gp: [N,k,chi] = [1156,2,Mod(733,1156)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1156.733");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
2 ζ 48 3 2\zeta_{48}^{3} 2 ζ 4 8 3
2*v^3
β 2 \beta_{2} β 2 = = =
ζ 48 6 \zeta_{48}^{6} ζ 4 8 6
v^6
β 3 \beta_{3} β 3 = = =
2 ζ 48 9 2\zeta_{48}^{9} 2 ζ 4 8 9
2*v^9
β 4 \beta_{4} β 4 = = =
ζ 48 12 \zeta_{48}^{12} ζ 4 8 1 2
v^12
β 5 \beta_{5} β 5 = = =
ζ 48 13 + ζ 48 9 + ζ 48 5 \zeta_{48}^{13} + \zeta_{48}^{9} + \zeta_{48}^{5} ζ 4 8 1 3 + ζ 4 8 9 + ζ 4 8 5
v^13 + v^9 + v^5
β 6 \beta_{6} β 6 = = =
− ζ 48 10 + ζ 48 2 -\zeta_{48}^{10} + \zeta_{48}^{2} − ζ 4 8 1 0 + ζ 4 8 2
-v^10 + v^2
β 7 \beta_{7} β 7 = = =
− ζ 48 13 − ζ 48 9 + ζ 48 5 + 2 ζ 48 -\zeta_{48}^{13} - \zeta_{48}^{9} + \zeta_{48}^{5} + 2\zeta_{48} − ζ 4 8 1 3 − ζ 4 8 9 + ζ 4 8 5 + 2 ζ 4 8
-v^13 - v^9 + v^5 + 2*v
β 8 \beta_{8} β 8 = = =
− ζ 48 15 + 2 ζ 48 7 − ζ 48 3 -\zeta_{48}^{15} + 2\zeta_{48}^{7} - \zeta_{48}^{3} − ζ 4 8 1 5 + 2 ζ 4 8 7 − ζ 4 8 3
-v^15 + 2*v^7 - v^3
β 9 \beta_{9} β 9 = = =
− ζ 48 15 + 2 ζ 48 11 − ζ 48 3 -\zeta_{48}^{15} + 2\zeta_{48}^{11} - \zeta_{48}^{3} − ζ 4 8 1 5 + 2 ζ 4 8 1 1 − ζ 4 8 3
-v^15 + 2*v^11 - v^3
β 10 \beta_{10} β 1 0 = = =
4 ζ 48 8 − 2 4\zeta_{48}^{8} - 2 4 ζ 4 8 8 − 2
4*v^8 - 2
β 11 \beta_{11} β 1 1 = = =
2 ζ 48 10 + 2 ζ 48 2 2\zeta_{48}^{10} + 2\zeta_{48}^{2} 2 ζ 4 8 1 0 + 2 ζ 4 8 2
2*v^10 + 2*v^2
β 12 \beta_{12} β 1 2 = = =
− 2 ζ 48 12 + 4 ζ 48 4 -2\zeta_{48}^{12} + 4\zeta_{48}^{4} − 2 ζ 4 8 1 2 + 4 ζ 4 8 4
-2*v^12 + 4*v^4
β 13 \beta_{13} β 1 3 = = =
4 ζ 48 14 − 2 ζ 48 6 4\zeta_{48}^{14} - 2\zeta_{48}^{6} 4 ζ 4 8 1 4 − 2 ζ 4 8 6
4*v^14 - 2*v^6
β 14 \beta_{14} β 1 4 = = =
2 ζ 48 15 2\zeta_{48}^{15} 2 ζ 4 8 1 5
2*v^15
β 15 \beta_{15} β 1 5 = = =
ζ 48 13 − ζ 48 9 − ζ 48 5 + 2 ζ 48 \zeta_{48}^{13} - \zeta_{48}^{9} - \zeta_{48}^{5} + 2\zeta_{48} ζ 4 8 1 3 − ζ 4 8 9 − ζ 4 8 5 + 2 ζ 4 8
v^13 - v^9 - v^5 + 2*v
ζ 48 \zeta_{48} ζ 4 8 = = =
