Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1156,2,Mod(733,1156)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1156.733");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1156.h (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 68) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
733.1 |
|
0 | −2.52409 | + | 1.04551i | 0 | −1.32565 | − | 3.20041i | 0 | −1.04551 | + | 2.52409i | 0 | 3.15660 | − | 3.15660i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
733.2 | 0 | −0.676327 | + | 0.280144i | 0 | −1.32565 | − | 3.20041i | 0 | −0.280144 | + | 0.676327i | 0 | −1.74238 | + | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
733.3 | 0 | 0.676327 | − | 0.280144i | 0 | 1.32565 | + | 3.20041i | 0 | 0.280144 | − | 0.676327i | 0 | −1.74238 | + | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
733.4 | 0 | 2.52409 | − | 1.04551i | 0 | 1.32565 | + | 3.20041i | 0 | 1.04551 | − | 2.52409i | 0 | 3.15660 | − | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
757.1 | 0 | −2.52409 | − | 1.04551i | 0 | −1.32565 | + | 3.20041i | 0 | −1.04551 | − | 2.52409i | 0 | 3.15660 | + | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
757.2 | 0 | −0.676327 | − | 0.280144i | 0 | −1.32565 | + | 3.20041i | 0 | −0.280144 | − | 0.676327i | 0 | −1.74238 | − | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
757.3 | 0 | 0.676327 | + | 0.280144i | 0 | 1.32565 | − | 3.20041i | 0 | 0.280144 | + | 0.676327i | 0 | −1.74238 | − | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
757.4 | 0 | 2.52409 | + | 1.04551i | 0 | 1.32565 | − | 3.20041i | 0 | 1.04551 | + | 2.52409i | 0 | 3.15660 | + | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
977.1 | 0 | −1.04551 | + | 2.52409i | 0 | 3.20041 | + | 1.32565i | 0 | 2.52409 | − | 1.04551i | 0 | −3.15660 | − | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
977.2 | 0 | −0.280144 | + | 0.676327i | 0 | 3.20041 | + | 1.32565i | 0 | 0.676327 | − | 0.280144i | 0 | 1.74238 | + | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
977.3 | 0 | 0.280144 | − | 0.676327i | 0 | −3.20041 | − | 1.32565i | 0 | −0.676327 | + | 0.280144i | 0 | 1.74238 | + | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
977.4 | 0 | 1.04551 | − | 2.52409i | 0 | −3.20041 | − | 1.32565i | 0 | −2.52409 | + | 1.04551i | 0 | −3.15660 | − | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1001.1 | 0 | −1.04551 | − | 2.52409i | 0 | 3.20041 | − | 1.32565i | 0 | 2.52409 | + | 1.04551i | 0 | −3.15660 | + | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1001.2 | 0 | −0.280144 | − | 0.676327i | 0 | 3.20041 | − | 1.32565i | 0 | 0.676327 | + | 0.280144i | 0 | 1.74238 | − | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1001.3 | 0 | 0.280144 | + | 0.676327i | 0 | −3.20041 | + | 1.32565i | 0 | −0.676327 | − | 0.280144i | 0 | 1.74238 | − | 1.74238i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1001.4 | 0 | 1.04551 | + | 2.52409i | 0 | −3.20041 | + | 1.32565i | 0 | −2.52409 | − | 1.04551i | 0 | −3.15660 | + | 3.15660i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
17.c | even | 4 | 2 | inner |
17.d | even | 8 | 4 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1156.2.h.f | 16 | |
17.b | even | 2 | 1 | inner | 1156.2.h.f | 16 | |
17.c | even | 4 | 2 | inner | 1156.2.h.f | 16 | |
17.d | even | 8 | 4 | inner | 1156.2.h.f | 16 | |
17.e | odd | 16 | 1 | 68.2.a.a | ✓ | 2 | |
17.e | odd | 16 | 1 | 1156.2.a.a | 2 | ||
17.e | odd | 16 | 2 | 1156.2.b.c | 4 | ||
17.e | odd | 16 | 4 | 1156.2.e.d | 8 | ||
51.i | even | 16 | 1 | 612.2.a.e | 2 | ||
68.i | even | 16 | 1 | 272.2.a.e | 2 | ||
68.i | even | 16 | 1 | 4624.2.a.x | 2 | ||
85.o | even | 16 | 1 | 1700.2.e.c | 4 | ||
85.p | odd | 16 | 1 | 1700.2.a.d | 2 | ||
85.r | even | 16 | 1 | 1700.2.e.c | 4 | ||
119.p | even | 16 | 1 | 3332.2.a.h | 2 | ||
136.q | odd | 16 | 1 | 1088.2.a.p | 2 | ||
136.s | even | 16 | 1 | 1088.2.a.t | 2 | ||
187.m | even | 16 | 1 | 8228.2.a.k | 2 | ||
204.t | odd | 16 | 1 | 2448.2.a.y | 2 | ||
340.bg | even | 16 | 1 | 6800.2.a.bh | 2 | ||
408.bg | odd | 16 | 1 | 9792.2.a.cs | 2 | ||
408.bm | even | 16 | 1 | 9792.2.a.cr | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
68.2.a.a | ✓ | 2 | 17.e | odd | 16 | 1 | |
272.2.a.e | 2 | 68.i | even | 16 | 1 | ||
612.2.a.e | 2 | 51.i | even | 16 | 1 | ||
1088.2.a.p | 2 | 136.q | odd | 16 | 1 | ||
1088.2.a.t | 2 | 136.s | even | 16 | 1 | ||
1156.2.a.a | 2 | 17.e | odd | 16 | 1 | ||
1156.2.b.c | 4 | 17.e | odd | 16 | 2 | ||
1156.2.e.d | 8 | 17.e | odd | 16 | 4 | ||
1156.2.h.f | 16 | 1.a | even | 1 | 1 | trivial | |
1156.2.h.f | 16 | 17.b | even | 2 | 1 | inner | |
1156.2.h.f | 16 | 17.c | even | 4 | 2 | inner | |
1156.2.h.f | 16 | 17.d | even | 8 | 4 | inner | |
1700.2.a.d | 2 | 85.p | odd | 16 | 1 | ||
1700.2.e.c | 4 | 85.o | even | 16 | 1 | ||
1700.2.e.c | 4 | 85.r | even | 16 | 1 | ||
2448.2.a.y | 2 | 204.t | odd | 16 | 1 | ||
3332.2.a.h | 2 | 119.p | even | 16 | 1 | ||
4624.2.a.x | 2 | 68.i | even | 16 | 1 | ||
6800.2.a.bh | 2 | 340.bg | even | 16 | 1 | ||
8228.2.a.k | 2 | 187.m | even | 16 | 1 | ||
9792.2.a.cr | 2 | 408.bm | even | 16 | 1 | ||
9792.2.a.cs | 2 | 408.bg | odd | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .