Properties

Label 116.2.g.b
Level 116116
Weight 22
Character orbit 116.g
Analytic conductor 0.9260.926
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,2,Mod(25,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 116=2229 116 = 2^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 116.g (of order 77, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9262646634470.926264663447
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ7)\Q(\zeta_{7})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x125x11+12x1016x9+22x8+28x7+71x6+154x5+442x4++841 x^{12} - 5 x^{11} + 12 x^{10} - 16 x^{9} + 22 x^{8} + 28 x^{7} + 71 x^{6} + 154 x^{5} + 442 x^{4} + \cdots + 841 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C7]\mathrm{SU}(2)[C_{7}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β8β1)q3+(β6+β5+β2)q5+(β8β1)q7+(β11+β10+2β5)q9+(β11β9+2β8++2)q11++(β10+β9+6β8+2)q99+O(q100) q + ( - \beta_{8} - \beta_1) q^{3} + (\beta_{6} + \beta_{5} + \cdots - \beta_{2}) q^{5} + (\beta_{8} - \beta_1) q^{7} + ( - \beta_{11} + \beta_{10} + \cdots - 2 \beta_{5}) q^{9} + (\beta_{11} - \beta_{9} + 2 \beta_{8} + \cdots + 2) q^{11}+ \cdots + (\beta_{10} + \beta_{9} + 6 \beta_{8} + \cdots - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q3q3q57q7+q9+3q1121q13+29q1510q17+17q19+3q2119q233q25+9q275q2927q3147q33+27q353q37+16q99+O(q100) 12 q - 3 q^{3} - q^{5} - 7 q^{7} + q^{9} + 3 q^{11} - 21 q^{13} + 29 q^{15} - 10 q^{17} + 17 q^{19} + 3 q^{21} - 19 q^{23} - 3 q^{25} + 9 q^{27} - 5 q^{29} - 27 q^{31} - 47 q^{33} + 27 q^{35} - 3 q^{37}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x125x11+12x1016x9+22x8+28x7+71x6+154x5+442x4++841 x^{12} - 5 x^{11} + 12 x^{10} - 16 x^{9} + 22 x^{8} + 28 x^{7} + 71 x^{6} + 154 x^{5} + 442 x^{4} + \cdots + 841 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (2666113593ν11103378288493ν10+730364594638ν9+87085829035390)/87597662955238 ( - 2666113593 \nu^{11} - 103378288493 \nu^{10} + 730364594638 \nu^{9} + \cdots - 87085829035390 ) / 87597662955238 Copy content Toggle raw display
β3\beta_{3}== (76569689033ν11329670261352ν10+1009877030172ν9++235137749968678)/175195325910476 ( 76569689033 \nu^{11} - 329670261352 \nu^{10} + 1009877030172 \nu^{9} + \cdots + 235137749968678 ) / 175195325910476 Copy content Toggle raw display
β4\beta_{4}== (80877989929ν11+560470291448ν101931233965956ν9++92982388988572)/175195325910476 ( - 80877989929 \nu^{11} + 560470291448 \nu^{10} - 1931233965956 \nu^{9} + \cdots + 92982388988572 ) / 175195325910476 Copy content Toggle raw display
β5\beta_{5}== (154305296456ν11821175970637ν10+2060526694663ν9++132826473739629)/175195325910476 ( 154305296456 \nu^{11} - 821175970637 \nu^{10} + 2060526694663 \nu^{9} + \cdots + 132826473739629 ) / 175195325910476 Copy content Toggle raw display
β6\beta_{6}== (182774232211ν11+793118206506ν101236048179004ν9+277769000014142)/175195325910476 ( - 182774232211 \nu^{11} + 793118206506 \nu^{10} - 1236048179004 \nu^{9} + \cdots - 277769000014142 ) / 175195325910476 Copy content Toggle raw display
β7\beta_{7}== (103550331790ν11520417772543ν10+1139225692987ν9++108496393085623)/87597662955238 ( 103550331790 \nu^{11} - 520417772543 \nu^{10} + 1139225692987 \nu^{9} + \cdots + 108496393085623 ) / 87597662955238 Copy content Toggle raw display
