L(s) = 1 | + (0.588 + 2.58i)3-s + (−0.379 − 0.475i)5-s + (0.143 + 0.630i)7-s + (−3.60 + 1.73i)9-s + (2.86 + 1.37i)11-s + (−4.97 − 2.39i)13-s + (1.00 − 1.25i)15-s + 6.66·17-s + (1.14 − 5.02i)19-s + (−1.54 + 0.742i)21-s + (1.01 − 1.27i)23-s + (1.03 − 4.51i)25-s + (−1.65 − 2.08i)27-s + (−5.38 + 0.122i)29-s + (−1.23 − 1.54i)31-s + ⋯ |
L(s) = 1 | + (0.340 + 1.48i)3-s + (−0.169 − 0.212i)5-s + (0.0544 + 0.238i)7-s + (−1.20 + 0.579i)9-s + (0.863 + 0.415i)11-s + (−1.37 − 0.664i)13-s + (0.259 − 0.325i)15-s + 1.61·17-s + (0.262 − 1.15i)19-s + (−0.336 + 0.162i)21-s + (0.211 − 0.265i)23-s + (0.206 − 0.902i)25-s + (−0.319 − 0.400i)27-s + (−0.999 + 0.0226i)29-s + (−0.221 − 0.277i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 - 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.332 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.920018 + 0.651283i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.920018 + 0.651283i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 29 | \( 1 + (5.38 - 0.122i)T \) |
good | 3 | \( 1 + (-0.588 - 2.58i)T + (-2.70 + 1.30i)T^{2} \) |
| 5 | \( 1 + (0.379 + 0.475i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (-0.143 - 0.630i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (-2.86 - 1.37i)T + (6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (4.97 + 2.39i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 - 6.66T + 17T^{2} \) |
| 19 | \( 1 + (-1.14 + 5.02i)T + (-17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (-1.01 + 1.27i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (1.23 + 1.54i)T + (-6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (2.60 - 1.25i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 + 9.83T + 41T^{2} \) |
| 43 | \( 1 + (4.81 - 6.04i)T + (-9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (-7.49 - 3.61i)T + (29.3 + 36.7i)T^{2} \) |
| 53 | \( 1 + (-4.82 - 6.05i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 + 1.12T + 59T^{2} \) |
| 61 | \( 1 + (2.02 + 8.85i)T + (-54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (11.2 - 5.42i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (-0.344 - 0.165i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (-0.200 + 0.250i)T + (-16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (15.5 - 7.46i)T + (49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (1.91 - 8.39i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (5.99 + 7.51i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (-1.95 + 8.56i)T + (-87.3 - 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.15906019297343224947635640194, −12.55607819908128685685049287171, −11.64958639859171303168326599123, −10.28434268190448235075191660809, −9.659829616828704386905523312871, −8.701929995565410148744078901157, −7.32602151187432309692594152223, −5.39850615359110643922123513494, −4.43772895864940991528890152682, −3.04659356474381114692215357095,
1.62649923129061217627517206619, 3.46354064703133893143755187244, 5.62512948390626350713036766625, 7.08050560975159264703435246568, 7.54032610327219811266182545257, 8.863210735976551177042467678812, 10.15191452186472313903367142981, 11.87522369886409150422479371865, 12.12165386986212495239156780142, 13.41195986842536371728567642850