Properties

Label 2448.2.a.y
Level 24482448
Weight 22
Character orbit 2448.a
Self dual yes
Analytic conductor 19.54719.547
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,2,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2448=243217 2448 = 2^{4} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.547378414819.5473784148
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 68)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2βq5+(β+1)q7+(β3)q11+(2β+2)q13+q17+(2β2)q19+(β3)q23+7q252βq29+(3β+1)q31+(2β+6)q35++(4β+2)q97+O(q100) q + 2 \beta q^{5} + (\beta + 1) q^{7} + (\beta - 3) q^{11} + (2 \beta + 2) q^{13} + q^{17} + (2 \beta - 2) q^{19} + (\beta - 3) q^{23} + 7 q^{25} - 2 \beta q^{29} + ( - 3 \beta + 1) q^{31} + (2 \beta + 6) q^{35} + \cdots + ( - 4 \beta + 2) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q76q11+4q13+2q174q196q23+14q25+2q31+12q35+16q37+12q414q436q4912q53+12q55+12q598q61+24q65++4q97+O(q100) 2 q + 2 q^{7} - 6 q^{11} + 4 q^{13} + 2 q^{17} - 4 q^{19} - 6 q^{23} + 14 q^{25} + 2 q^{31} + 12 q^{35} + 16 q^{37} + 12 q^{41} - 4 q^{43} - 6 q^{49} - 12 q^{53} + 12 q^{55} + 12 q^{59} - 8 q^{61} + 24 q^{65}+ \cdots + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
0 0 0 −3.46410 0 −0.732051 0 0 0
1.2 0 0 0 3.46410 0 2.73205 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.2.a.y 2
3.b odd 2 1 272.2.a.e 2
4.b odd 2 1 612.2.a.e 2
8.b even 2 1 9792.2.a.cs 2
8.d odd 2 1 9792.2.a.cr 2
12.b even 2 1 68.2.a.a 2
15.d odd 2 1 6800.2.a.bh 2
24.f even 2 1 1088.2.a.p 2
24.h odd 2 1 1088.2.a.t 2
51.c odd 2 1 4624.2.a.x 2
60.h even 2 1 1700.2.a.d 2
60.l odd 4 2 1700.2.e.c 4
84.h odd 2 1 3332.2.a.h 2
132.d odd 2 1 8228.2.a.k 2
204.h even 2 1 1156.2.a.a 2
204.l even 4 2 1156.2.b.c 4
204.p even 8 4 1156.2.e.d 8
204.t odd 16 8 1156.2.h.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.2.a.a 2 12.b even 2 1
272.2.a.e 2 3.b odd 2 1
612.2.a.e 2 4.b odd 2 1
1088.2.a.p 2 24.f even 2 1
1088.2.a.t 2 24.h odd 2 1
1156.2.a.a 2 204.h even 2 1
1156.2.b.c 4 204.l even 4 2
1156.2.e.d 8 204.p even 8 4
1156.2.h.f 16 204.t odd 16 8
1700.2.a.d 2 60.h even 2 1
1700.2.e.c 4 60.l odd 4 2
2448.2.a.y 2 1.a even 1 1 trivial
3332.2.a.h 2 84.h odd 2 1
4624.2.a.x 2 51.c odd 2 1
6800.2.a.bh 2 15.d odd 2 1
8228.2.a.k 2 132.d odd 2 1
9792.2.a.cr 2 8.d odd 2 1
9792.2.a.cs 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2448))S_{2}^{\mathrm{new}}(\Gamma_0(2448)):

T5212 T_{5}^{2} - 12 Copy content Toggle raw display
T722T72 T_{7}^{2} - 2T_{7} - 2 Copy content Toggle raw display
T112+6T11+6 T_{11}^{2} + 6T_{11} + 6 Copy content Toggle raw display
T192+4T198 T_{19}^{2} + 4T_{19} - 8 Copy content Toggle raw display
T232+6T23+6 T_{23}^{2} + 6T_{23} + 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T212 T^{2} - 12 Copy content Toggle raw display
77 T22T2 T^{2} - 2T - 2 Copy content Toggle raw display
1111 T2+6T+6 T^{2} + 6T + 6 Copy content Toggle raw display
1313 T24T8 T^{2} - 4T - 8 Copy content Toggle raw display
1717 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1919 T2+4T8 T^{2} + 4T - 8 Copy content Toggle raw display
2323 T2+6T+6 T^{2} + 6T + 6 Copy content Toggle raw display
2929 T212 T^{2} - 12 Copy content Toggle raw display
3131 T22T26 T^{2} - 2T - 26 Copy content Toggle raw display
3737 T216T+52 T^{2} - 16T + 52 Copy content Toggle raw display
4141 (T6)2 (T - 6)^{2} Copy content Toggle raw display
4343 T2+4T104 T^{2} + 4T - 104 Copy content Toggle raw display
4747 T248 T^{2} - 48 Copy content Toggle raw display
5353 T2+12T12 T^{2} + 12T - 12 Copy content Toggle raw display
5959 T212T+24 T^{2} - 12T + 24 Copy content Toggle raw display
6161 T2+8T+4 T^{2} + 8T + 4 Copy content Toggle raw display
6767 T2+16T+16 T^{2} + 16T + 16 Copy content Toggle raw display
7171 T2+6T18 T^{2} + 6T - 18 Copy content Toggle raw display
7373 (T2)2 (T - 2)^{2} Copy content Toggle raw display
7979 T214T+22 T^{2} - 14T + 22 Copy content Toggle raw display
8383 T2+12T+24 T^{2} + 12T + 24 Copy content Toggle raw display
8989 T2+12T+24 T^{2} + 12T + 24 Copy content Toggle raw display
9797 T24T44 T^{2} - 4T - 44 Copy content Toggle raw display
show more
show less