Properties

Label 3364.2.a.p
Level 33643364
Weight 22
Character orbit 3364.a
Self dual yes
Analytic conductor 26.86226.862
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3364=22292 3364 = 2^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.861675240026.8616752400
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.6456289.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x512x4+3x3+40x2+6x29 x^{6} - x^{5} - 12x^{4} + 3x^{3} + 40x^{2} + 6x - 29 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 116)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q3+(β5β2+1)q5+(β1+1)q7+(β3β2β1+2)q9+(β3β2β1+1)q11+(2β4+β3+2β2+4)q13++(β5β4+4β1)q99+O(q100) q + ( - \beta_1 + 1) q^{3} + ( - \beta_{5} - \beta_{2} + 1) q^{5} + (\beta_1 + 1) q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{11} + ( - 2 \beta_{4} + \beta_{3} + 2 \beta_{2} + 4) q^{13}+ \cdots + (\beta_{5} - \beta_{4} + \cdots - 4 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+5q3+10q5+7q7+11q9+9q11+14q13+10q15+5q17+9q1919q21+15q23+16q25+20q2711q31+22q33+10q3516q37+22q39++8q99+O(q100) 6 q + 5 q^{3} + 10 q^{5} + 7 q^{7} + 11 q^{9} + 9 q^{11} + 14 q^{13} + 10 q^{15} + 5 q^{17} + 9 q^{19} - 19 q^{21} + 15 q^{23} + 16 q^{25} + 20 q^{27} - 11 q^{31} + 22 q^{33} + 10 q^{35} - 16 q^{37} + 22 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x512x4+3x3+40x2+6x29 x^{6} - x^{5} - 12x^{4} + 3x^{3} + 40x^{2} + 6x - 29 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν52ν410ν3+13ν2+23ν17)/4 ( \nu^{5} - 2\nu^{4} - 10\nu^{3} + 13\nu^{2} + 23\nu - 17 ) / 4 Copy content Toggle raw display
β3\beta_{3}== (ν52ν410ν3+17ν2+19ν33)/4 ( \nu^{5} - 2\nu^{4} - 10\nu^{3} + 17\nu^{2} + 19\nu - 33 ) / 4 Copy content Toggle raw display
β4\beta_{4}== (ν5+3ν4+7ν318ν213ν+22)/2 ( -\nu^{5} + 3\nu^{4} + 7\nu^{3} - 18\nu^{2} - 13\nu + 22 ) / 2 Copy content Toggle raw display
β5\beta_{5}== (2ν55ν415ν3+27ν2+28ν29)/2 ( 2\nu^{5} - 5\nu^{4} - 15\nu^{3} + 27\nu^{2} + 28\nu - 29 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3β2+β1+4 \beta_{3} - \beta_{2} + \beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== β5+β4+2β34β2+6β1+3 \beta_{5} + \beta_{4} + 2\beta_{3} - 4\beta_{2} + 6\beta _1 + 3 Copy content Toggle raw display
ν4\nu^{4}== 3β5+5β4+11β313β2+13β1+24 3\beta_{5} + 5\beta_{4} + 11\beta_{3} - 13\beta_{2} + 13\beta _1 + 24 Copy content Toggle raw display
ν5\nu^{5}== 16β5+20β4+29β349β2+50β1+43 16\beta_{5} + 20\beta_{4} + 29\beta_{3} - 49\beta_{2} + 50\beta _1 + 43 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.27029
2.09189
0.839985
−1.46835
−1.64685
−2.08697
0 −2.27029 0 1.34652 0 4.27029 0 2.15422 0
1.2 0 −1.09189 0 4.05359 0 3.09189 0 −1.80777 0
1.3 0 0.160015 0 −1.76058 0 1.83999 0 −2.97440 0
1.4 0 2.46835 0 3.45542 0 −0.468352 0 3.09276 0
1.5 0 2.64685 0 −0.608550 0 −0.646853 0 4.00583 0
