Properties

Label 9792.2.a.cr
Level $9792$
Weight $2$
Character orbit 9792.a
Self dual yes
Analytic conductor $78.190$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9792,2,Mod(1,9792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9792, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9792.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9792.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.1895136592\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta q^{5} + (\beta - 1) q^{7} + ( - \beta - 3) q^{11} + (2 \beta - 2) q^{13} + q^{17} + ( - 2 \beta - 2) q^{19} + (\beta + 3) q^{23} + 7 q^{25} - 2 \beta q^{29} + ( - 3 \beta - 1) q^{31} + ( - 2 \beta + 6) q^{35} + \cdots + (4 \beta + 2) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} - 6 q^{11} - 4 q^{13} + 2 q^{17} - 4 q^{19} + 6 q^{23} + 14 q^{25} - 2 q^{31} + 12 q^{35} - 16 q^{37} + 12 q^{41} - 4 q^{43} - 6 q^{49} + 12 q^{53} - 12 q^{55} + 12 q^{59} + 8 q^{61} + 24 q^{65}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −3.46410 0 −2.73205 0 0 0
1.2 0 0 0 3.46410 0 0.732051 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9792.2.a.cr 2
3.b odd 2 1 1088.2.a.p 2
4.b odd 2 1 9792.2.a.cs 2
8.b even 2 1 612.2.a.e 2
8.d odd 2 1 2448.2.a.y 2
12.b even 2 1 1088.2.a.t 2
24.f even 2 1 272.2.a.e 2
24.h odd 2 1 68.2.a.a 2
120.i odd 2 1 1700.2.a.d 2
120.m even 2 1 6800.2.a.bh 2
120.w even 4 2 1700.2.e.c 4
168.i even 2 1 3332.2.a.h 2
264.m even 2 1 8228.2.a.k 2
408.b odd 2 1 1156.2.a.a 2
408.h even 2 1 4624.2.a.x 2
408.t odd 4 2 1156.2.b.c 4
408.be odd 8 4 1156.2.e.d 8
408.bm even 16 8 1156.2.h.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.2.a.a 2 24.h odd 2 1
272.2.a.e 2 24.f even 2 1
612.2.a.e 2 8.b even 2 1
1088.2.a.p 2 3.b odd 2 1
1088.2.a.t 2 12.b even 2 1
1156.2.a.a 2 408.b odd 2 1
1156.2.b.c 4 408.t odd 4 2
1156.2.e.d 8 408.be odd 8 4
1156.2.h.f 16 408.bm even 16 8
1700.2.a.d 2 120.i odd 2 1
1700.2.e.c 4 120.w even 4 2
2448.2.a.y 2 8.d odd 2 1
3332.2.a.h 2 168.i even 2 1
4624.2.a.x 2 408.h even 2 1
6800.2.a.bh 2 120.m even 2 1
8228.2.a.k 2 264.m even 2 1
9792.2.a.cr 2 1.a even 1 1 trivial
9792.2.a.cs 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9792))\):

\( T_{5}^{2} - 12 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 6 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 8 \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} - 8 \) Copy content Toggle raw display
\( T_{23}^{2} - 6T_{23} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 12 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$29$ \( T^{2} - 12 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$37$ \( T^{2} + 16T + 52 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 104 \) Copy content Toggle raw display
$47$ \( T^{2} - 48 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T - 12 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$61$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 16T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
$73$ \( (T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 14T + 22 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 44 \) Copy content Toggle raw display
show more
show less