( β 15 + β 7 + β 3 ) / 4 ( \beta_{15} + \beta_{7} + \beta_{3} ) / 4 ( β 1 5 + β 7 + β 3 ) / 4
(b15 + b7 + b3) / 4
ζ 48 2 \zeta_{48}^{2} ζ 4 8 2 = = =
( β 11 + 2 β 6 ) / 4 ( \beta_{11} + 2\beta_{6} ) / 4 ( β 1 1 + 2 β 6 ) / 4
(b11 + 2*b6) / 4
ζ 48 3 \zeta_{48}^{3} ζ 4 8 3 = = =
( β 1 ) / 2 ( \beta_1 ) / 2 ( β 1 ) / 2
(b1) / 2
ζ 48 4 \zeta_{48}^{4} ζ 4 8 4 = = =
( β 12 + 2 β 4 ) / 4 ( \beta_{12} + 2\beta_{4} ) / 4 ( β 1 2 + 2 β 4 ) / 4
(b12 + 2*b4) / 4
ζ 48 5 \zeta_{48}^{5} ζ 4 8 5 = = =
( − β 15 + β 7 + 2 β 5 − β 3 ) / 4 ( -\beta_{15} + \beta_{7} + 2\beta_{5} - \beta_{3} ) / 4 ( − β 1 5 + β 7 + 2 β 5 − β 3 ) / 4
(-b15 + b7 + 2*b5 - b3) / 4
ζ 48 6 \zeta_{48}^{6} ζ 4 8 6 = = =
β 2 \beta_{2} β 2
b2
ζ 48 7 \zeta_{48}^{7} ζ 4 8 7 = = =
( β 14 + 2 β 8 + β 1 ) / 4 ( \beta_{14} + 2\beta_{8} + \beta_1 ) / 4 ( β 1 4 + 2 β 8 + β 1 ) / 4
(b14 + 2*b8 + b1) / 4
ζ 48 8 \zeta_{48}^{8} ζ 4 8 8 = = =
( β 10 + 2 ) / 4 ( \beta_{10} + 2 ) / 4 ( β 1 0 + 2 ) / 4
(b10 + 2) / 4
ζ 48 9 \zeta_{48}^{9} ζ 4 8 9 = = =
( β 3 ) / 2 ( \beta_{3} ) / 2 ( β 3 ) / 2
(b3) / 2
ζ 48 10 \zeta_{48}^{10} ζ 4 8 1 0 = = =
( β 11 − 2 β 6 ) / 4 ( \beta_{11} - 2\beta_{6} ) / 4 ( β 1 1 − 2 β 6 ) / 4
(b11 - 2*b6) / 4
ζ 48 11 \zeta_{48}^{11} ζ 4 8 1 1 = = =
( β 14 + 2 β 9 + β 1 ) / 4 ( \beta_{14} + 2\beta_{9} + \beta_1 ) / 4 ( β 1 4 + 2 β 9 + β 1 ) / 4
(b14 + 2*b9 + b1) / 4
ζ 48 12 \zeta_{48}^{12} ζ 4 8 1 2 = = =
β 4 \beta_{4} β 4
b4
ζ 48 13 \zeta_{48}^{13} ζ 4 8 1 3 = = =
( β 15 − β 7 + 2 β 5 − β 3 ) / 4 ( \beta_{15} - \beta_{7} + 2\beta_{5} - \beta_{3} ) / 4 ( β 1 5 − β 7 + 2 β 5 − β 3 ) / 4
(b15 - b7 + 2*b5 - b3) / 4
ζ 48 14 \zeta_{48}^{14} ζ 4 8 1 4 = = =
( β 13 + 2 β 2 ) / 4 ( \beta_{13} + 2\beta_{2} ) / 4 ( β 1 3 + 2 β 2 ) / 4
(b13 + 2*b2) / 4
ζ 48 15 \zeta_{48}^{15} ζ 4 8 1 5 = = =
( β 14 ) / 2 ( \beta_{14} ) / 2 ( β 1 4 ) / 2
(b14) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 1156 Z ) × \left(\mathbb{Z}/1156\mathbb{Z}\right)^\times ( Z / 1 1 5 6 Z ) × .
