Properties

Label 1156.2.h.f
Level $1156$
Weight $2$
Character orbit 1156.h
Analytic conductor $9.231$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,2,Mod(733,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.733");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{15} q^{3} + (2 \beta_{5} - \beta_{3}) q^{5} - \beta_{9} q^{7} + (\beta_{13} + \beta_{6}) q^{9} + ( - \beta_{8} - 2 \beta_1) q^{11} + (\beta_{10} - 2 \beta_{4}) q^{13} + ( - \beta_{11} + 6 \beta_{2}) q^{15}+ \cdots + (\beta_{15} + 4 \beta_{7}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 96 q^{35} - 128 q^{67}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{48}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{48}^{6} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\zeta_{48}^{9} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{48}^{12} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \zeta_{48}^{13} + \zeta_{48}^{9} + \zeta_{48}^{5} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{48}^{10} + \zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{48}^{13} - \zeta_{48}^{9} + \zeta_{48}^{5} + 2\zeta_{48} \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( -\zeta_{48}^{15} + 2\zeta_{48}^{7} - \zeta_{48}^{3} \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( -\zeta_{48}^{15} + 2\zeta_{48}^{11} - \zeta_{48}^{3} \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( 4\zeta_{48}^{8} - 2 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( 2\zeta_{48}^{10} + 2\zeta_{48}^{2} \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( -2\zeta_{48}^{12} + 4\zeta_{48}^{4} \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( 4\zeta_{48}^{14} - 2\zeta_{48}^{6} \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( 2\zeta_{48}^{15} \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( \zeta_{48}^{13} - \zeta_{48}^{9} - \zeta_{48}^{5} + 2\zeta_{48} \) Copy content Toggle raw display
\(\zeta_{48}\)\(=\) \( ( \beta_{15} + \beta_{7} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{2}\)\(=\) \( ( \beta_{11} + 2\beta_{6} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{3}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{4}\)\(=\) \( ( \beta_{12} + 2\beta_{4} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{5}\)\(=\) \( ( -\beta_{15} + \beta_{7} + 2\beta_{5} - \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{6}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{48}^{7}\)\(=\) \( ( \beta_{14} + 2\beta_{8} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{8}\)\(=\) \( ( \beta_{10} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{9}\)\(=\) \( ( \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{48}^{10}\)\(=\) \( ( \beta_{11} - 2\beta_{6} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{11}\)\(=\) \( ( \beta_{14} + 2\beta_{9} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{12}\)\(=\) \( \beta_{4} \) Copy content Toggle raw display
\(\zeta_{48}^{13}\)\(=\) \( ( \beta_{15} - \beta_{7} + 2\beta_{5} - \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{14}\)\(=\) \( ( \beta_{13} + 2\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{48}^{15}\)\(=\) \( ( \beta_{14} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(\beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
733.1
−0.608761 + 0.793353i
−0.991445 0.130526i
0.991445 + 0.130526i
0.608761 0.793353i
−0.608761 0.793353i
−0.991445 + 0.130526i
0.991445 0.130526i
0.608761 + 0.793353i
−0.793353 + 0.608761i
0.130526 + 0.991445i
−0.130526 0.991445i
0.793353 0.608761i
−0.793353 0.608761i
0.130526 0.991445i
−0.130526 + 0.991445i
0.793353 + 0.608761i
0 −2.52409 + 1.04551i 0 −1.32565 3.20041i 0 −1.04551 + 2.52409i 0 3.15660 3.15660i 0
733.2 0 −0.676327 + 0.280144i 0 −1.32565 3.20041i 0 −0.280144 + 0.676327i 0 −1.74238 + 1.74238i 0
733.3 0 0.676327 0.280144i 0 1.32565 + 3.20041i 0 0.280144 0.676327i 0 −1.74238 + 1.74238i 0
733.4 0 2.52409 1.04551i 0 1.32565 + 3.20041i 0 1.04551 2.52409i 0 3.15660 3.15660i 0
757.1 0 −2.52409 1.04551i 0 −1.32565 + 3.20041i 0 −1.04551 2.52409i 0 3.15660 + 3.15660i 0
757.2 0 −0.676327 0.280144i 0 −1.32565 + 3.20041i 0 −0.280144 0.676327i 0 −1.74238 1.74238i 0
