L(s) = 1 | + (1.22 + 0.701i)2-s + (−2.69 + 0.304i)3-s + (1.01 + 1.72i)4-s + (−1.20 + 2.49i)5-s + (−3.52 − 1.51i)6-s + (0.625 + 0.498i)7-s + (0.0419 + 2.82i)8-s + (4.27 − 0.974i)9-s + (−3.22 + 2.22i)10-s + (4.00 − 2.51i)11-s + (−3.26 − 4.33i)12-s + (−2.59 − 0.593i)13-s + (0.418 + 1.05i)14-s + (2.48 − 7.09i)15-s + (−1.93 + 3.50i)16-s + (4.12 − 4.12i)17-s + ⋯ |
L(s) = 1 | + (0.868 + 0.495i)2-s + (−1.55 + 0.175i)3-s + (0.508 + 0.861i)4-s + (−0.537 + 1.11i)5-s + (−1.44 − 0.620i)6-s + (0.236 + 0.188i)7-s + (0.0148 + 0.999i)8-s + (1.42 − 0.324i)9-s + (−1.01 + 0.702i)10-s + (1.20 − 0.757i)11-s + (−0.943 − 1.25i)12-s + (−0.720 − 0.164i)13-s + (0.111 + 0.281i)14-s + (0.641 − 1.83i)15-s + (−0.482 + 0.875i)16-s + (0.999 − 0.999i)17-s + ⋯ |
Λ(s)=(=(116s/2ΓC(s)L(s)(−0.259−0.965i)Λ(2−s)
Λ(s)=(=(116s/2ΓC(s+1/2)L(s)(−0.259−0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
116
= 22⋅29
|
Sign: |
−0.259−0.965i
|
Analytic conductor: |
0.926264 |
Root analytic conductor: |
0.962426 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ116(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 116, ( :1/2), −0.259−0.965i)
|
Particular Values
L(1) |
≈ |
0.622168+0.811376i |
L(21) |
≈ |
0.622168+0.811376i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.22−0.701i)T |
| 29 | 1+(−5.26+1.11i)T |
good | 3 | 1+(2.69−0.304i)T+(2.92−0.667i)T2 |
| 5 | 1+(1.20−2.49i)T+(−3.11−3.90i)T2 |
| 7 | 1+(−0.625−0.498i)T+(1.55+6.82i)T2 |
| 11 | 1+(−4.00+2.51i)T+(4.77−9.91i)T2 |
| 13 | 1+(2.59+0.593i)T+(11.7+5.64i)T2 |
| 17 | 1+(−4.12+4.12i)T−17iT2 |
| 19 | 1+(0.647−5.74i)T+(−18.5−4.22i)T2 |
| 23 | 1+(1.26+2.62i)T+(−14.3+17.9i)T2 |
| 31 | 1+(0.0981+0.280i)T+(−24.2+19.3i)T2 |
| 37 | 1+(1.42−2.27i)T+(−16.0−33.3i)T2 |
| 41 | 1+(−6.66−6.66i)T+41iT2 |
| 43 | 1+(1.02+0.357i)T+(33.6+26.8i)T2 |
| 47 | 1+(1.28+2.03i)T+(−20.3+42.3i)T2 |
| 53 | 1+(12.1+5.87i)T+(33.0+41.4i)T2 |
| 59 | 1+11.1iT−59T2 |
| 61 | 1+(0.603+5.35i)T+(−59.4+13.5i)T2 |
| 67 | 1+(−1.16−5.10i)T+(−60.3+29.0i)T2 |
| 71 | 1+(1.67−7.31i)T+(−63.9−30.8i)T2 |
| 73 | 1+(3.02+1.05i)T+(57.0+45.5i)T2 |
| 79 | 1+(−4.66+7.42i)T+(−34.2−71.1i)T2 |
| 83 | 1+(−7.68+6.13i)T+(18.4−80.9i)T2 |
| 89 | 1+(1.83−0.641i)T+(69.5−55.4i)T2 |
| 97 | 1+(0.198−1.75i)T+(−94.5−21.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.26041297001171127136728977030, −12.46296265935835899981622368367, −11.74104832130750908986644336405, −11.26359994286153971736812783225, −10.06899592400637404240729839942, −7.962531649249400781769343891339, −6.75706759287984815682178759637, −6.05048796987167520448717449927, −4.83047172703048842229430496239, −3.39837251111545633725365410661,
1.20342902098964184588748930687, 4.26530315459281268763933166286, 4.95017994113268478520913394718, 6.16602325942598006306019743287, 7.33026410619435051931590745540, 9.307213741162741938957608217327, 10.56223462017511877459190738078, 11.56388273480638456033825334279, 12.35396895111538154447320189370, 12.56308170508206744572573179322