n n n
579 579 5 7 9
581 581 5 8 1
χ ( n ) \chi(n) χ ( n )
1 1 1
β 6 \beta_{6} β 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 16 + 3104 T 3 8 + 256 T_{3}^{16} + 3104T_{3}^{8} + 256 T 3 1 6 + 3 1 0 4 T 3 8 + 2 5 6
T3^16 + 3104*T3^8 + 256
acting on S 2 n e w ( 1156 , [ χ ] ) S_{2}^{\mathrm{new}}(1156, [\chi]) S 2 n e w ( 1 1 5 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 + 3104 T 8 + 256 T^{16} + 3104 T^{8} + 256 T 1 6 + 3 1 0 4 T 8 + 2 5 6
T^16 + 3104*T^8 + 256
5 5 5
( T 8 + 20736 ) 2 (T^{8} + 20736)^{2} ( T 8 + 2 0 7 3 6 ) 2
(T^8 + 20736)^2
7 7 7
T 16 + 3104 T 8 + 256 T^{16} + 3104 T^{8} + 256 T 1 6 + 3 1 0 4 T 8 + 2 5 6
T^16 + 3104*T^8 + 256
11 11 1 1
T 16 + 251424 T 8 + 1679616 T^{16} + 251424 T^{8} + 1679616 T 1 6 + 2 5 1 4 2 4 T 8 + 1 6 7 9 6 1 6
T^16 + 251424*T^8 + 1679616
13 13 1 3
( T 4 + 32 T 2 + 64 ) 4 (T^{4} + 32 T^{2} + 64)^{4} ( T 4 + 3 2 T 2 + 6 4 ) 4
(T^4 + 32*T^2 + 64)^4
17 17 1 7
T 16 T^{16} T 1 6
T^16
19 19 1 9
( T 8 + 896 T 4 + 4096 ) 2 (T^{8} + 896 T^{4} + 4096)^{2} ( T 8 + 8 9 6 T 4 + 4 0 9 6 ) 2
(T^8 + 896*T^4 + 4096)^2
23 23 2 3
T 16 + 251424 T 8 + 1679616 T^{16} + 251424 T^{8} + 1679616 T 1 6 + 2 5 1 4 2 4 T 8 + 1 6 7 9 6 1 6
T^16 + 251424*T^8 + 1679616
29 29 2 9
( T 8 + 20736 ) 2 (T^{8} + 20736)^{2} ( T 8 + 2 0 7 3 6 ) 2
(T^8 + 20736)^2
31 31 3 1
T 16 + ⋯ + 208827064576 T^{16} + \cdots + 208827064576 T 1 6 + ⋯ + 2 0 8 8 2 7 0 6 4 5 7 6
T^16 + 2268704*T^8 + 208827064576
37 37 3 7
T 16 + ⋯ + 53459728531456 T^{16} + \cdots + 53459728531456 T 1 6 + ⋯ + 5 3 4 5 9 7 2 8 5 3 1 4 5 6
T^16 + 298525184*T^8 + 53459728531456
41 41 4 1
( T 8 + 1679616 ) 2 (T^{8} + 1679616)^{2} ( T 8 + 1 6 7 9 6 1 6 ) 2
(T^8 + 1679616)^2
43 43 4 3
( T 8 + 28544 T 4 + 116985856 ) 2 (T^{8} + 28544 T^{4} + 116985856)^{2} ( T 8 + 2 8 5 4 4 T 4 + 1 1 6 9 8 5 8 5 6 ) 2
(T^8 + 28544*T^4 + 116985856)^2
47 47 4 7
( T 2 + 48 ) 8 (T^{2} + 48)^{8} ( T 2 + 4 8 ) 8
(T^2 + 48)^8
53 53 5 3
( T 8 + 27936 T 4 + 20736 ) 2 (T^{8} + 27936 T^{4} + 20736)^{2} ( T 8 + 2 7 9 3 6 T 4 + 2 0 7 3 6 ) 2
(T^8 + 27936*T^4 + 20736)^2
59 59 5 9
( T 8 + 8064 T 4 + 331776 ) 2 (T^{8} + 8064 T^{4} + 331776)^{2} ( T 8 + 8 0 6 4 T 4 + 3 3 1 7 7 6 ) 2
(T^8 + 8064*T^4 + 331776)^2
61 61 6 1
T 16 + 9634304 T 8 + 65536 T^{16} + 9634304 T^{8} + 65536 T 1 6 + 9 6 3 4 3 0 4 T 8 + 6 5 5 3 6
T^16 + 9634304*T^8 + 65536
67 67 6 7
( T 2 + 16 T + 16 ) 8 (T^{2} + 16 T + 16)^{8} ( T 2 + 1 6 T + 1 6 ) 8
(T^2 + 16*T + 16)^8
71 71 7 1
T 16 + ⋯ + 11019960576 T^{16} + \cdots + 11019960576 T 1 6 + ⋯ + 1 1 0 1 9 9 6 0 5 7 6
T^16 + 20365344*T^8 + 11019960576
73 73 7 3
( T 8 + 256 ) 2 (T^{8} + 256)^{2} ( T 8 + 2 5 6 ) 2
(T^8 + 256)^2
79 79 7 9
T 16 + ⋯ + 54875873536 T^{16} + \cdots + 54875873536 T 1 6 + ⋯ + 5 4 8 7 5 8 7 3 5 3 6
T^16 + 489533984*T^8 + 54875873536
83 83 8 3
( T 8 + 8064 T 4 + 331776 ) 2 (T^{8} + 8064 T^{4} + 331776)^{2} ( T 8 + 8 0 6 4 T 4 + 3 3 1 7 7 6 ) 2
(T^8 + 8064*T^4 + 331776)^2
89 89 8 9
( T 4 + 96 T 2 + 576 ) 4 (T^{4} + 96 T^{2} + 576)^{4} ( T 4 + 9 6 T 2 + 5 7 6 ) 4
(T^4 + 96*T^2 + 576)^4
97 97 9 7
T 16 + ⋯ + 14048223625216 T^{16} + \cdots + 14048223625216 T 1 6 + ⋯ + 1 4 0 4 8 2 2 3 6 2 5 2 1 6
T^16 + 40722944*T^8 + 14048223625216
show more
show less