Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [116,2,Mod(25,116)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(116, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("116.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 116.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
0 | −2.04546 | + | 0.985042i | 0 | −0.299629 | + | 1.31276i | 0 | −3.84740 | + | 1.85281i | 0 | 1.34313 | − | 1.68423i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
25.2 | 0 | 2.22391 | − | 1.07098i | 0 | −0.768902 | + | 3.36878i | 0 | 0.421971 | − | 0.203210i | 0 | 1.92831 | − | 2.41802i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
45.1 | 0 | −1.92469 | + | 2.41349i | 0 | −3.16565 | − | 1.52449i | 0 | −0.677712 | + | 0.849824i | 0 | −1.45292 | − | 6.36565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
45.2 | 0 | −0.0997674 | + | 0.125104i | 0 | 1.58623 | + | 0.763888i | 0 | 1.14721 | − | 1.43856i | 0 | 0.661865 | + | 2.89982i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
49.1 | 0 | −1.92469 | − | 2.41349i | 0 | −3.16565 | + | 1.52449i | 0 | −0.677712 | − | 0.849824i | 0 | −1.45292 | + | 6.36565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
49.2 | 0 | −0.0997674 | − | 0.125104i | 0 | 1.58623 | − | 0.763888i | 0 | 1.14721 | + | 1.43856i | 0 | 0.661865 | − | 2.89982i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
53.1 | 0 | −0.242969 | − | 1.06452i | 0 | 2.52737 | + | 3.16923i | 0 | −0.688011 | − | 3.01437i | 0 | 1.62874 | − | 0.784360i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
53.2 | 0 | 0.588980 | + | 2.58049i | 0 | −0.379425 | − | 0.475783i | 0 | 0.143938 | + | 0.630635i | 0 | −3.60913 | + | 1.73806i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
65.1 | 0 | −2.04546 | − | 0.985042i | 0 | −0.299629 | − | 1.31276i | 0 | −3.84740 | − | 1.85281i | 0 | 1.34313 | + | 1.68423i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
65.2 | 0 | 2.22391 | + | 1.07098i | 0 | −0.768902 | − | 3.36878i | 0 | 0.421971 | + | 0.203210i | 0 | 1.92831 | + | 2.41802i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
81.1 | 0 | −0.242969 | + | 1.06452i | 0 | 2.52737 | − | 3.16923i | 0 | −0.688011 | + | 3.01437i | 0 | 1.62874 | + | 0.784360i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
81.2 | 0 | 0.588980 | − | 2.58049i | 0 | −0.379425 | + | 0.475783i | 0 | 0.143938 | − | 0.630635i | 0 | −3.60913 | − | 1.73806i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.d | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 116.2.g.b | ✓ | 12 |
3.b | odd | 2 | 1 | 1044.2.u.c | 12 | ||
4.b | odd | 2 | 1 | 464.2.u.g | 12 | ||
29.d | even | 7 | 1 | inner | 116.2.g.b | ✓ | 12 |
29.d | even | 7 | 1 | 3364.2.a.m | 6 | ||
29.e | even | 14 | 1 | 3364.2.a.p | 6 | ||
29.f | odd | 28 | 2 | 3364.2.c.j | 12 | ||
87.j | odd | 14 | 1 | 1044.2.u.c | 12 | ||
116.j | odd | 14 | 1 | 464.2.u.g | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
116.2.g.b | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
116.2.g.b | ✓ | 12 | 29.d | even | 7 | 1 | inner |
464.2.u.g | 12 | 4.b | odd | 2 | 1 | ||
464.2.u.g | 12 | 116.j | odd | 14 | 1 | ||
1044.2.u.c | 12 | 3.b | odd | 2 | 1 | ||
1044.2.u.c | 12 | 87.j | odd | 14 | 1 | ||
3364.2.a.m | 6 | 29.d | even | 7 | 1 | ||
3364.2.a.p | 6 | 29.e | even | 14 | 1 | ||
3364.2.c.j | 12 | 29.f | odd | 28 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .