Properties

Label 116.2.l.b.11.12
Level $116$
Weight $2$
Character 116.11
Analytic conductor $0.926$
Analytic rank $0$
Dimension $144$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,2,Mod(3,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([14, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.l (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.926264663447\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(12\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 11.12
Character \(\chi\) \(=\) 116.11
Dual form 116.2.l.b.95.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22822 + 0.701049i) q^{2} +(-2.69956 + 0.304168i) q^{3} +(1.01706 + 1.72209i) q^{4} +(-1.20112 + 2.49416i) q^{5} +(-3.52890 - 1.51894i) q^{6} +(0.625709 + 0.498986i) q^{7} +(0.0419068 + 2.82812i) q^{8} +(4.27033 - 0.974675i) q^{9} +O(q^{10})\) \(q+(1.22822 + 0.701049i) q^{2} +(-2.69956 + 0.304168i) q^{3} +(1.01706 + 1.72209i) q^{4} +(-1.20112 + 2.49416i) q^{5} +(-3.52890 - 1.51894i) q^{6} +(0.625709 + 0.498986i) q^{7} +(0.0419068 + 2.82812i) q^{8} +(4.27033 - 0.974675i) q^{9} +(-3.22378 + 2.22134i) q^{10} +(4.00072 - 2.51382i) q^{11} +(-3.26942 - 4.33953i) q^{12} +(-2.59950 - 0.593318i) q^{13} +(0.418696 + 1.05152i) q^{14} +(2.48387 - 7.09848i) q^{15} +(-1.93118 + 3.50293i) q^{16} +(4.12057 - 4.12057i) q^{17} +(5.92821 + 1.79659i) q^{18} +(-0.647599 + 5.74760i) q^{19} +(-5.51678 + 0.468268i) q^{20} +(-1.84092 - 1.15672i) q^{21} +(6.67608 - 0.282827i) q^{22} +(-1.26320 - 2.62305i) q^{23} +(-0.973351 - 7.62193i) q^{24} +(-1.66069 - 2.08244i) q^{25} +(-2.77681 - 2.55110i) q^{26} +(-3.53897 + 1.23834i) q^{27} +(-0.222915 + 1.58503i) q^{28} +(5.26763 - 1.11894i) q^{29} +(8.02713 - 6.97720i) q^{30} +(-0.0981689 - 0.280550i) q^{31} +(-4.82765 + 2.94853i) q^{32} +(-10.0356 + 8.00309i) q^{33} +(7.94971 - 2.17226i) q^{34} +(-1.99611 + 0.961274i) q^{35} +(6.02166 + 6.36258i) q^{36} +(-1.42715 + 2.27130i) q^{37} +(-4.82474 + 6.60533i) q^{38} +(7.19797 + 0.811016i) q^{39} +(-7.10411 - 3.29240i) q^{40} +(6.66062 + 6.66062i) q^{41} +(-1.45013 - 2.71129i) q^{42} +(-1.02284 - 0.357909i) q^{43} +(8.39799 + 4.33289i) q^{44} +(-2.69820 + 11.8216i) q^{45} +(0.287404 - 4.10725i) q^{46} +(-1.28181 - 2.04000i) q^{47} +(4.14786 - 10.0438i) q^{48} +(-1.41512 - 6.20005i) q^{49} +(-0.579804 - 3.72192i) q^{50} +(-9.87040 + 12.3771i) q^{51} +(-1.62210 - 5.08000i) q^{52} +(-12.1981 - 5.87431i) q^{53} +(-5.21478 - 0.960037i) q^{54} +(1.46451 + 12.9978i) q^{55} +(-1.38497 + 1.79049i) q^{56} -15.7130i q^{57} +(7.25426 + 2.31856i) q^{58} -11.1260i q^{59} +(14.7505 - 2.94214i) q^{60} +(-0.603371 - 5.35507i) q^{61} +(0.0761065 - 0.413400i) q^{62} +(3.15833 + 1.52097i) q^{63} +(-7.99649 + 0.237034i) q^{64} +(4.60215 - 5.77091i) q^{65} +(-17.9365 + 2.79415i) q^{66} +(1.16453 + 5.10215i) q^{67} +(11.2869 + 2.90512i) q^{68} +(4.20792 + 6.69687i) q^{69} +(-3.12556 - 0.218711i) q^{70} +(-1.67029 + 7.31802i) q^{71} +(2.93545 + 12.0361i) q^{72} +(-3.02900 - 1.05989i) q^{73} +(-3.34516 + 1.78916i) q^{74} +(5.11654 + 5.11654i) q^{75} +(-10.5565 + 4.73043i) q^{76} +(3.75765 + 0.423385i) q^{77} +(8.27214 + 6.04224i) q^{78} +(4.66348 - 7.42189i) q^{79} +(-6.41730 - 9.02413i) q^{80} +(-2.66213 + 1.28201i) q^{81} +(3.51130 + 12.8502i) q^{82} +(7.68822 - 6.13115i) q^{83} +(0.119660 - 4.34668i) q^{84} +(5.32805 + 15.2267i) q^{85} +(-1.00537 - 1.15666i) q^{86} +(-13.8800 + 4.62289i) q^{87} +(7.27703 + 11.2092i) q^{88} +(-1.83420 + 0.641815i) q^{89} +(-11.6015 + 12.6280i) q^{90} +(-1.33047 - 1.66836i) q^{91} +(3.23238 - 4.84314i) q^{92} +(0.350347 + 0.727503i) q^{93} +(-0.144215 - 3.40418i) q^{94} +(-13.5576 - 8.51880i) q^{95} +(12.1357 - 9.42815i) q^{96} +(-0.198034 + 1.75760i) q^{97} +(2.60846 - 8.60712i) q^{98} +(14.6342 - 14.6342i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 12 q^{2} - 14 q^{4} - 28 q^{5} - 14 q^{6} - 12 q^{8} - 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 12 q^{2} - 14 q^{4} - 28 q^{5} - 14 q^{6} - 12 q^{8} - 28 q^{9} - 8 q^{10} - 12 q^{12} - 28 q^{13} - 14 q^{14} + 2 q^{16} - 4 q^{17} + 14 q^{18} + 14 q^{20} - 28 q^{21} - 14 q^{22} - 22 q^{24} - 12 q^{25} - 30 q^{26} - 36 q^{29} + 16 q^{30} - 12 q^{32} - 28 q^{33} - 56 q^{34} - 50 q^{36} - 36 q^{37} - 14 q^{38} - 60 q^{40} - 12 q^{41} - 14 q^{42} + 30 q^{44} + 36 q^{46} + 136 q^{48} + 12 q^{49} + 56 q^{50} + 66 q^{52} + 48 q^{53} + 56 q^{54} + 52 q^{56} + 184 q^{58} + 108 q^{60} - 28 q^{61} + 84 q^{62} + 112 q^{64} - 68 q^{65} + 92 q^{66} + 68 q^{68} - 44 q^{69} + 46 q^{70} + 4 q^{72} - 148 q^{73} - 32 q^{74} - 14 q^{76} - 60 q^{77} + 2 q^{78} - 14 q^{80} + 36 q^{81} + 6 q^{82} + 28 q^{84} - 92 q^{85} - 48 q^{88} + 28 q^{89} + 28 q^{90} - 14 q^{92} - 28 q^{93} + 62 q^{94} - 56 q^{96} + 184 q^{97} - 110 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(-1\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22822 + 0.701049i 0.868484 + 0.495717i
\(3\) −2.69956 + 0.304168i −1.55859 + 0.175611i −0.848767 0.528767i \(-0.822655\pi\)
−0.709825 + 0.704378i \(0.751226\pi\)
\(4\) 1.01706 + 1.72209i 0.508530 + 0.861044i
\(5\) −1.20112 + 2.49416i −0.537159 + 1.11542i 0.439024 + 0.898475i \(0.355324\pi\)
−0.976183 + 0.216947i \(0.930390\pi\)
\(6\) −3.52890 1.51894i −1.44067 0.620105i
\(7\) 0.625709 + 0.498986i 0.236496 + 0.188599i 0.734565 0.678538i \(-0.237386\pi\)
−0.498070 + 0.867137i \(0.665958\pi\)
\(8\) 0.0419068 + 2.82812i 0.0148163 + 0.999890i
\(9\) 4.27033 0.974675i 1.42344 0.324892i
\(10\) −3.22378 + 2.22134i −1.01945 + 0.702448i
\(11\) 4.00072 2.51382i 1.20626 0.757945i 0.229717 0.973258i \(-0.426220\pi\)
0.976545 + 0.215313i \(0.0690771\pi\)
\(12\) −3.26942 4.33953i −0.943800 1.25271i
\(13\) −2.59950 0.593318i −0.720971 0.164557i −0.153735 0.988112i \(-0.549130\pi\)
−0.567236 + 0.823555i \(0.691987\pi\)
\(14\) 0.418696 + 1.05152i 0.111901 + 0.281030i
\(15\) 2.48387 7.09848i 0.641332 1.83282i
\(16\) −1.93118 + 3.50293i −0.482795 + 0.875734i
\(17\) 4.12057 4.12057i 0.999386 0.999386i −0.000613870 1.00000i \(-0.500195\pi\)
1.00000 0.000613870i \(0.000195401\pi\)
\(18\) 5.92821 + 1.79659i 1.39729 + 0.423461i
\(19\) −0.647599 + 5.74760i −0.148569 + 1.31859i 0.669217 + 0.743067i \(0.266630\pi\)
−0.817786 + 0.575522i \(0.804799\pi\)
\(20\) −5.51678 + 0.468268i −1.23359 + 0.104708i
\(21\) −1.84092 1.15672i −0.401721 0.252418i
\(22\) 6.67608 0.282827i 1.42335 0.0602988i
\(23\) −1.26320 2.62305i −0.263394 0.546944i 0.726765 0.686886i \(-0.241023\pi\)