757.3 0 0.676327 + 0.280144i 0 1.32565 3.20041i 0 0.280144 + 0.676327i 0 −1.74238 1.74238i 0
757.4 0 2.52409 + 1.04551i 0 1.32565 3.20041i 0 1.04551 + 2.52409i 0 3.15660 + 3.15660i 0
977.1 0 −1.04551 + 2.52409i 0 3.20041 + 1.32565i 0 2.52409 1.04551i 0 −3.15660 3.15660i 0
977.2 0 −0.280144 + 0.676327i 0 3.20041 + 1.32565i 0 0.676327 0.280144i 0 1.74238 + 1.74238i 0
977.3 0 0.280144 0.676327i 0 −3.20041 1.32565i 0 −0.676327 + 0.280144i 0 1.74238 + 1.74238i 0
977.4 0 1.04551 2.52409i 0 −3.20041 1.32565i 0 −2.52409 + 1.04551i 0 −3.15660 3.15660i 0
1001.1 0 −1.04551 2.52409i 0 3.20041 1.32565i 0 2.52409 + 1.04551i 0 −3.15660 + 3.15660i 0
1001.2 0 −0.280144 0.676327i 0 3.20041 1.32565i 0 0.676327 + 0.280144i 0 1.74238 1.74238i 0
1001.3 0 0.280144 + 0.676327i 0 −3.20041 + 1.32565i 0 −0.676327 0.280144i 0 1.74238 1.74238i 0
1001.4 0 1.04551 + 2.52409i 0 −3.20041 + 1.32565i 0 −2.52409 1.04551i 0 −3.15660 + 3.15660i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 733.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner
17.c even 4 2 inner
17.d even 8 4 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1156.2.h.f 16
17.b even 2 1 inner 1156.2.h.f 16
17.c even 4 2 inner 1156.2.h.f 16
17.d even 8 4 inner 1156.2.h.f 16
17.e odd 16 1 68.2.a.a 2
17.e odd 16 1 1156.2.a.a 2
17.e odd 16 2 1156.2.b.c 4
17.e odd 16 4 1156.2.e.d 8
51.i even 16 1 612.2.a.e 2
68.i even 16 1 272.2.a.e 2
68.i even 16 1 4624.2.a.x 2
85.o even 16 1 1700.2.e.c 4
85.p odd 16 1 1700.2.a.d 2
85.r even 16 1 1700.2.e.c 4
119.p even 16 1 3332.2.a.h 2
136.q odd 16 1 1088.2.a.p 2
136.s even 16 1 1088.2.a.t 2
187.m even 16 1 8228.2.a.k 2
204.t odd 16 1 2448.2.a.y 2
340.bg even 16 1 6800.2.a.bh 2
408.bg odd 16 1 9792.2.a.cs 2
408.bm even 16 1 9792.2.a.cr 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.2.a.a 2 17.e odd 16 1
272.2.a.e 2 68.i even 16 1
612.2.a.e 2 51.i even 16 1
1088.2.a.p 2 136.q odd 16 1
1088.2.a.t 2 136.s even 16 1
1156.2.a.a 2 17.e odd 16 1
1156.2.b.c 4 17.e odd 16 2
1156.2.e.d 8 17.e odd 16 4
1156.2.h.f 16 1.a even 1 1 trivial
1156.2.h.f 16 17.b even 2 1 inner
1156.2.h.f 16 17.c even 4 2 inner
1156.2.h.f 16 17.d even 8 4 inner
1700.2.a.d 2 85.p odd 16 1
1700.2.e.c 4 85.o even 16 1
1700.2.e.c 4 85.r even 16 1
2448.2.a.y 2 204.t odd 16 1
3332.2.a.h 2 119.p even 16 1
4624.2.a.x 2 68.i even 16 1
6800.2.a.bh 2 340.bg even 16 1
8228.2.a.k 2 187.m even 16 1
9792.2.a.cr 2 408.bm even 16 1
9792.2.a.cs 2 408.bg odd 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} + 3104T_{3}^{8} + 256 \) acting on \(S_{2}^{\mathrm{new}}(1156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} + 3104 T^{8} + 256 \) Copy content Toggle raw display
$5$ \( (T^{8} + 20736)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} + 3104 T^{8} + 256 \) Copy content Toggle raw display
$11$ \( T^{16} + 251424 T^{8} + 1679616 \) Copy content Toggle raw display
$13$ \( (T^{4} + 32 T^{2} + 64)^{4} \) Copy content Toggle raw display
$17$ \( T^{16} \) Copy content Toggle raw display
$19$ \( (T^{8} + 896 T^{4} + 4096)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + 251424 T^{8} + 1679616 \) Copy content Toggle raw display
$29$ \( (T^{8} + 20736)^{2} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 208827064576 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 53459728531456 \) Copy content Toggle raw display
$41$ \( (T^{8} + 1679616)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 28544 T^{4} + 116985856)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 48)^{8} \) Copy content Toggle raw display
$53$ \( (T^{8} + 27936 T^{4} + 20736)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 8064 T^{4} + 331776)^{2} \) Copy content Toggle raw display
$61$ \( T^{16} + 9634304 T^{8} + 65536 \) Copy content Toggle raw display
$67$ \( (T^{2} + 16 T + 16)^{8} \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 11019960576 \) Copy content Toggle raw display
$73$ \( (T^{8} + 256)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 54875873536 \) Copy content Toggle raw display
$83$ \( (T^{8} + 8064 T^{4} + 331776)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 96 T^{2} + 576)^{4} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 14048223625216 \) Copy content Toggle raw display
show more
show less