L(s) = 1 | + (0.588 + 2.58i)3-s + (−0.379 − 0.475i)5-s + (0.143 + 0.630i)7-s + (−3.60 + 1.73i)9-s + (2.86 + 1.37i)11-s + (−4.97 − 2.39i)13-s + (1.00 − 1.25i)15-s + 6.66·17-s + (1.14 − 5.02i)19-s + (−1.54 + 0.742i)21-s + (1.01 − 1.27i)23-s + (1.03 − 4.51i)25-s + (−1.65 − 2.08i)27-s + (−5.38 + 0.122i)29-s + (−1.23 − 1.54i)31-s + ⋯ |
L(s) = 1 | + (0.340 + 1.48i)3-s + (−0.169 − 0.212i)5-s + (0.0544 + 0.238i)7-s + (−1.20 + 0.579i)9-s + (0.863 + 0.415i)11-s + (−1.37 − 0.664i)13-s + (0.259 − 0.325i)15-s + 1.61·17-s + (0.262 − 1.15i)19-s + (−0.336 + 0.162i)21-s + (0.211 − 0.265i)23-s + (0.206 − 0.902i)25-s + (−0.319 − 0.400i)27-s + (−0.999 + 0.0226i)29-s + (−0.221 − 0.277i)31-s + ⋯ |
Λ(s)=(=(116s/2ΓC(s)L(s)(0.332−0.943i)Λ(2−s)
Λ(s)=(=(116s/2ΓC(s+1/2)L(s)(0.332−0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
116
= 22⋅29
|
Sign: |
0.332−0.943i
|
Analytic conductor: |
0.926264 |
Root analytic conductor: |
0.962426 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ116(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 116, ( :1/2), 0.332−0.943i)
|
Particular Values
L(1) |
≈ |
0.920018+0.651283i |
L(21) |
≈ |
0.920018+0.651283i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(5.38−0.122i)T |
good | 3 | 1+(−0.588−2.58i)T+(−2.70+1.30i)T2 |
| 5 | 1+(0.379+0.475i)T+(−1.11+4.87i)T2 |
| 7 | 1+(−0.143−0.630i)T+(−6.30+3.03i)T2 |
| 11 | 1+(−2.86−1.37i)T+(6.85+8.60i)T2 |
| 13 | 1+(4.97+2.39i)T+(8.10+10.1i)T2 |
| 17 | 1−6.66T+17T2 |
| 19 | 1+(−1.14+5.02i)T+(−17.1−8.24i)T2 |
| 23 | 1+(−1.01+1.27i)T+(−5.11−22.4i)T2 |
| 31 | 1+(1.23+1.54i)T+(−6.89+30.2i)T2 |
| 37 | 1+(2.60−1.25i)T+(23.0−28.9i)T2 |
| 41 | 1+9.83T+41T2 |
| 43 | 1+(4.81−6.04i)T+(−9.56−41.9i)T2 |
| 47 | 1+(−7.49−3.61i)T+(29.3+36.7i)T2 |
| 53 | 1+(−4.82−6.05i)T+(−11.7+51.6i)T2 |
| 59 | 1+1.12T+59T2 |
| 61 | 1+(2.02+8.85i)T+(−54.9+26.4i)T2 |
| 67 | 1+(11.2−5.42i)T+(41.7−52.3i)T2 |
| 71 | 1+(−0.344−0.165i)T+(44.2+55.5i)T2 |
| 73 | 1+(−0.200+0.250i)T+(−16.2−71.1i)T2 |
| 79 | 1+(15.5−7.46i)T+(49.2−61.7i)T2 |
| 83 | 1+(1.91−8.39i)T+(−74.7−36.0i)T2 |
| 89 | 1+(5.99+7.51i)T+(−19.8+86.7i)T2 |
| 97 | 1+(−1.95+8.56i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.15906019297343224947635640194, −12.55607819908128685685049287171, −11.64958639859171303168326599123, −10.28434268190448235075191660809, −9.659829616828704386905523312871, −8.701929995565410148744078901157, −7.32602151187432309692594152223, −5.39850615359110643922123513494, −4.43772895864940991528890152682, −3.04659356474381114692215357095,
1.62649923129061217627517206619, 3.46354064703133893143755187244, 5.62512948390626350713036766625, 7.08050560975159264703435246568, 7.54032610327219811266182545257, 8.863210735976551177042467678812, 10.15191452186472313903367142981, 11.87522369886409150422479371865, 12.12165386986212495239156780142, 13.41195986842536371728567642850