−0.990160 + 0.139942i \(0.955309\pi\)
\(24\) −0.973351 7.62193i −0.198684 1.55582i
\(25\) −1.66069 2.08244i −0.332138 0.416488i
\(26\) −2.77681 2.55110i −0.544578 0.500312i
\(27\) −3.53897 + 1.23834i −0.681075 + 0.238319i
\(28\) −0.222915 + 1.58503i −0.0421270 + 0.299542i
\(29\) 5.26763 1.11894i 0.978175 0.207782i
\(30\) 8.02713 6.97720i 1.46555 1.27386i
\(31\) −0.0981689 0.280550i −0.0176316 0.0503884i 0.934731 0.355356i \(-0.115640\pi\)
−0.952363 + 0.304967i \(0.901354\pi\)
\(32\) −4.82765 + 2.94853i −0.853415 + 0.521232i
\(33\) −10.0356 + 8.00309i −1.74697 + 1.39316i
\(34\) 7.94971 2.17226i 1.36336 0.372539i
\(35\) −1.99611 + 0.961274i −0.337404 + 0.162485i
\(36\) 6.02166 + 6.36258i 1.00361 + 1.06043i
\(37\) −1.42715 + 2.27130i −0.234623 + 0.373400i −0.943196 0.332238i \(-0.892196\pi\)
0.708573 + 0.705638i \(0.249339\pi\)
\(38\) −4.82474 + 6.60533i −0.782677 + 1.07153i
\(39\) 7.19797 + 0.811016i 1.15260 + 0.129867i
\(40\) −7.10411 3.29240i −1.12326 0.520574i
\(41\) 6.66062 + 6.66062i 1.04021 + 1.04021i 0.999157 + 0.0410580i \(0.0130729\pi\)
0.0410580 + 0.999157i \(0.486927\pi\)
\(42\) −1.45013 2.71129i −0.223760 0.418361i
\(43\) −1.02284 0.357909i −0.155982 0.0545806i 0.251158 0.967946i \(-0.419188\pi\)
−0.407141 + 0.913365i \(0.633474\pi\)
\(44\) 8.39799 + 4.33289i 1.26604 + 0.653207i
\(45\) −2.69820 + 11.8216i −0.402224 + 1.76226i
\(46\) 0.287404 4.10725i 0.0423754 0.605582i
\(47\) −1.28181 2.04000i −0.186972 0.297564i 0.740064 0.672536i \(-0.234795\pi\)
−0.927036 + 0.374972i \(0.877652\pi\)
\(48\) 4.14786 10.0438i 0.598691 1.44970i
\(49\) −1.41512 6.20005i −0.202160 0.885722i
\(50\) −0.579804 3.72192i −0.0819966 0.526359i
\(51\) −9.87040 + 12.3771i −1.38213 + 1.73314i
\(52\) −1.62210 5.08000i −0.224944 0.704470i
\(53\) −12.1981 5.87431i −1.67554 0.806899i −0.997407 0.0719623i \(-0.977074\pi\)
−0.678136 0.734937i \(-0.737212\pi\)
\(54\) −5.21478 0.960037i −0.709642 0.130644i
\(55\) 1.46451 + 12.9978i 0.197474 + 1.75263i
\(56\) −1.38497 + 1.79049i −0.185074 + 0.239264i
\(57\) 15.7130i 2.08123i
\(58\) 7.25426 + 2.31856i 0.952531 + 0.304442i
\(59\) 11.1260i 1.44849i −0.689544 0.724244i \(-0.742189\pi\)
0.689544 0.724244i \(-0.257811\pi\)
\(60\) 14.7505 2.94214i 1.90428 0.379829i
\(61\) −0.603371 5.35507i −0.0772538 0.685646i −0.971331 0.237733i \(-0.923596\pi\)
0.894077 0.447914i \(-0.147833\pi\)
\(62\) 0.0761065 0.413400i 0.00966554 0.0525018i
\(63\) 3.15833 + 1.52097i 0.397913 + 0.191625i
\(64\) −7.99649 + 0.237034i −0.999561 + 0.0296293i
\(65\) 4.60215 5.77091i 0.570827 0.715794i
\(66\) −17.9365 + 2.79415i −2.20783 + 0.343937i
\(67\) 1.16453 + 5.10215i 0.142270 + 0.623327i 0.994905 + 0.100819i \(0.0321463\pi\)
−0.852634 + 0.522508i \(0.824997\pi\)
\(68\) 11.2869 + 2.90512i 1.36873 + 0.352298i
\(69\) 4.20792 + 6.69687i 0.506574 + 0.806208i
\(70\) −3.12556 0.218711i −0.373576 0.0261409i
\(71\) −1.67029 + 7.31802i −0.198227 + 0.868489i 0.773765 + 0.633473i \(0.218371\pi\)
−0.971992 + 0.235016i \(0.924486\pi\)
\(72\) 2.93545 + 12.0361i 0.345946 + 1.41847i
\(73\) −3.02900 1.05989i −0.354518 0.124051i 0.147144 0.989115i \(-0.452992\pi\)
−0.501662 + 0.865064i \(0.667278\pi\)
\(74\) −3.34516 + 1.78916i −0.388867 + 0.207986i
\(75\) 5.11654 + 5.11654i 0.590808 + 0.590808i
\(76\) −10.5565 + 4.73043i −1.21092 + 0.542617i
\(77\) 3.75765 + 0.423385i 0.428224 + 0.0482492i
\(78\) 8.27214 + 6.04224i 0.936636 + 0.684149i
\(79\) 4.66348 7.42189i 0.524683 0.835028i −0.474289 0.880369i \(-0.657295\pi\)
0.998972 + 0.0453415i \(0.0144376\pi\)
\(80\) −6.41730 9.02413i −0.717476 1.00893i
\(81\) −2.66213 + 1.28201i −0.295792 + 0.142446i
\(82\) 3.51130 + 12.8502i 0.387758 + 1.41906i
\(83\) 7.68822 6.13115i 0.843891 0.672981i −0.102948 0.994687i \(-0.532828\pi\)
0.946840 + 0.321706i \(0.104256\pi\)
\(84\) 0.119660 4.34668i 0.0130559 0.474261i
\(85\) 5.32805 + 15.2267i 0.577908 + 1.65157i
\(86\) −1.00537 1.15666i −0.108412 0.124725i
\(87\) −13.8800 + 4.62289i −1.48809 + 0.495626i
\(88\) 7.27703 + 11.2092i 0.775734 + 1.19490i
\(89\) −1.83420 + 0.641815i −0.194425 + 0.0680322i −0.425735 0.904848i \(-0.639984\pi\)
0.231310 + 0.972880i \(0.425699\pi\)
\(90\) −11.6015 + 12.6280i −1.22291 + 1.33111i
\(91\) −1.33047 1.66836i −0.139471 0.174891i
\(92\) 3.23238 4.84314i 0.336999 0.504932i
\(93\) 0.350347 + 0.727503i 0.0363293 + 0.0754386i
\(94\) −0.144215 3.40418i −0.0148747 0.351115i
\(95\) −13.5576 8.51880i −1.39098 0.874010i
\(96\) 12.1357 9.42815i 1.23859 0.962257i
\(97\) −0.198034 + 1.75760i −0.0201073 + 0.178457i −0.999752 0.0222836i \(-0.992906\pi\)
0.979644 + 0.200741i \(0.0643349\pi\)
\(98\) 2.60846 8.60712i 0.263494 0.869450i
\(99\) 14.6342 14.6342i 1.47080 1.47080i
\(100\) 1.89712 4.97782i 0.189712 0.497782i
\(101\) 1.11491 3.18624i 0.110938 0.317042i −0.875008 0.484109i \(-0.839144\pi\)
0.985946 + 0.167067i \(0.0534295\pi\)
\(102\) −20.8000 + 8.28218i −2.05951 + 0.820058i
\(103\) −0.235266 0.0536980i −0.0231815 0.00529102i 0.210914 0.977505i \(-0.432356\pi\)
−0.234096 + 0.972213i \(0.575213\pi\)
\(104\) 1.56904 7.37654i 0.153857 0.723330i
\(105\) 5.09622 3.20217i 0.497341 0.312500i
\(106\) −10.8638 15.7665i −1.05519 1.53137i
\(107\) 6.68380 1.52553i 0.646147 0.147479i 0.113126 0.993581i \(-0.463914\pi\)
0.533021 + 0.846102i \(0.321057\pi\)
\(108\) −5.73188 4.83496i −0.551550 0.465244i
\(109\) 6.02055 + 4.80123i 0.576664 + 0.459874i 0.867874 0.496785i \(-0.165486\pi\)
−0.291210 + 0.956659i \(0.594058\pi\)
\(110\) −7.31339 + 16.9909i −0.697304 + 1.62002i
\(111\) 3.16183 6.56562i 0.300108 0.623181i
\(112\) −2.95627 + 1.22819i −0.279341 + 0.116053i
\(113\) 10.2351 1.15321i 0.962834 0.108485i 0.383469 0.923554i \(-0.374729\pi\)
0.579365 + 0.815068i \(0.303301\pi\)
\(114\) 11.0156 19.2990i 1.03170 1.80752i
\(115\) 8.05957 0.751559
\(116\) 7.28441 + 7.93330i 0.676341 + 0.736589i
\(117\) −11.6790 −1.07972
\(118\) 7.79991 13.6653i 0.718039 1.25799i
\(119\) 4.63439 0.522170i 0.424834 0.0478673i
\(120\) 20.1794 + 6.72719i 1.84212 + 0.614106i
\(121\) 4.91374 10.2035i 0.446704 0.927591i
\(122\) 3.01309 7.00021i 0.272793 0.633769i
\(123\) −20.0067 15.9548i −1.80394 1.43860i
\(124\) 0.383289 0.454392i 0.0344204 0.0408056i
\(125\) −6.30588 + 1.43928i −0.564015 + 0.128733i
\(126\) 2.81286 + 4.08224i 0.250589 + 0.363675i
\(127\) −11.0882 + 6.96721i −0.983923 + 0.618240i −0.924978 0.380022i \(-0.875917\pi\)
−0.0589452 + 0.998261i \(0.518774\pi\)
