540026143914810, 5.72260923823222201682328123736, 6.93273807060848877981025925003, 7.44366683984468689570205352387, 8.315754181870875271774040354551, 9.213473178678705938078345683067, 10.32220166253127270955223204113