Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3364,2,Mod(1,3364)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3364.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3364.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.6.6456289.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 116) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −2.27029 | 0 | 1.34652 | 0 | 4.27029 | 0 | 2.15422 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | 0 | −1.09189 | 0 | 4.05359 | 0 | 3.09189 | 0 | −1.80777 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | 0 | 0.160015 | 0 | −1.76058 | 0 | 1.83999 | 0 | −2.97440 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 0 | 2.46835 | 0 | 3.45542 | 0 | −0.468352 | 0 | 3.09276 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 0 | 2.64685 | 0 | −0.608550 | 0 | −0.646853 | 0 | 4.00583 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 0 | 3.08697 | 0 | 3.51360 | 0 | −1.08697 | 0 | 6.52935 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3364.2.a.p | 6 | |
29.b | even | 2 | 1 | 3364.2.a.m | 6 | ||
29.c | odd | 4 | 2 | 3364.2.c.j | 12 | ||
29.e | even | 14 | 2 | 116.2.g.b | ✓ | 12 | |
87.h | odd | 14 | 2 | 1044.2.u.c | 12 | ||
116.h | odd | 14 | 2 | 464.2.u.g | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
116.2.g.b | ✓ | 12 | 29.e | even | 14 | 2 | |
464.2.u.g | 12 | 116.h | odd | 14 | 2 | ||
1044.2.u.c | 12 | 87.h | odd | 14 | 2 | ||
3364.2.a.m | 6 | 29.b | even | 2 | 1 | ||
3364.2.a.p | 6 | 1.a | even | 1 | 1 | trivial | |
3364.2.c.j | 12 | 29.c | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|