\(128\) −9.98764 5.31480i −0.882791 0.469766i
\(129\) 2.87010 + 0.655081i 0.252698 + 0.0576767i
\(130\) 9.69816 3.86163i 0.850585 0.338687i
\(131\) 3.97123 11.3491i 0.346968 0.991579i −0.629702 0.776836i \(-0.716823\pi\)
0.976671 0.214742i \(-0.0688911\pi\)
\(132\) −23.9888 9.14250i −2.08796 0.795753i
\(133\) −3.27318 + 3.27318i −0.283821 + 0.283821i
\(134\) −2.14655 + 7.08297i −0.185434 + 0.611875i
\(135\) 1.16213 10.3142i 0.100020 0.887702i
\(136\) 11.8261 + 11.4808i 1.01408 + 0.984469i
\(137\) 0.426004 + 0.267676i 0.0363960 + 0.0228691i 0.550107 0.835094i \(-0.314587\pi\)
−0.513711 + 0.857963i \(0.671730\pi\)
\(138\) 0.473428 + 11.1752i 0.0403009 + 0.951297i
\(139\) −1.74101 3.61524i −0.147670 0.306641i 0.813992 0.580876i \(-0.197290\pi\)
−0.961663 + 0.274235i \(0.911575\pi\)
\(140\) −3.68556 2.45980i −0.311487 0.207891i
\(141\) 4.08084 + 5.11721i 0.343669 + 0.430947i
\(142\) −7.18178 + 7.81720i −0.602682 + 0.656005i
\(143\) −11.8913 + 4.16096i −0.994405 + 0.347957i
\(144\) −4.83255 + 16.8410i −0.402712 + 1.40341i
\(145\) −3.53627 + 14.4823i −0.293671 + 1.20269i
\(146\) −2.97725 3.42527i −0.246399 0.283477i
\(147\) 5.70606 + 16.3070i 0.470628 + 1.34498i
\(148\) −5.36289 0.147635i −0.440827 0.0121355i
\(149\) −4.78964 + 3.81961i −0.392383 + 0.312915i −0.799731 0.600358i \(-0.795025\pi\)
0.407349 + 0.913273i \(0.366453\pi\)
\(150\) 2.69730 + 9.87120i 0.220234 + 0.805980i
\(151\) −7.16121 + 3.44866i −0.582771 + 0.280648i −0.701951 0.712225i \(-0.747688\pi\)
0.119180 + 0.992873i \(0.461973\pi\)
\(152\) −16.2820 1.59062i −1.32065 0.129016i
\(153\) 13.5800 21.6124i 1.09788 1.74726i
\(154\) 4.31841 + 3.15431i 0.347987 + 0.254181i
\(155\) 0.817651 + 0.0921272i 0.0656753 + 0.00739983i
\(156\) 5.92412 + 13.2204i 0.474310 + 1.05848i
\(157\) 6.61861 + 6.61861i 0.528222 + 0.528222i 0.920042 0.391820i \(-0.128154\pi\)
−0.391820 + 0.920042i \(0.628154\pi\)
\(158\) 10.9309 5.84640i 0.869616 0.465115i
\(159\) 34.7164 + 12.1478i 2.75319 + 0.963383i
\(160\) −1.55551 15.5825i −0.122974 1.23190i
\(161\) 0.518474 2.27159i 0.0408615 0.179026i
\(162\) −4.16844 0.291686i −0.327504 0.0229170i
\(163\) 2.22070 + 3.53423i 0.173939 + 0.276822i 0.922304 0.386464i \(-0.126304\pi\)
−0.748365 + 0.663287i \(0.769161\pi\)
\(164\) −4.69593 + 18.2444i −0.366691 + 1.42465i
\(165\) −7.90704 34.6430i −0.615562 2.69696i
\(166\) 13.7411 2.14059i 1.06651 0.166142i
\(167\) −2.92946 + 3.67343i −0.226689 + 0.284259i −0.882148 0.470971i \(-0.843903\pi\)
0.655460 + 0.755230i \(0.272475\pi\)
\(168\) 3.19420 5.25480i 0.246438 0.405416i
\(169\) −5.30724 2.55583i −0.408249 0.196602i
\(170\) −4.13063 + 22.4370i −0.316805 + 1.72084i
\(171\) 2.83658 + 25.1753i 0.216919 + 1.92521i
\(172\) −0.423944 2.12544i −0.0323254 0.162064i
\(173\) 11.7211i 0.891141i 0.895247 + 0.445571i \(0.146999\pi\)
−0.895247 + 0.445571i \(0.853001\pi\)
\(174\) −20.2885 4.05260i −1.53807 0.307226i
\(175\) 2.13166i 0.161138i
\(176\) 1.07964 + 18.8689i 0.0813809 + 1.42230i
\(177\) 3.38418 + 30.0354i 0.254371 + 2.25760i
\(178\) −2.70275 0.497574i −0.202580 0.0372948i
\(179\) −19.2261 9.25880i −1.43703 0.692036i −0.456737 0.889602i \(-0.650982\pi\)
−0.980290 + 0.197566i \(0.936696\pi\)
\(180\) −23.1021 + 7.37673i −1.72193 + 0.549829i
\(181\) 3.61640 4.53482i 0.268805 0.337071i −0.629048 0.777367i \(-0.716555\pi\)
0.897853 + 0.440296i \(0.145126\pi\)
\(182\) −0.464513 2.98184i −0.0344320 0.221029i
\(183\) 3.25768 + 14.2728i 0.240814 + 1.05508i
\(184\) 7.36536 3.68239i 0.542982 0.271469i
\(185\) −3.95081 6.28767i −0.290469 0.462279i
\(186\) −0.0797115 + 1.13915i −0.00584473 + 0.0835263i
\(187\) 6.12688 26.8436i 0.448042 1.96300i
\(188\) 2.20937 4.28220i 0.161135 0.312311i
\(189\) −2.83228 0.991058i −0.206018 0.0720888i
\(190\) −10.6796 19.9675i −0.774782 1.44860i
\(191\) 6.03714 + 6.03714i 0.436832 + 0.436832i 0.890944 0.454112i \(-0.150043\pi\)
−0.454112 + 0.890944i \(0.650043\pi\)
\(192\) 21.5149 3.07216i 1.55270 0.221714i
\(193\) 0.683256 + 0.0769844i 0.0491818 + 0.00554146i 0.136521 0.990637i \(-0.456408\pi\)
−0.0873393 + 0.996179i \(0.527836\pi\)
\(194\) −1.47539 + 2.01989i −0.105927 + 0.145020i
\(195\) −10.6685 + 16.9788i −0.763985 + 1.21587i
\(196\) 9.23778 8.74279i 0.659841 0.624485i
\(197\) 19.0985 9.19733i 1.36071 0.655283i 0.395914 0.918288i \(-0.370428\pi\)
0.964795 + 0.263005i \(0.0847135\pi\)
\(198\) 28.2334 7.71477i 2.00646 0.548265i
\(199\) −1.45752 + 1.16234i −0.103321 + 0.0823958i −0.673788 0.738925i \(-0.735334\pi\)
0.570467 + 0.821321i \(0.306762\pi\)
\(200\) 5.81979 4.78389i 0.411521 0.338272i
\(201\) −4.69564 13.4194i −0.331205 0.946528i
\(202\) 3.60307 3.13180i 0.253511 0.220352i
\(203\) 3.85434 + 1.92835i 0.270522 + 0.135343i
\(204\) −31.3532 4.40946i −2.19516 0.308724i
\(205\) −24.6129 + 8.61243i −1.71904 + 0.601518i
\(206\) −0.251315 0.230886i −0.0175099 0.0160866i
\(207\) −7.95089 9.97010i −0.552625 0.692970i
\(208\) 7.09845 7.96006i 0.492189 0.551931i
\(209\) 11.8576 + 24.6225i 0.820204 + 1.70317i
\(210\) 8.50417 0.360272i 0.586844 0.0248611i
\(211\) −1.72008 1.08080i −0.118415 0.0744050i 0.471522 0.881854i \(-0.343705\pi\)
−0.589937 + 0.807449i \(0.700848\pi\)
\(212\) −2.29015 26.9808i −0.157288 1.85305i
\(213\) 2.28315 20.2635i 0.156439 1.38843i
\(214\) 9.27866 + 2.81198i 0.634276 + 0.192223i
\(215\) 2.12125 2.12125i 0.144668 0.144668i
\(216\) −3.65048 9.95673i −0.248383 0.677470i
\(217\) 0.0785657 0.224528i 0.00533339 0.0152419i
\(218\) 4.02868 + 10.1177i 0.272856 + 0.685256i
\(219\) 8.49936 + 1.93992i 0.574334 + 0.131088i
\(220\) −20.8939 + 15.7416i −1.40867 + 1.06130i
\(221\) −13.1562 + 8.26661i −0.884984 + 0.556072i
\(222\) 8.48626 5.84744i 0.569560 0.392454i
\(223\) −27.3342 + 6.23886i −1.83044 + 0.417785i −0.991896 0.127054i \(-0.959448\pi\)
−0.838541 + 0.544839i \(0.816591\pi\)
\(224\) −4.49198 0.564006i −0.300133 0.0376843i
\(225\) −9.12139 7.27407i −0.608093 0.484938i
\(226\) 13.3794 + 5.75888i 0.889984 + 0.383075i
\(227\) −10.6377 + 22.0893i −0.706047 + 1.46612i 0.170777 + 0.985310i \(0.445372\pi\)
−0.876824 + 0.480812i \(0.840342\pi\)
\(228\) 27.0591 15.9810i 1.79203 1.05837i
\(229\) −13.7160 + 1.54542i −0.906378 + 0.102124i −0.552832 0.833293i \(-0.686453\pi\)
−0.353546 + 0.935417i \(0.615024\pi\)
\(230\) 9.89894 + 5.65016i 0.652717 + 0.372560i
\(231\) −10.2728 −0.675899
\(232\) 3.38524 + 14.8506i 0.222252 + 0.974989i
\(233\) −14.3888 −0.942640 −0.471320 0.881962i \(-0.656222\pi\)
−0.471320 + 0.881962i \(0.656222\pi\)
\(234\) −14.3444 8.18756i −0.937723 0.535237i
\(235\) 6.62770 0.746762i 0.432343 0.0487134i
\(236\) 19.1600 11.3159i 1.24721 0.736599i
\(237\) −10.3319 + 21.4543i −0.671126 + 1.39361i
\(238\) 6.05813 + 2.60759i 0.392690 + 0.169025i
\(239\) 22.1659 + 17.6767i 1.43379 + 1.14341i 0.965678 + 0.259741i \(0.0836373\pi\)
0.468113 + 0.883669i \(0.344934\pi\)
\(240\) 20.0687 + 22.4093i 1.29543 + 1.44651i
\(241\) −14.8720 + 3.39443i −0.957988 + 0.218654i −0.672806 0.739819i \(-0.734911\pi\)
−0.285182 + 0.958473i \(0.592054\pi\)
\(242\) 13.1883 9.08738i 0.847778 0.584159i
\(243\) 16.3207 10.2550i 1.04697 0.657856i
\(244\) 8.60824 6.48549i 0.551086 0.415191i
\(245\) 17.1637 + 3.91750i 1.09655 + 0.250280i
\(246\) −13.3876 33.6218i −0.853561 2.14364i
\(247\) 5.09359 14.5566i 0.324097 0.926216i
\(248\) 0.789316 0.289390i 0.0501216 0.0183763i
\(249\) −18.8899 + 18.8899i −1.19710 + 1.19710i
\(250\) −8.75403 2.65298i −0.553653 0.167789i
\(251\) 0.601378 5.33738i 0.0379586 0.336892i −0.960352 0.278790i \(-0.910067\pi\)
0.998311 0.0581019i \(-0.0185048\pi\)
\(252\) 0.592964 + 6.98585i 0.0373532 + 0.440067i
\(253\) −11.6476 7.31865i −0.732276 0.460120i
\(254\) −18.5032 + 0.783872i −1.16099 + 0.0491845i
\(255\) −19.0149 39.4848i −1.19076 2.47263i
\(256\) −8.54110 13.5296i −0.533819 0.845599i
\(257\) −7.06642 8.86101i −0.440791 0.552735i 0.510960 0.859604i \(-0.329290\pi\)
−0.951752 + 0.306870i \(0.900718\pi\)
\(258\) 3.06587 + 2.81666i 0.190873 + 0.175358i
\(259\) −2.02633 + 0.709044i −0.125910 + 0.0440579i
\(260\) 14.6187 + 2.05595i 0.906613 + 0.127504i
\(261\) 21.4039 9.91248i 1.32487 0.613567i
\(262\) 12.8339 11.1552i 0.792879 0.689172i
\(263\) 2.79225 + 7.97980i 0.172178 + 0.492056i 0.997344 0.0728341i \(-0.0232044\pi\)
−0.825166 + 0.564890i \(0.808919\pi\)
\(264\) −23.0542 28.0464i −1.41889 1.72613i
\(265\) 29.3030 23.3683i 1.80007 1.43551i
\(266\) −6.31486 + 1.72553i −0.387189 + 0.105799i
\(267\) 4.75632 2.29052i 0.291082 0.140178i
\(268\) −7.60196 + 7.19462i −0.464363 + 0.439481i
\(269\) −1.72270 + 2.74167i −0.105035 + 0.167162i −0.895106 0.445853i \(-0.852901\pi\)
0.790071 + 0.613015i \(0.210043\pi\)
\(270\) 8.65809 11.8534i 0.526914 0.721374i
\(271\) 6.94122 + 0.782088i 0.421649 + 0.0475085i 0.320240 0.947336i \(-0.396236\pi\)
0.101409 + 0.994845i \(0.467665\pi\)
\(272\) 6.47654 + 22.3917i 0.392698 + 1.35769i
\(273\) 4.09915 + 4.09915i 0.248092 + 0.248092i
\(274\) 0.335573 + 0.627415i 0.0202727 + 0.0379035i
\(275\) −11.8788 4.15658i −0.716320 0.250651i
\(276\) −7.25289 + 14.0575i −0.436573 + 0.846164i
\(277\) 4.29722 18.8274i 0.258195 1.13123i −0.664984 0.746857i \(-0.731562\pi\)
0.923179 0.384369i \(-0.125581\pi\)
\(278\) 0.396117 5.66085i 0.0237575 0.339515i
\(279\) −0.692659 1.10236i −0.0414684 0.0659966i
\(280\) −2.80225 5.60494i −0.167466 0.334959i
\(281\) 5.02994 + 22.0376i 0.300061 + 1.31465i 0.870034 + 0.492991i \(0.164097\pi\)
−0.569973 + 0.821663i \(0.693046\pi\)
\(282\) 1.42476 + 9.14594i 0.0848433 + 0.544633i
\(283\) −1.20870 + 1.51566i −0.0718497 + 0.0900967i −0.816457 0.577406i \(-0.804065\pi\)
0.744608 + 0.667502i \(0.232637\pi\)
\(284\) −14.3011 + 4.56648i −0.848612 + 0.270971i
\(285\) 39.1907 + 18.8732i 2.32146 + 1.11795i
\(286\) −17.5223 3.22583i −1.03611 0.190748i
\(287\) 0.844053 + 7.49117i 0.0498228 + 0.442190i
\(288\) −17.7418 + 17.2966i −1.04544 + 1.01921i
\(289\) 16.9583i 0.997545i
\(290\) −14.4961 + 15.3084i −0.851243 + 0.898940i
\(291\) 4.80498i 0.281673i
\(292\) −1.25545 6.29419i −0.0734694 0.368339i
\(293\) −2.23154 19.8054i −0.130368 1.15705i −0.873129 0.487490i \(-0.837913\pi\)
0.742761 0.669557i \(-0.233516\pi\)
\(294\) −4.42369 + 24.0288i −0.257995 + 1.40139i
\(295\) 27.7501 + 13.3638i 1.61568 + 0.778069i
\(296\) −6.48332 3.94098i −0.376835 0.229065i
\(297\) −11.0455 + 13.8506i −0.640923 + 0.803692i
\(298\) −8.56048 + 1.33356i −0.495895 + 0.0772509i
\(299\) 1.72737 + 7.56809i 0.0998963 + 0.437674i
\(300\) −3.60731 + 14.0150i −0.208268 + 0.809155i
\(301\) −0.461412 0.734332i −0.0265953 0.0423262i
\(302\) −11.2132 0.784644i −0.645249 0.0451512i
\(303\) −2.04062 + 8.94056i −0.117231 + 0.513622i
\(304\) −18.8828 13.3681i −1.08300 0.766715i
\(305\) 14.0811 + 4.92720i 0.806283 + 0.282131i
\(306\) 31.8306 17.0246i 1.81964 0.973233i
\(307\) −0.315168 0.315168i −0.0179876 0.0179876i 0.698056 0.716043i \(-0.254049\pi\)
−0.716043 + 0.698056i \(0.754049\pi\)
\(308\) 3.09264 + 6.90161i 0.176220 + 0.393256i
\(309\) 0.651449 + 0.0734007i 0.0370597 + 0.00417562i
\(310\) 0.939672 + 0.686366i 0.0533698 + 0.0389830i
\(311\) 13.1460 20.9217i 0.745438 1.18636i −0.231499 0.972835i \(-0.574363\pi\)
0.976938 0.213523i \(-0.0684940\pi\)
\(312\) −1.99201 + 20.3907i −0.112775 + 1.15440i
\(313\) 7.14270 3.43974i 0.403729 0.194426i −0.220989 0.975276i \(-0.570928\pi\)
0.624718 + 0.780851i \(0.285214\pi\)
\(314\) 3.48915 + 12.7691i 0.196904 + 0.720601i
\(315\) −7.58710 + 6.05051i −0.427485 + 0.340908i
\(316\) 17.5242 + 0.482423i 0.985813 + 0.0271384i
\(317\) −8.45951 24.1759i −0.475134 1.35785i −0.893291 0.449479i \(-0.851610\pi\)
0.418157 0.908375i \(-0.362676\pi\)
\(318\) 34.1233 + 39.2581i 1.91354 + 2.20148i
\(319\) 18.2615 17.7184i 1.02245 0.992042i
\(320\) 9.01358 20.2292i 0.503874 1.13085i
\(321\) −17.5793 + 6.15126i −0.981181 + 0.343330i
\(322\) 2.22929 2.42654i 0.124234 0.135226i
\(323\) 21.0149 + 26.3519i 1.16930 + 1.46626i
\(324\) −4.91528 3.28054i −0.273071 0.182252i
\(325\) 3.08141 + 6.39861i 0.170926 + 0.354931i
\(326\) 0.249849 + 5.89764i 0.0138378 + 0.326640i
\(327\) −17.7132 11.1300i −0.979543 0.615488i
\(328\) −18.5579 + 19.1161i −1.02469 + 1.05551i
\(329\) 0.215887 1.91605i 0.0119022 0.105635i
\(330\) 14.5749 48.0926i 0.802319 2.64741i
\(331\) 1.02297 1.02297i 0.0562275 0.0562275i −0.678434 0.734661i \(-0.737341\pi\)
0.734661 + 0.678434i \(0.237341\pi\)
\(332\) 18.3778 + 7.00404i 1.00861 + 0.384397i
\(333\) −3.88064 + 11.0902i −0.212658 + 0.607741i
\(334\) −6.17329 + 2.45809i −0.337787 + 0.134501i
\(335\) −14.1243 3.22379i −0.771695 0.176134i
\(336\) 7.60706 4.21477i 0.414999 0.229934i
\(337\) 11.7762 7.39948i 0.641491 0.403075i −0.171637 0.985160i \(-0.554906\pi\)
0.813128 + 0.582085i \(0.197763\pi\)
\(338\) −4.72670 6.85976i −0.257099 0.373122i
\(339\) −27.2794 + 6.22635i −1.48161 + 0.338169i
\(340\) −20.8028 + 24.6618i −1.12819 + 1.33748i
\(341\) −1.09800 0.875625i −0.0594600 0.0474177i
\(342\) −14.1652 + 32.9095i −0.765966 + 1.77954i