1.6 0 3.08697 0 3.51360 0 −1.08697 0 6.52935 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
2929 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3364.2.a.p 6
29.b even 2 1 3364.2.a.m 6
29.c odd 4 2 3364.2.c.j 12
29.e even 14 2 116.2.g.b 12
87.h odd 14 2 1044.2.u.c 12
116.h odd 14 2 464.2.u.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.2.g.b 12 29.e even 14 2
464.2.u.g 12 116.h odd 14 2
1044.2.u.c 12 87.h odd 14 2
3364.2.a.m 6 29.b even 2 1
3364.2.a.p 6 1.a even 1 1 trivial
3364.2.c.j 12 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3364))S_{2}^{\mathrm{new}}(\Gamma_0(3364)):

T365T352T34+35T3318T3248T3+8 T_{3}^{6} - 5T_{3}^{5} - 2T_{3}^{4} + 35T_{3}^{3} - 18T_{3}^{2} - 48T_{3} + 8 Copy content Toggle raw display
T5610T55+27T54+14T53120T52+46T5+71 T_{5}^{6} - 10T_{5}^{5} + 27T_{5}^{4} + 14T_{5}^{3} - 120T_{5}^{2} + 46T_{5} + 71 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T65T5++8 T^{6} - 5 T^{5} + \cdots + 8 Copy content Toggle raw display
55 T610T5++71 T^{6} - 10 T^{5} + \cdots + 71 Copy content Toggle raw display
77 T67T5+8 T^{6} - 7 T^{5} + \cdots - 8 Copy content Toggle raw display
1111 T69T5++216 T^{6} - 9 T^{5} + \cdots + 216 Copy content Toggle raw display
1313 T614T5+1 T^{6} - 14 T^{5} + \cdots - 1 Copy content Toggle raw display
1717 T65T5++344 T^{6} - 5 T^{5} + \cdots + 344 Copy content Toggle raw display
1919 T69T5++16904 T^{6} - 9 T^{5} + \cdots + 16904 Copy content Toggle raw display
2323 T615T5++1016 T^{6} - 15 T^{5} + \cdots + 1016 Copy content Toggle raw display
2929 T6 T^{6} Copy content Toggle raw display
3131 T6+11T5+232 T^{6} + 11 T^{5} + \cdots - 232 Copy content Toggle raw display
3737 T6+16T5++12713 T^{6} + 16 T^{5} + \cdots + 12713 Copy content Toggle raw display
4141 T6T5+1624 T^{6} - T^{5} + \cdots - 1624 Copy content Toggle raw display
4343 T615T5+3352 T^{6} - 15 T^{5} + \cdots - 3352 Copy content Toggle raw display
4747 T6+27T5+128584 T^{6} + 27 T^{5} + \cdots - 128584 Copy content Toggle raw display
5353 (T39T2+6T+29)2 (T^{3} - 9 T^{2} + 6 T + 29)^{2} Copy content Toggle raw display
5959 T618T5++19264 T^{6} - 18 T^{5} + \cdots + 19264 Copy content Toggle raw display
6161 T6+22T5+53033 T^{6} + 22 T^{5} + \cdots - 53033 Copy content Toggle raw display
6767 T69T5++70904 T^{6} - 9 T^{5} + \cdots + 70904 Copy content Toggle raw display
7171 T6+7T5++9848 T^{6} + 7 T^{5} + \cdots + 9848 Copy content Toggle raw display
7373 T632T5++6119 T^{6} - 32 T^{5} + \cdots + 6119 Copy content Toggle raw display
7979 T6+29T5+630328 T^{6} + 29 T^{5} + \cdots - 630328 Copy content Toggle raw display
8383 T63T5++3688 T^{6} - 3 T^{5} + \cdots + 3688 Copy content Toggle raw display
8989 T6+12T5+29609 T^{6} + 12 T^{5} + \cdots - 29609 Copy content Toggle raw display
9797 T658T5+1348999 T^{6} - 58 T^{5} + \cdots - 1348999 Copy content Toggle raw display
show more
show less