β8\beta_{8}== (230492168800ν11+1461546568214ν104597897267111ν9++9060333114751)/175195325910476 ( - 230492168800 \nu^{11} + 1461546568214 \nu^{10} - 4597897267111 \nu^{9} + \cdots + 9060333114751 ) / 175195325910476 Copy content Toggle raw display
β9\beta_{9}== (232650030836ν11+1290368348160ν103776871348421ν9+303156139498967)/175195325910476 ( - 232650030836 \nu^{11} + 1290368348160 \nu^{10} - 3776871348421 \nu^{9} + \cdots - 303156139498967 ) / 175195325910476 Copy content Toggle raw display
β10\beta_{10}== (309085724214ν111831991241511ν10+4952928996914ν9++193843913960800)/175195325910476 ( 309085724214 \nu^{11} - 1831991241511 \nu^{10} + 4952928996914 \nu^{9} + \cdots + 193843913960800 ) / 175195325910476 Copy content Toggle raw display
β11\beta_{11}== (513040509027ν11+2862030349339ν107361090329451ν9+456441142019925)/175195325910476 ( - 513040509027 \nu^{11} + 2862030349339 \nu^{10} - 7361090329451 \nu^{9} + \cdots - 456441142019925 ) / 175195325910476 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11β10β8β64β5 -\beta_{11} - \beta_{10} - \beta_{8} - \beta_{6} - 4\beta_{5} Copy content Toggle raw display
ν3\nu^{3}== 6β116β10+2β9+β7β610β54β4++1 - 6 \beta_{11} - 6 \beta_{10} + 2 \beta_{9} + \beta_{7} - \beta_{6} - 10 \beta_{5} - 4 \beta_{4} + \cdots + 1 Copy content Toggle raw display
ν4\nu^{4}== 13β1111β10+13β9+8β8+13β726β526β4++8 - 13 \beta_{11} - 11 \beta_{10} + 13 \beta_{9} + 8 \beta_{8} + 13 \beta_{7} - 26 \beta_{5} - 26 \beta_{4} + \cdots + 8 Copy content Toggle raw display
ν5\nu^{5}== 29β1116β10+50β9+34β8+63β7+14β663β5++14 - 29 \beta_{11} - 16 \beta_{10} + 50 \beta_{9} + 34 \beta_{8} + 63 \beta_{7} + 14 \beta_{6} - 63 \beta_{5} + \cdots + 14 Copy content Toggle raw display
ν6\nu^{6}== 49β11+115β9+153β8+229β7+76β6125β5+49β1 - 49 \beta_{11} + 115 \beta_{9} + 153 \beta_{8} + 229 \beta_{7} + 76 \beta_{6} - 125 \beta_{5} + \cdots - 49 \beta_1 Copy content Toggle raw display
ν7\nu^{7}== 192β10+192β9+536β8+536β7+262β6262β4+147 192 \beta_{10} + 192 \beta_{9} + 536 \beta_{8} + 536 \beta_{7} + 262 \beta_{6} - 262 \beta_{4} + \cdots - 147 Copy content Toggle raw display
ν8\nu^{8}== 606β11+1214β10+1498β8+920β7+920β6+1396β5+790 606 \beta_{11} + 1214 \beta_{10} + 1498 \beta_{8} + 920 \beta_{7} + 920 \beta_{6} + 1396 \beta_{5} + \cdots - 790 Copy content Toggle raw display
ν9\nu^{9}== 3829β11+5015β102134β9+2729β8+2729β6+8366β5+3032 3829 \beta_{11} + 5015 \beta_{10} - 2134 \beta_{9} + 2729 \beta_{8} + 2729 \beta_{6} + 8366 \beta_{5} + \cdots - 3032 Copy content Toggle raw display
ν10\nu^{10}== 16110β11+16110β1012910β910231β7+5253β6+34746β5+10231 16110 \beta_{11} + 16110 \beta_{10} - 12910 \beta_{9} - 10231 \beta_{7} + 5253 \beta_{6} + 34746 \beta_{5} + \cdots - 10231 Copy content Toggle raw display
ν11\nu^{11}== 52909β11+41607β1052909β928208β861701β7+114610β5+28208 52909 \beta_{11} + 41607 \beta_{10} - 52909 \beta_{9} - 28208 \beta_{8} - 61701 \beta_{7} + 114610 \beta_{5} + \cdots - 28208 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/116Z)×\left(\mathbb{Z}/116\mathbb{Z}\right)^\times.

