Properties

Label 3364.2.a.p
Level $3364$
Weight $2$
Character orbit 3364.a
Self dual yes
Analytic conductor $26.862$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6456289.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 12x^{4} + 3x^{3} + 40x^{2} + 6x - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 116)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + ( - \beta_{5} - \beta_{2} + 1) q^{5} + (\beta_1 + 1) q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{11} + ( - 2 \beta_{4} + \beta_{3} + 2 \beta_{2} + 4) q^{13}+ \cdots + (\beta_{5} - \beta_{4} + \cdots - 4 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} + 10 q^{5} + 7 q^{7} + 11 q^{9} + 9 q^{11} + 14 q^{13} + 10 q^{15} + 5 q^{17} + 9 q^{19} - 19 q^{21} + 15 q^{23} + 16 q^{25} + 20 q^{27} - 11 q^{31} + 22 q^{33} + 10 q^{35} - 16 q^{37} + 22 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 12x^{4} + 3x^{3} + 40x^{2} + 6x - 29 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 10\nu^{3} + 13\nu^{2} + 23\nu - 17 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 10\nu^{3} + 17\nu^{2} + 19\nu - 33 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} + 7\nu^{3} - 18\nu^{2} - 13\nu + 22 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{5} - 5\nu^{4} - 15\nu^{3} + 27\nu^{2} + 28\nu - 29 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 2\beta_{3} - 4\beta_{2} + 6\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{5} + 5\beta_{4} + 11\beta_{3} - 13\beta_{2} + 13\beta _1 + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 16\beta_{5} + 20\beta_{4} + 29\beta_{3} - 49\beta_{2} + 50\beta _1 + 43 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.27029
2.09189
0.839985
−1.46835
−1.64685
−2.08697
0 −2.27029 0 1.34652 0 4.27029 0 2.15422 0
1.2 0 −1.09189 0 4.05359 0 3.09189 0 −1.80777 0
1.3 0 0.160015 0 −1.76058 0 1.83999 0 −2.97440 0
1.4 0 2.46835 0 3.45542 0 −0.468352 0 3.09276 0
1.5 0 2.64685 0 −0.608550 0 −0.646853 0 4.00583 0
1.6 0 3.08697 0 3.51360 0 −1.08697 0 6.52935 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3364.2.a.p 6
29.b even 2 1 3364.2.a.m 6
29.c odd 4 2 3364.2.c.j 12
29.e even 14 2 116.2.g.b 12
87.h odd 14 2 1044.2.u.c 12
116.h odd 14 2 464.2.u.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.2.g.b 12 29.e even 14 2
464.2.u.g 12 116.h odd 14 2
1044.2.u.c 12 87.h odd 14 2
3364.2.a.m 6 29.b even 2 1
3364.2.a.p 6 1.a even 1 1 trivial
3364.2.c.j 12 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3364))\):

\( T_{3}^{6} - 5T_{3}^{5} - 2T_{3}^{4} + 35T_{3}^{3} - 18T_{3}^{2} - 48T_{3} + 8 \) Copy content Toggle raw display
\( T_{5}^{6} - 10T_{5}^{5} + 27T_{5}^{4} + 14T_{5}^{3} - 120T_{5}^{2} + 46T_{5} + 71 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 5 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{6} - 10 T^{5} + \cdots + 71 \) Copy content Toggle raw display
$7$ \( T^{6} - 7 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$11$ \( T^{6} - 9 T^{5} + \cdots + 216 \) Copy content Toggle raw display
$13$ \( T^{6} - 14 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{6} - 5 T^{5} + \cdots + 344 \) Copy content Toggle raw display
$19$ \( T^{6} - 9 T^{5} + \cdots + 16904 \) Copy content Toggle raw display
$23$ \( T^{6} - 15 T^{5} + \cdots + 1016 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 11 T^{5} + \cdots - 232 \) Copy content Toggle raw display
$37$ \( T^{6} + 16 T^{5} + \cdots + 12713 \) Copy content Toggle raw display
$41$ \( T^{6} - T^{5} + \cdots - 1624 \) Copy content Toggle raw display
$43$ \( T^{6} - 15 T^{5} + \cdots - 3352 \) Copy content Toggle raw display
$47$ \( T^{6} + 27 T^{5} + \cdots - 128584 \) Copy content Toggle raw display
$53$ \( (T^{3} - 9 T^{2} + 6 T + 29)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 18 T^{5} + \cdots + 19264 \) Copy content Toggle raw display
$61$ \( T^{6} + 22 T^{5} + \cdots - 53033 \) Copy content Toggle raw display
$67$ \( T^{6} - 9 T^{5} + \cdots + 70904 \) Copy content Toggle raw display
$71$ \( T^{6} + 7 T^{5} + \cdots + 9848 \) Copy content Toggle raw display
$73$ \( T^{6} - 32 T^{5} + \cdots + 6119 \) Copy content Toggle raw display
$79$ \( T^{6} + 29 T^{5} + \cdots - 630328 \) Copy content Toggle raw display
$83$ \( T^{6} - 3 T^{5} + \cdots + 3688 \) Copy content Toggle raw display
$89$ \( T^{6} + 12 T^{5} + \cdots - 29609 \) Copy content Toggle raw display
$97$ \( T^{6} - 58 T^{5} + \cdots - 1348999 \) Copy content Toggle raw display
show more
show less