\(343\) 4.63898 9.63295i 0.250482 0.520130i
\(344\) 0.969344 2.90772i 0.0522635 0.156774i
\(345\) −21.7573 + 2.45146i −1.17137 + 0.131982i
\(346\) −8.21709 + 14.3962i −0.441753 + 0.773942i
\(347\) −30.3501 −1.62928 −0.814639 0.579968i \(-0.803065\pi\)
−0.814639 + 0.579968i \(0.803065\pi\)
\(348\) −22.0778 19.2008i −1.18349 1.02927i
\(349\) 22.9901 1.23063 0.615316 0.788280i \(-0.289028\pi\)
0.615316 + 0.788280i \(0.289028\pi\)
\(350\) 1.49440 2.61815i 0.0798790 0.139946i
\(351\) 9.93427 1.11932i 0.530252 0.0597451i
\(352\) −11.9020 + 23.9321i −0.634378 + 1.27558i
\(353\) 3.58553 7.44544i 0.190839 0.396281i −0.783492 0.621402i \(-0.786563\pi\)
0.974331 + 0.225121i \(0.0722778\pi\)
\(354\) −16.8998 + 39.2627i −0.898214 + 2.08679i
\(355\) −16.2461 12.9558i −0.862253 0.687624i
\(356\) −2.97075 2.50589i −0.157450 0.132812i
\(357\) −12.3520 + 2.81926i −0.653737 + 0.149211i
\(358\) −17.1231 24.8503i −0.904981 1.31338i
\(359\) 7.38962 4.64321i 0.390009 0.245059i −0.322726 0.946493i \(-0.604599\pi\)
0.712735 + 0.701433i \(0.247456\pi\)
\(360\) −33.5459 7.13543i −1.76803 0.376070i
\(361\) −14.0919 3.21638i −0.741678 0.169283i
\(362\) 7.62088 3.03450i 0.400544 0.159490i
\(363\) −10.1614 + 29.0396i −0.533334 + 1.52418i
\(364\) 1.51989 3.98801i 0.0796640 0.209028i
\(365\) 6.28176 6.28176i 0.328802 0.328802i
\(366\) −6.00479 + 19.8140i −0.313876 + 1.03569i
\(367\) 0.0903712 0.802066i 0.00471734 0.0418675i −0.991133 0.132873i \(-0.957580\pi\)
0.995850 + 0.0910059i \(0.0290082\pi\)
\(368\) 11.6278 + 0.640691i 0.606143 + 0.0333983i
\(369\) 34.9350 + 21.9511i 1.81864 + 1.14273i
\(370\) −0.444500 10.4924i −0.0231085 0.545472i
\(371\) −4.70128 9.76231i −0.244078 0.506834i
\(372\) −0.896501 + 1.34324i −0.0464814 + 0.0696439i
\(373\) 10.0101 + 12.5523i 0.518306 + 0.649935i 0.970248 0.242112i \(-0.0778402\pi\)
−0.451943 + 0.892047i \(0.649269\pi\)
\(374\) 26.3439 28.6747i 1.36221 1.48273i
\(375\) 16.5853 5.80346i 0.856463 0.299689i
\(376\) 5.71563 3.71061i 0.294761 0.191360i
\(377\) −14.3571 0.216702i −0.739428 0.0111607i
\(378\) −2.78389 3.20281i −0.143188 0.164735i
\(379\) −8.26401 23.6172i −0.424494 1.21313i −0.935429 0.353514i \(-0.884987\pi\)
0.510935 0.859619i \(-0.329299\pi\)
\(380\) 0.881244 32.0115i 0.0452069 1.64216i
\(381\) 27.8142 22.1811i 1.42496 1.13637i
\(382\) 3.18262 + 11.6473i 0.162837 + 0.595927i
\(383\) 17.4585 8.40756i 0.892087 0.429606i 0.0690622 0.997612i \(-0.477999\pi\)
0.823024 + 0.568006i \(0.192285\pi\)
\(384\) 28.5788 + 11.3097i 1.45841 + 0.577147i
\(385\) −5.56939 + 8.86364i −0.283842 + 0.451733i
\(386\) 0.785220 + 0.573550i 0.0399666 + 0.0291929i
\(387\) −4.71673 0.531448i −0.239765 0.0270150i
\(388\) −3.22815 + 1.44655i −0.163885 + 0.0734375i
\(389\) −8.98370 8.98370i −0.455492 0.455492i 0.441681 0.897172i \(-0.354382\pi\)
−0.897172 + 0.441681i \(0.854382\pi\)
\(390\) −25.0062 + 13.3746i −1.26624 + 0.677248i
\(391\) −16.0136 5.60339i −0.809841 0.283376i
\(392\) 17.4752 4.26195i 0.882630 0.215261i
\(393\) −7.26855 + 31.8456i −0.366650 + 1.60640i
\(394\) 29.9049 + 2.09259i 1.50659 + 0.105423i
\(395\) 12.9100 + 20.5461i 0.649571 + 1.03379i
\(396\) 40.0853 + 10.3176i 2.01436 + 0.518477i
\(397\) 5.36927 + 23.5243i 0.269476 + 1.18065i 0.910624 + 0.413235i \(0.135601\pi\)
−0.641148 + 0.767417i \(0.721542\pi\)
\(398\) −2.60502 + 0.405811i −0.130578 + 0.0203415i
\(399\) 7.84056 9.83175i 0.392519 0.492203i
\(400\) 10.5017 1.79573i 0.525087 0.0897863i
\(401\) −31.6555 15.2445i −1.58080 0.761273i −0.582143 0.813086i \(-0.697786\pi\)
−0.998657 + 0.0518133i \(0.983500\pi\)
\(402\) 3.64034 19.7738i 0.181564 0.986229i
\(403\) 0.0887339 + 0.787536i 0.00442015 + 0.0392299i
\(404\) 6.62091 1.32062i 0.329403 0.0657031i
\(405\) 8.17963i 0.406449i
\(406\) 3.38212 + 5.07052i 0.167852 + 0.251646i
\(407\) 12.6745i 0.628249i
\(408\) −35.4175 27.3960i −1.75343 1.35630i
\(409\) 1.92234 + 17.0612i 0.0950535 + 0.843623i 0.947271 + 0.320435i \(0.103829\pi\)
−0.852217 + 0.523188i \(0.824742\pi\)
\(410\) −36.2679 6.67688i −1.79114 0.329748i
\(411\) −1.23144 0.593031i −0.0607426 0.0292521i
\(412\) −0.146807 0.459764i −0.00723268 0.0226509i
\(413\) 5.55174 6.96167i 0.273183 0.342561i
\(414\) −2.77593 17.8195i −0.136429 0.875778i
\(415\) 6.05756 + 26.5399i 0.297354 + 1.30279i
\(416\) 14.2989 4.80037i 0.701060 0.235357i
\(417\) 5.79960 + 9.23001i 0.284008 + 0.451996i
\(418\) −2.69785 + 38.5546i −0.131956 + 1.88577i
\(419\) 0.603129 2.64248i 0.0294648 0.129094i −0.958056 0.286580i \(-0.907482\pi\)
0.987521 + 0.157486i \(0.0503389\pi\)
\(420\) 10.6976 + 5.51935i 0.521989 + 0.269317i
\(421\) 13.7055 + 4.79576i 0.667965 + 0.233731i 0.642895 0.765955i \(-0.277733\pi\)
0.0250706 + 0.999686i \(0.492019\pi\)
\(422\) −1.35495 2.53332i −0.0659577 0.123320i
\(423\) −7.46211 7.46211i −0.362820 0.362820i
\(424\) 16.1021 34.7439i 0.781985 1.68731i
\(425\) −15.4238 1.73785i −0.748166 0.0842981i
\(426\) 17.0099 23.2875i 0.824133 1.12828i
\(427\) 2.29457 3.65179i 0.111042 0.176722i
\(428\) 9.42493 + 9.95853i 0.455571 + 0.481364i
\(429\) 30.8358 14.8497i 1.48877 0.716952i
\(430\) 4.09246 1.11826i 0.197356 0.0539275i
\(431\) −19.5342 + 15.5780i −0.940931 + 0.750368i −0.968438 0.249254i \(-0.919815\pi\)
0.0275070 + 0.999622i \(0.491243\pi\)
\(432\) 2.49656 14.7882i 0.120116 0.711499i
\(433\) 5.42067 + 15.4914i 0.260501 + 0.744469i 0.997636 + 0.0687232i \(0.0218925\pi\)
−0.737135 + 0.675746i \(0.763822\pi\)
\(434\) 0.253901 0.220692i 0.0121877 0.0105935i
\(435\) 5.14132 40.1715i 0.246508 1.92608i
\(436\) −2.14488 + 15.2511i −0.102721 + 0.730393i
\(437\) 15.8943 5.56166i 0.760327 0.266050i
\(438\) 9.07913 + 8.34113i 0.433817 + 0.398555i
\(439\) −11.9538 14.9896i −0.570524 0.715415i 0.409940 0.912113i \(-0.365550\pi\)
−0.980464 + 0.196698i \(0.936978\pi\)
\(440\) −36.6980 + 4.68649i −1.74951 + 0.223420i
\(441\) −12.0861 25.0970i −0.575527 1.19510i
\(442\) −21.9541 + 0.930066i −1.04425 + 0.0442387i
\(443\) 5.02648 + 3.15834i 0.238815 + 0.150057i 0.646123 0.763234i \(-0.276389\pi\)
−0.407308 + 0.913291i \(0.633532\pi\)
\(444\) 14.5223 1.23267i 0.689200 0.0584998i
\(445\) 0.602315 5.34569i 0.0285525 0.253410i
\(446\) −37.9463 11.4999i −1.79681 0.544538i
\(447\) 11.7681 11.7681i 0.556613 0.556613i
\(448\) −5.12175 3.84182i −0.241980 0.181509i
\(449\) −7.03778 + 20.1128i −0.332133 + 0.949182i 0.649825 + 0.760084i \(0.274842\pi\)
−0.981958 + 0.189098i \(0.939444\pi\)