nn 5959 8989
χ(n)\chi(n) 11 β7\beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
25.1
2.94643 1.41893i
−1.32294 + 0.637094i
1.30120 1.63166i
−0.523722 + 0.656727i
1.30120 + 1.63166i
−0.523722 0.656727i
0.465490 + 2.03945i
−0.366459 1.60556i
2.94643 + 1.41893i
−1.32294 0.637094i
0.465490 2.03945i
−0.366459 + 1.60556i
0 −2.04546 + 0.985042i 0 −0.299629 + 1.31276i 0 −3.84740 + 1.85281i 0 1.34313 1.68423i 0
25.2 0 2.22391 1.07098i 0 −0.768902 + 3.36878i 0 0.421971 0.203210i 0 1.92831 2.41802i 0
45.1 0 −1.92469 + 2.41349i 0 −3.16565 1.52449i 0 −0.677712 + 0.849824i 0 −1.45292 6.36565i 0
45.2 0 −0.0997674 + 0.125104i 0 1.58623 + 0.763888i 0 1.14721 1.43856i 0 0.661865 + 2.89982i 0
49.1 0 −1.92469 2.41349i 0 −3.16565 + 1.52449i 0 −0.677712 0.849824i 0 −1.45292 + 6.36565i 0
49.2 0 −0.0997674 0.125104i 0 1.58623 0.763888i 0 1.14721 + 1.43856i 0 0.661865 2.89982i 0
53.1 0 −0.242969 1.06452i 0 2.52737 + 3.16923i 0 −0.688011 3.01437i 0 1.62874 0.784360i 0
53.2 0 0.588980 + 2.58049i 0 −0.379425 0.475783i 0 0.143938 + 0.630635i 0 −3.60913 + 1.73806i 0
65.1 0 −2.04546 0.985042i 0 −0.299629 1.31276i 0 −3.84740 1.85281i 0 1.34313 + 1.68423i 0
65.2 0 2.22391 + 1.07098i 0 −0.768902 3.36878i 0 0.421971 + 0.203210i 0 1.92831 + 2.41802i 0
81.1 0 −0.242969 + 1.06452i 0 2.52737 3.16923i 0 −0.688011 + 3.01437i 0 1.62874 + 0.784360i 0
81.2 0 0.588980 2.58049i 0 −0.379425 + 0.475783i 0 0.143938 0.630635i 0 −3.60913 1.73806i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 116.2.g.b 12
3.b odd 2 1 1044.2.u.c 12
4.b odd 2 1 464.2.u.g 12
29.d even 7 1 inner 116.2.g.b 12
29.d even 7 1 3364.2.a.m 6
29.e even 14 1 3364.2.a.p 6
29.f odd 28 2 3364.2.c.j 12
87.j odd 14 1 1044.2.u.c 12
116.j odd 14 1 464.2.u.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.2.g.b 12 1.a even 1 1 trivial
116.2.g.b 12 29.d even 7 1 inner
464.2.u.g 12 4.b odd 2 1
464.2.u.g 12 116.j odd 14 1
1044.2.u.c 12 3.b odd 2 1
1044.2.u.c 12 87.j odd 14 1
3364.2.a.m 6 29.d even 7 1
3364.2.a.p 6 29.e even 14 1
3364.2.c.j 12 29.f odd 28 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T312+3T311+7T310+T39+17T3821T3755T36++64 T_{3}^{12} + 3 T_{3}^{11} + 7 T_{3}^{10} + T_{3}^{9} + 17 T_{3}^{8} - 21 T_{3}^{7} - 55 T_{3}^{6} + \cdots + 64 acting on S2new(116,[χ])S_{2}^{\mathrm{new}}(116, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+3T11++64 T^{12} + 3 T^{11} + \cdots + 64 Copy content Toggle raw display
55 T12+T11++5041 T^{12} + T^{11} + \cdots + 5041 Copy content Toggle raw display
77 T12+7T11++64 T^{12} + 7 T^{11} + \cdots + 64 Copy content Toggle raw display
1111 T123T11++46656 T^{12} - 3 T^{11} + \cdots + 46656 Copy content Toggle raw display
1313 T12+21T11++1 T^{12} + 21 T^{11} + \cdots + 1 Copy content Toggle raw display
1717 (T6+5T5++344)2 (T^{6} + 5 T^{5} + \cdots + 344)^{2} Copy content Toggle raw display
1919 T12++285745216 T^{12} + \cdots + 285745216 Copy content Toggle raw display
2323 T12+19T11++1032256 T^{12} + 19 T^{11} + \cdots + 1032256 Copy content Toggle raw display
2929 T12++594823321 T^{12} + \cdots + 594823321 Copy content Toggle raw display
3131 T12+27T11++53824 T^{12} + 27 T^{11} + \cdots + 53824 Copy content Toggle raw display
3737 T12++161620369 T^{12} + \cdots + 161620369 Copy content Toggle raw display
4141 (T6+T5142T4+1624)2 (T^{6} + T^{5} - 142 T^{4} + \cdots - 1624)^{2} Copy content Toggle raw display
4343 T12+9T11++11235904 T^{12} + 9 T^{11} + \cdots + 11235904 Copy content Toggle raw display
4747 T12++16533845056 T^{12} + \cdots + 16533845056 Copy content Toggle raw display
5353 (T611T5++841)2 (T^{6} - 11 T^{5} + \cdots + 841)^{2} Copy content Toggle raw display
5959 (T618T5++19264)2 (T^{6} - 18 T^{5} + \cdots + 19264)^{2} Copy content Toggle raw display
6161 T12++2812499089 T^{12} + \cdots + 2812499089 Copy content Toggle raw display
6767 T12++5027377216 T^{12} + \cdots + 5027377216 Copy content Toggle raw display
7171 T12+35T11++96983104 T^{12} + 35 T^{11} + \cdots + 96983104 Copy content Toggle raw display
7373 T1234T11++37442161 T^{12} - 34 T^{11} + \cdots + 37442161 Copy content Toggle raw display
7979 T12++397313387584 T^{12} + \cdots + 397313387584 Copy content Toggle raw display
8383 T12+T11++13601344 T^{12} + T^{11} + \cdots + 13601344 Copy content Toggle raw display
8989 T12++876692881 T^{12} + \cdots + 876692881 Copy content Toggle raw display
9797 T12++1819798302001 T^{12} + \cdots + 1819798302001 Copy content Toggle raw display
show more
show less