Properties

Label 2-116-116.11-c1-0-2
Degree $2$
Conductor $116$
Sign $-0.259 - 0.965i$
Analytic cond. $0.926264$
Root an. cond. $0.962426$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 0.701i)2-s + (−2.69 + 0.304i)3-s + (1.01 + 1.72i)4-s + (−1.20 + 2.49i)5-s + (−3.52 − 1.51i)6-s + (0.625 + 0.498i)7-s + (0.0419 + 2.82i)8-s + (4.27 − 0.974i)9-s + (−3.22 + 2.22i)10-s + (4.00 − 2.51i)11-s + (−3.26 − 4.33i)12-s + (−2.59 − 0.593i)13-s + (0.418 + 1.05i)14-s + (2.48 − 7.09i)15-s + (−1.93 + 3.50i)16-s + (4.12 − 4.12i)17-s + ⋯
L(s)  = 1  + (0.868 + 0.495i)2-s + (−1.55 + 0.175i)3-s + (0.508 + 0.861i)4-s + (−0.537 + 1.11i)5-s + (−1.44 − 0.620i)6-s + (0.236 + 0.188i)7-s + (0.0148 + 0.999i)8-s + (1.42 − 0.324i)9-s + (−1.01 + 0.702i)10-s + (1.20 − 0.757i)11-s + (−0.943 − 1.25i)12-s + (−0.720 − 0.164i)13-s + (0.111 + 0.281i)14-s + (0.641 − 1.83i)15-s + (−0.482 + 0.875i)16-s + (0.999 − 0.999i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.259 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.259 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116\)    =    \(2^{2} \cdot 29\)
Sign: $-0.259 - 0.965i$
Analytic conductor: \(0.926264\)
Root analytic conductor: \(0.962426\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{116} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 116,\ (\ :1/2),\ -0.259 - 0.965i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.622168 + 0.811376i\)
\(L(\frac12)\) \(\approx\) \(0.622168 + 0.811376i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.22 - 0.701i)T \)
29 \( 1 + (-5.26 + 1.11i)T \)
good3 \( 1 + (2.69 - 0.304i)T + (2.92 - 0.667i)T^{2} \)
5 \( 1 + (1.20 - 2.49i)T + (-3.11 - 3.90i)T^{2} \)
7 \( 1 + (-0.625 - 0.498i)T + (1.55 + 6.82i)T^{2} \)
11 \( 1 + (-4.00 + 2.51i)T + (4.77 - 9.91i)T^{2} \)
13 \( 1 + (2.59 + 0.593i)T + (11.7 + 5.64i)T^{2} \)
17 \( 1 + (-4.12 + 4.12i)T - 17iT^{2} \)
19 \( 1 + (0.647 - 5.74i)T + (-18.5 - 4.22i)T^{2} \)
23 \( 1 + (1.26 + 2.62i)T + (-14.3 + 17.9i)T^{2} \)
31 \( 1 + (0.0981 + 0.280i)T + (-24.2 + 19.3i)T^{2} \)
37 \( 1 + (1.42 - 2.27i)T + (-16.0 - 33.3i)T^{2} \)
41 \( 1 + (-6.66 - 6.66i)T + 41iT^{2} \)
43 \( 1 + (1.02 + 0.357i)T + (33.6 + 26.8i)T^{2} \)
47 \( 1 + (1.28 + 2.03i)T + (-20.3 + 42.3i)T^{2} \)
53 \( 1 + (12.1 + 5.87i)T + (33.0 + 41.4i)T^{2} \)
59 \( 1 + 11.1iT - 59T^{2} \)
61 \( 1 + (0.603 + 5.35i)T + (-59.4 + 13.5i)T^{2} \)
67 \( 1 + (-1.16 - 5.10i)T + (-60.3 + 29.0i)T^{2} \)
71 \( 1 + (1.67 - 7.31i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (3.02 + 1.05i)T + (57.0 + 45.5i)T^{2} \)
79 \( 1 + (-4.66 + 7.42i)T + (-34.2 - 71.1i)T^{2} \)
83 \( 1 + (-7.68 + 6.13i)T + (18.4 - 80.9i)T^{2} \)
89 \( 1 + (1.83 - 0.641i)T + (69.5 - 55.4i)T^{2} \)
97 \( 1 + (0.198 - 1.75i)T + (-94.5 - 21.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.26041297001171127136728977030, −12.46296265935835899981622368367, −11.74104832130750908986644336405, −11.26359994286153971736812783225, −10.06899592400637404240729839942, −7.962531649249400781769343891339, −6.75706759287984815682178759637, −6.05048796987167520448717449927, −4.83047172703048842229430496239, −3.39837251111545633725365410661, 1.20342902098964184588748930687, 4.26530315459281268763933166286, 4.95017994113268478520913394718, 6.16602325942598006306019743287, 7.33026410619435051931590745540, 9.307213741162741938957608217327, 10.56223462017511877459190738078, 11.56388273480638456033825334279, 12.35396895111538154447320189370, 12.56308170508206744572573179322

Graph of the $Z$-function along the critical line