\(450\) −6.10362 15.3287i −0.287727 0.722603i
\(451\) 43.3909 + 9.90369i 2.04320 + 0.466346i
\(452\) 12.3956 + 16.4528i 0.583040 + 0.773874i
\(453\) 18.2832 11.4881i 0.859018 0.539757i
\(454\) −28.5511 + 19.6731i −1.33997 + 0.923304i
\(455\) 5.75921 1.31450i 0.269996 0.0616249i
\(456\) 44.4381 0.658480i 2.08101 0.0308361i
\(457\) −17.0415 13.5901i −0.797166 0.635718i 0.137799 0.990460i \(-0.455997\pi\)
−0.934964 + 0.354742i \(0.884569\pi\)
\(458\) −17.9297 7.71746i −0.837800 0.360613i
\(459\) −9.47992 + 19.6853i −0.442485 + 0.918829i
\(460\) 8.19707 + 13.8793i 0.382190 + 0.647125i
\(461\) −36.6266 + 4.12683i −1.70587 + 0.192206i −0.910384 0.413764i \(-0.864214\pi\)
−0.795488 + 0.605970i \(0.792785\pi\)
\(462\) −12.6173 7.20172i −0.587008 0.335054i
\(463\) −23.8950 −1.11050 −0.555248 0.831685i \(-0.687377\pi\)
−0.555248 + 0.831685i \(0.687377\pi\)
\(464\) −6.25317 + 20.6131i −0.290296 + 0.956937i
\(465\) −2.23532 −0.103661
\(466\) −17.6726 10.0872i −0.818668 0.467282i
\(467\) 33.6951 3.79652i 1.55922 0.175682i 0.710185 0.704015i \(-0.248611\pi\)
0.849037 + 0.528333i \(0.177183\pi\)
\(468\) −11.8782 20.1123i −0.549072 0.929690i
\(469\) −1.81724 + 3.77355i −0.0839126 + 0.174246i
\(470\) 8.66380 + 3.72915i 0.399632 + 0.172013i
\(471\) −19.8805 15.8542i −0.916045 0.730521i
\(472\) 31.4658 0.466257i 1.44833 0.0214612i
\(473\) −4.99183 + 1.13935i −0.229525 + 0.0523875i
\(474\) −27.7304 + 19.1075i −1.27370 + 0.877638i
\(475\) 13.0445 8.19639i 0.598522 0.376076i
\(476\) 5.61268 + 7.44975i 0.257257 + 0.341459i
\(477\) −57.8156 13.1960i −2.64720 0.604205i
\(478\) 14.8324 + 37.2503i 0.678417 + 1.70379i
\(479\) −0.848048 + 2.42358i −0.0387483 + 0.110736i −0.961632 0.274342i \(-0.911540\pi\)
0.922884 + 0.385079i \(0.125826\pi\)
\(480\) 8.93887 + 41.5927i 0.408002 + 1.89844i
\(481\) 5.05749 5.05749i 0.230602 0.230602i
\(482\) −20.6457 6.25687i −0.940388 0.284993i
\(483\) −0.708711 + 6.28999i −0.0322475 + 0.286204i
\(484\) 22.5689 1.91566i 1.02586 0.0870756i
\(485\) −4.14587 2.60502i −0.188254 0.118288i
\(486\) 27.2347 1.15377i 1.23539 0.0523363i
\(487\) 17.3472 + 36.0219i 0.786077 + 1.63231i 0.774666 + 0.632371i \(0.217918\pi\)
0.0114114 + 0.999935i \(0.496368\pi\)
\(488\) 15.1195 1.93082i 0.684427 0.0874041i
\(489\) −7.06993 8.86541i −0.319713 0.400908i
\(490\) 18.3344 + 16.8441i 0.828266 + 0.760940i
\(491\) −2.18407 + 0.764240i −0.0985659 + 0.0344897i −0.379111 0.925351i \(-0.623770\pi\)
0.280546 + 0.959841i \(0.409485\pi\)
\(492\) 7.12759 50.6803i 0.321337 2.28485i
\(493\) 17.0950 26.3164i 0.769920 1.18523i
\(494\) 16.4610 14.3079i 0.740614 0.643744i
\(495\) 18.9226 + 54.0777i 0.850507 + 2.43061i
\(496\) 1.17233 + 0.197914i 0.0526392 + 0.00888660i
\(497\) −4.69671 + 3.74550i −0.210676 + 0.168009i
\(498\) −36.4438 + 9.95825i −1.63308 + 0.446240i
\(499\) −13.1956 + 6.35469i −0.590718 + 0.284475i −0.705266 0.708943i \(-0.749172\pi\)
0.114548 + 0.993418i \(0.463458\pi\)
\(500\) −8.89202 9.39545i −0.397663 0.420178i
\(501\) 6.79093 10.8077i 0.303396 0.482853i
\(502\) 4.48039 6.13389i 0.199970 0.273769i
\(503\) −26.6736 3.00540i −1.18932 0.134004i −0.504955 0.863145i \(-0.668491\pi\)
−0.684363 + 0.729141i \(0.739920\pi\)
\(504\) −4.16913 + 8.99587i −0.185708 + 0.400708i
\(505\) 6.60784 + 6.60784i 0.294045 + 0.294045i
\(506\) −9.17507 17.1544i −0.407881 0.762608i
\(507\) 15.1046 + 5.28533i 0.670819 + 0.234730i
\(508\) −23.2756 12.0089i −1.03269 0.532808i
\(509\) −5.55215 + 24.3256i −0.246095 + 1.07821i 0.689264 + 0.724510i \(0.257934\pi\)
−0.935359 + 0.353701i \(0.884923\pi\)
\(510\) 4.32629 61.8264i 0.191571 2.73772i
\(511\) −1.36640 2.17462i −0.0604461 0.0961994i
\(512\) −1.00547 22.6051i −0.0444358 0.999012i
\(513\) −4.82564 21.1425i −0.213057 0.933466i
\(514\) −2.46713 15.8372i −0.108820 0.698549i
\(515\) 0.416516 0.522294i 0.0183539 0.0230150i
\(516\) 1.79095 + 5.60882i 0.0788423 + 0.246914i
\(517\) −10.2564 4.93920i −0.451074 0.217226i
\(518\) −2.98586 0.549695i −0.131191 0.0241522i
\(519\) −3.56519 31.6419i −0.156494 1.38893i
\(520\) 16.5137 + 12.7736i 0.724173 + 0.560159i
\(521\) 7.12512i 0.312157i 0.987745 + 0.156079i \(0.0498853\pi\)
−0.987745 + 0.156079i \(0.950115\pi\)
\(522\) 33.2379 + 2.83049i 1.45478 + 0.123887i
\(523\) 38.0156i 1.66231i 0.556042 + 0.831154i \(0.312319\pi\)
−0.556042 + 0.831154i \(0.687681\pi\)
\(524\) 23.5832 4.70393i 1.03024 0.205492i
\(525\) 0.648382 + 5.75455i 0.0282977 + 0.251149i
\(526\) −2.16473 + 11.7585i −0.0943866 + 0.512694i
\(527\) −1.56054 0.751517i −0.0679782 0.0327366i
\(528\) −8.65386 50.6093i −0.376611 2.20249i
\(529\) 9.05552 11.3553i 0.393718 0.493707i
\(530\) 52.3729 8.15869i 2.27493 0.354391i
\(531\) −10.8443 47.5119i −0.470602 2.06184i
\(532\) −8.96573 2.30769i −0.388714 0.100051i
\(533\) −13.3624 21.2661i −0.578790 0.921139i
\(534\) 7.44759 + 0.521143i 0.322289 + 0.0225521i
\(535\) −4.22315 + 18.5028i −0.182583 + 0.799947i
\(536\) −14.3807 + 3.50725i −0.621151 + 0.151490i
\(537\) 54.7183 + 19.1468i 2.36127 + 0.826243i
\(538\) −4.03790 + 2.15968i −0.174086 + 0.0931102i
\(539\) −21.2473 21.2473i −0.915187 0.915187i
\(540\) 18.9439 8.48884i 0.815214 0.365301i
\(541\) −22.4426 2.52867i −0.964882 0.108716i −0.384557 0.923101i \(-0.625646\pi\)
−0.580325 + 0.814385i \(0.697074\pi\)
\(542\) 7.97708 + 5.82672i 0.342645 + 0.250279i
\(543\) −8.38335 + 13.3420i −0.359764 + 0.572561i
\(544\) −7.74303 + 32.0423i −0.331980 + 1.37380i
\(545\) −19.2065 + 9.24935i −0.822715 + 0.396198i
\(546\) 2.16096 + 7.90837i 0.0924806 + 0.338447i
\(547\) 17.3138 13.8073i 0.740283 0.590356i −0.179048 0.983840i \(-0.557302\pi\)
0.919331 + 0.393484i \(0.128730\pi\)
\(548\) −0.0276903 + 1.00586i −0.00118287 + 0.0429682i
\(549\) −7.79605 22.2798i −0.332727 0.950880i
\(550\) −11.6759 13.4328i −0.497861 0.572778i
\(551\) 3.01991 + 31.0009i 0.128652 + 1.32068i
\(552\) −18.7632 + 12.1811i −0.798614 + 0.518464i
\(553\) 6.62140 2.31693i 0.281571 0.0985259i
\(554\) 18.4769 20.1116i 0.785006 0.854461i
\(555\) 12.5779 + 15.7722i 0.533904 + 0.669495i
\(556\) 4.45506 6.67509i 0.188937 0.283087i
\(557\) 7.97886 + 16.5683i 0.338075 + 0.702020i 0.998819 0.0485915i \(-0.0154732\pi\)
−0.660744 + 0.750612i \(0.729759\pi\)
\(558\) −0.0779302 1.83953i −0.00329905 0.0778736i
\(559\) 2.44653 + 1.53726i 0.103477 + 0.0650190i
\(560\) 0.487557 8.84862i 0.0206030 0.373923i
\(561\) −8.37494 + 74.3296i −0.353590 + 3.13820i
\(562\) −9.27157 + 30.5933i −0.391098 + 1.29050i
\(563\) 27.2146 27.2146i 1.14696 1.14696i 0.159814 0.987147i \(-0.448911\pi\)
0.987147 0.159814i \(-0.0510893\pi\)
\(564\) −4.66183 + 12.2321i −0.196298 + 0.515063i
\(565\) −9.41728 + 26.9130i −0.396188 + 1.13224i
\(566\) −2.54711 + 1.01421i −0.107063 + 0.0426305i
\(567\) −2.30542 0.526198i −0.0968187 0.0220982i
\(568\) −20.7662 4.41710i −0.871331 0.185337i
\(569\) −6.77494 + 4.25698i −0.284020 + 0.178462i −0.666506 0.745500i \(-0.732211\pi\)
0.382486 + 0.923961i \(0.375068\pi\)
\(570\) 34.9038 + 50.6551i 1.46196 + 2.12171i
\(571\) −30.0769 + 6.86486i −1.25868 + 0.287285i −0.799288 0.600948i \(-0.794790\pi\)
−0.459392 + 0.888234i \(0.651933\pi\)
\(572\) −19.2598 16.2460i −0.805291 0.679280i
\(573\) −18.1339 14.4613i −0.757556 0.604131i
\(574\) −4.21500 + 9.79255i −0.175931 + 0.408733i
\(575\) −3.36457 + 6.98660i −0.140312 + 0.291361i
\(576\) −33.9166 + 8.80619i −1.41319 + 0.366925i
\(577\) 18.6080 2.09662i 0.774661 0.0872833i 0.284221 0.958759i \(-0.408265\pi\)
0.490439 + 0.871475i \(0.336836\pi\)
\(578\) 11.8886 20.8285i 0.494499 0.866352i
\(579\) −1.86791 −0.0776275
\(580\) −28.5364 + 8.63961i −1.18491 + 0.358740i
\(581\) 7.86994 0.326500
\(582\) 3.36853 5.90158i 0.139630 0.244629i
\(583\) −63.5683 + 7.16242i −2.63273 + 0.296637i
\(584\) 2.87057 8.61079i 0.118785 0.356317i
\(585\) 14.0279 29.1293i 0.579984 1.20435i
\(586\) 11.1438 25.8899i 0.460345 1.06950i
\(587\) 22.9858 + 18.3306i 0.948725 + 0.756583i 0.969978 0.243191i \(-0.0781942\pi\)
−0.0212533 + 0.999774i \(0.506766\pi\)
\(588\) −22.2787 + 26.4115i −0.918757 + 1.08919i
\(589\) 1.67607 0.382551i 0.0690611 0.0157627i
\(590\) 24.7147 + 35.8679i 1.01749 + 1.47666i
\(591\) −48.7599 + 30.6379i −2.00572 + 1.26027i
\(592\) −5.20014 9.38552i −0.213724 0.385743i
\(593\) 6.64250 + 1.51611i 0.272775 + 0.0622591i 0.356720 0.934211i \(-0.383895\pi\)
−0.0839453 + 0.996470i \(0.526752\pi\)
\(594\) −23.2762 + 9.26817i −0.955035 + 0.380278i
\(595\) −4.26410 + 12.1861i −0.174811 + 0.499582i
\(596\) −11.4491 4.36341i −0.468972 0.178732i
\(597\) 3.58113 3.58113i 0.146566 0.146566i
\(598\) −3.18401 + 10.5063i −0.130204 + 0.429633i
\(599\) −1.05006 + 9.31958i −0.0429045 + 0.380788i 0.953850 + 0.300284i \(0.0970815\pi\)
−0.996754 + 0.0805037i \(0.974347\pi\)
\(600\) −14.2558 + 14.6846i −0.581989 + 0.599496i
\(601\) 23.0323 + 14.4721i 0.939507 + 0.590331i 0.912399 0.409301i \(-0.134228\pi\)
0.0271074 + 0.999633i \(0.491370\pi\)
\(602\) −0.0519129 1.22540i −0.00211581 0.0499434i
\(603\) 9.94588 + 20.6528i 0.405027 + 0.841048i
\(604\) −13.2223 8.82475i −0.538007 0.359074i
\(605\) 19.5471 + 24.5113i 0.794704 + 0.996528i
\(606\) −8.77411 + 9.55042i −0.356424 + 0.387959i
\(607\) 20.5398 7.18720i 0.833686 0.291719i 0.120517 0.992711i \(-0.461545\pi\)
0.713169 + 0.700992i \(0.247259\pi\)
\(608\) −13.8206 29.6568i −0.560499 1.20274i
\(609\) −10.9916 4.03332i −0.445401 0.163439i
\(610\) 13.8405 + 15.9233i 0.560387 + 0.644714i
\(611\) 2.12171 + 6.06349i 0.0858351 + 0.245303i
\(612\) 51.0302 + 1.40481i 2.06277 + 0.0567860i
\(613\) −24.5855 + 19.6063i −0.993000 + 0.791891i −0.978129 0.207999i \(-0.933305\pi\)
−0.0148705 + 0.999889i \(0.504734\pi\)
\(614\) −0.166148 0.608044i −0.00670519 0.0245387i
\(615\) 63.8244 30.7362i 2.57365 1.23940i
\(616\) −1.03991 + 10.6448i −0.0418992 + 0.428891i
\(617\) −2.79459 + 4.44756i −0.112506 + 0.179052i −0.898231 0.439524i \(-0.855147\pi\)
0.785725 + 0.618576i \(0.212290\pi\)
\(618\) 0.748667 + 0.546851i 0.0301158 + 0.0219976i
\(619\) 1.76648 + 0.199034i 0.0710008 + 0.00799987i 0.147393 0.989078i \(-0.452912\pi\)
−0.0763926 + 0.997078i \(0.524340\pi\)
\(620\) 0.672949 + 1.50177i 0.0270263 + 0.0603124i
\(621\) 7.71864 + 7.71864i 0.309738 + 0.309738i
\(622\) 30.8133 16.4805i 1.23550 0.660807i
\(623\) −1.46793 0.513652i −0.0588115 0.0205790i
\(624\) −16.7415 + 23.6478i −0.670196 + 0.946670i
\(625\) 6.94783 30.4404i 0.277913 1.21762i
\(626\) 11.1842 + 0.782615i 0.447012 + 0.0312796i
\(627\) −39.4996 62.8632i −1.57746 2.51051i
\(628\) −4.66631 + 18.1293i −0.186206 + 0.723440i
\(629\) 3.47838 + 15.2398i 0.138692 + 0.607649i
\(630\) −13.5604 + 2.11244i −0.540258 + 0.0841617i
\(631\) −0.662848 + 0.831185i −0.0263875 + 0.0330889i −0.794850 0.606806i \(-0.792451\pi\)
0.768463 + 0.639895i \(0.221022\pi\)
\(632\) 21.1854 + 12.8778i 0.842710 + 0.512253i
\(633\) 4.97219 + 2.39448i 0.197627 + 0.0951721i
\(634\) 6.55833 35.6239i 0.260465 1.41481i
\(635\) −4.05897 36.0244i −0.161075 1.42958i
\(636\) 14.3891 + 72.1397i 0.570564 + 2.86053i
\(637\) 16.9566i 0.671847i
\(638\) 34.8507 8.95996i 1.37975 0.354728i
\(639\) 32.8784i 1.30065i
\(640\) 25.2524 18.5270i 0.998187 0.732345i
\(641\) 0.411004 + 3.64777i 0.0162337 + 0.144078i 0.999214 0.0396308i \(-0.0126182\pi\)
−0.982981 + 0.183709i \(0.941190\pi\)
\(642\) −25.9036 4.76884i −1.02233 0.188211i
\(643\) −27.4351 13.2120i −1.08193 0.521031i −0.193999 0.981002i \(-0.562146\pi\)
−0.887934 + 0.459970i \(0.847860\pi\)
\(644\) 4.43919 1.41748i 0.174929 0.0558565i
\(645\) −5.08122 + 6.37165i −0.200073 + 0.250883i
\(646\) 7.33703 + 47.0985i 0.288672 + 1.85306i
\(647\) −6.36311 27.8786i −0.250160 1.09602i −0.931410 0.363971i \(-0.881421\pi\)
0.681251 0.732050i \(-0.261436\pi\)
\(648\) −3.73724 7.47508i −0.146813 0.293649i
\(649\) −27.9689 44.5122i −1.09787 1.74726i
\(650\) −0.701087 + 10.0191i −0.0274989 + 0.392983i
\(651\) −0.143799 + 0.630024i −0.00563592 + 0.0246926i
\(652\) −3.82767 + 7.41877i −0.149903 + 0.290542i
\(653\) 11.4348 + 4.00119i 0.447477 + 0.156579i 0.544604 0.838693i \(-0.316680\pi\)
−0.0971278 + 0.995272i \(0.530966\pi\)
\(654\) −13.9531 26.0879i −0.545610 1.02012i
\(655\) 23.5366 + 23.5366i 0.919652 + 0.919652i
\(656\) −36.1946 + 10.4689i −1.41316 + 0.408741i
\(657\) −13.9679 1.57380i −0.544939 0.0613999i
\(658\) 1.60840 2.20199i 0.0627021 0.0858425i
\(659\) −15.9790 + 25.4304i −0.622452 + 0.990627i 0.375510 + 0.926818i \(0.377468\pi\)
−0.997962 + 0.0638088i \(0.979675\pi\)
\(660\) 51.6164 48.8507i 2.00917 1.90151i
\(661\) −40.9883 + 19.7389i −1.59426 + 0.767755i −0.999350 0.0360380i \(-0.988526\pi\)
−0.594909 + 0.803793i \(0.702812\pi\)
\(662\) 1.97358 0.539282i 0.0767056 0.0209598i
\(663\) 33.0016 26.3179i 1.28168 1.02210i
\(664\) 17.6618 + 21.4862i 0.685410 + 0.833828i
\(665\) −4.23234 12.0953i −0.164123 0.469037i
\(666\) −12.5411 + 10.9007i −0.485957 + 0.422395i
\(667\) −9.58909 12.4038i −0.371291 0.480279i
\(668\) −9.30542 1.30870i −0.360037 0.0506350i
\(669\) 71.8928 25.1564i 2.77954 0.972602i
\(670\) −15.0878 13.8614i −0.582892 0.535512i
\(671\) −15.8756 19.9074i −0.612870 0.768515i
\(672\) 12.2979 + 0.156256i 0.474403 + 0.00602771i
\(673\) −3.68482 7.65161i −0.142039 0.294948i 0.817798 0.575506i \(-0.195195\pi\)
−0.959837 + 0.280558i \(0.909481\pi\)
\(674\) 19.6512 0.832507i 0.756936 0.0320670i
\(675\) 8.45590 + 5.31319i 0.325468 + 0.204505i
\(676\) −0.996411 11.7390i −0.0383235 0.451499i
\(677\) 5.20686 46.2121i 0.200116 1.77608i −0.345871 0.938282i \(-0.612416\pi\)
0.545986 0.837794i \(-0.316155\pi\)
\(678\) −37.8702 11.4769i −1.45439 0.440767i
\(679\) −1.00093 + 1.00093i −0.0384121 + 0.0384121i
\(680\) −42.8396 + 15.7065i −1.64282 + 0.602315i
\(681\) 21.9982 62.8672i 0.842972 2.40908i
\(682\) −0.734730 1.84521i −0.0281343 0.0706569i
\(683\) 37.1656 + 8.48280i 1.42210 + 0.324585i 0.863290 0.504709i \(-0.168400\pi\)
0.558812 + 0.829294i \(0.311257\pi\)
\(684\) −40.4692 + 30.4897i −1.54738 + 1.16580i
\(685\) −1.17931 + 0.741010i −0.0450591 + 0.0283125i
\(686\) 12.4509 8.57925i 0.475377 0.327557i
\(687\) 36.5571 8.34392i 1.39474 0.318340i
\(688\) 3.22903 2.89177i 0.123106 0.110248i
\(689\) 28.2237 + 22.5076i 1.07524 + 0.857473i
\(690\) −28.4414 12.2420i −1.08275 0.466045i
\(691\) −5.72748 + 11.8932i −0.217884 + 0.452440i −0.981048 0.193764i \(-0.937930\pi\)
0.763165 + 0.646204i \(0.223645\pi\)
\(692\) −20.1848 + 11.9211i −0.767312 + 0.453172i
\(693\) 16.4591 1.85449i 0.625228 0.0704462i
\(694\) −37.2767 21.2769i −1.41500 0.807661i
\(695\) 11.1082 0.421357
\(696\) −13.6557 39.0604i −0.517619 1.48058i
\(697\) 54.8912 2.07915
\(698\) 28.2370 + 16.1172i 1.06878 + 0.610045i
\(699\) 38.8434 4.37660i 1.46919 0.165538i
\(700\) 3.67091 2.16803i 0.138747 0.0819438i
\(701\) 7.74530 16.0833i 0.292536 0.607457i −0.701962 0.712214i \(-0.747692\pi\)
0.994498 + 0.104758i \(0.0334067\pi\)
\(702\) 12.9862 + 5.58964i 0.490132 + 0.210967i
\(703\) −12.1303 9.67360i −0.457504 0.364847i
\(704\) −31.3958 + 21.0500i −1.18327 + 0.793353i
\(705\) −17.6647 + 4.03186i −0.665293 + 0.151849i
\(706\) 9.62345 6.63102i 0.362183 0.249562i
\(707\) 2.28750 1.43733i 0.0860302 0.0540564i
\(708\) −48.2818 + 36.3757i −1.81454 + 1.36708i
\(709\) 23.4483 + 5.35192i 0.880618 + 0.200995i 0.638843 0.769337i \(-0.279413\pi\)
0.241775 + 0.970332i \(0.422270\pi\)
\(710\) −10.8711 27.3019i −0.407987 1.02462i
\(711\) 12.6807 36.2393i 0.475563 1.35908i
\(712\) −1.89199 5.16044i −0.0709054 0.193396i
\(713\) −0.611892 + 0.611892i −0.0229155 + 0.0229155i
\(714\) −17.1474 5.19668i −0.641727 0.194481i
\(715\) 3.90488 34.6568i 0.146034 1.29609i
\(716\) −3.60962 42.5258i −0.134898 1.58926i
\(717\) −65.2148 40.9772i −2.43549 1.53032i
\(718\) 12.3312 0.522402i 0.460197 0.0194959i
\(719\) −10.0745 20.9199i −0.375715 0.780181i 0.624284 0.781197i \(-0.285391\pi\)
−0.999999 + 0.00101645i \(0.999676\pi\)
\(720\) −36.1996 32.2812i −1.34908 1.20305i
\(721\) −0.120414 0.150994i −0.00448444 0.00562331i
\(722\) −15.0531 13.8295i −0.560219 0.514682i
\(723\) 39.1153 13.6870i 1.45471 0.509027i
\(724\) 11.4875 + 1.61558i 0.426928 + 0.0600424i
\(725\) −11.0780 9.11131i −0.411428 0.338386i
\(726\) −32.8386 + 28.5434i −1.21875 + 1.05935i
\(727\) 0.570671 + 1.63088i 0.0211650 + 0.0604861i 0.953981 0.299866i \(-0.0969421\pi\)
−0.932816 + 0.360353i \(0.882656\pi\)
\(728\) 4.66256 3.83264i 0.172806 0.142047i
\(729\) −34.0091 + 27.1214i −1.25960 + 1.00450i
\(730\) 12.1192 3.31157i 0.448552 0.122567i
\(731\) −5.68950 + 2.73992i −0.210434 + 0.101340i
\(732\) −21.2658 + 20.1263i −0.786007 + 0.743890i
\(733\) −4.56828 + 7.27038i −0.168733 + 0.268538i −0.920377 0.391031i \(-0.872118\pi\)
0.751644 + 0.659569i \(0.229261\pi\)
\(734\) 0.673284 0.921761i 0.0248514 0.0340228i
\(735\) −47.5260 5.35489i −1.75302 0.197518i
\(736\) 13.8324 + 8.93860i 0.509870 + 0.329481i
\(737\) 17.4848 + 17.4848i 0.644063 + 0.644063i
\(738\) 27.5191 + 51.4520i 1.01299 + 1.89397i
\(739\) −24.1179 8.43923i −0.887193 0.310442i −0.152065 0.988371i \(-0.548592\pi\)
−0.735128 + 0.677928i \(0.762878\pi\)
\(740\) 6.80972 13.1986i 0.250330 0.485189i
\(741\) −9.32279 + 40.8458i −0.342481 + 1.50051i
\(742\) 1.06964 15.2861i 0.0392678 0.561171i
\(743\) −4.56805 7.27002i −0.167586 0.266711i 0.752364 0.658748i \(-0.228914\pi\)
−0.919950 + 0.392037i \(0.871771\pi\)
\(744\) −2.04278 + 1.02131i −0.0748921 + 0.0374430i
\(745\) −3.77377 16.5340i −0.138260 0.605758i
\(746\) 3.49489 + 22.4347i 0.127957 + 0.821391i
\(747\) 26.8553 33.6755i 0.982586 1.23212i
\(748\) 52.4585 16.7505i 1.91807 0.612460i
\(749\) 4.94333 + 2.38058i 0.180625 + 0.0869846i
\(750\) 24.4390 + 4.49920i 0.892385 + 0.164287i
\(751\) −4.03353 35.7985i −0.147185 1.30631i −0.822495 0.568772i \(-0.807418\pi\)
0.675309 0.737534i \(-0.264010\pi\)
\(752\) 9.62139 0.550516i 0.350856 0.0200753i
\(753\) 14.5915i 0.531743i
\(754\) −17.4818 10.3312i −0.636649 0.376240i
\(755\) 22.0035i 0.800789i
\(756\) −1.17391 5.88540i −0.0426947 0.214050i
\(757\) −0.576625 5.11768i −0.0209578 0.186005i 0.978872 0.204476i \(-0.0655489\pi\)
−0.999829 + 0.0184703i \(0.994120\pi\)
\(758\) 6.40677 34.8006i 0.232704 1.26402i
\(759\) 33.6694 + 16.2143i 1.22212 + 0.588543i
\(760\) 23.5240 38.6994i 0.853305 1.40378i
\(761\) 4.01541 5.03517i 0.145559 0.182525i −0.703707 0.710490i \(-0.748473\pi\)
0.849266 + 0.527965i \(0.177045\pi\)
\(762\) 49.7121 7.74418i 1.80088 0.280542i
\(763\) 1.37137 + 6.00834i 0.0496468 + 0.217517i
\(764\) −4.25636 + 16.5366i −0.153990 + 0.598274i
\(765\) 37.5936 + 59.8299i 1.35920 + 2.16315i
\(766\) 27.3370 + 1.91290i 0.987726 + 0.0691159i
\(767\) −6.60129 + 28.9221i −0.238359 + 1.04432i
\(768\) 27.1725 + 33.9260i 0.980503 + 1.22420i
\(769\) −27.5228 9.63063i −0.992496 0.347289i −0.215300 0.976548i \(-0.569073\pi\)
−0.777196 + 0.629259i \(0.783359\pi\)
\(770\) −13.0543 + 6.98210i −0.470444 + 0.251617i
\(771\) 21.7715 + 21.7715i 0.784080 + 0.784080i
\(772\) 0.562338 + 1.25492i 0.0202390 + 0.0451657i
\(773\) 22.6981 + 2.55746i 0.816393 + 0.0919855i 0.510279 0.860009i \(-0.329542\pi\)
0.306115 + 0.951995i \(0.400971\pi\)
\(774\) −5.42062 3.95940i −0.194840 0.142318i
\(775\) −0.421201 + 0.670338i −0.0151300 + 0.0240792i
\(776\) −4.97899 0.486407i −0.178735 0.0174610i
\(777\) 5.25454 2.53045i 0.188506 0.0907795i
\(778\) −4.73596 17.3320i −0.169793 0.621382i
\(779\) −42.5960 + 33.9692i −1.52616 + 1.21707i
\(780\) −40.0894 1.10362i −1.43543 0.0395160i
\(781\) 11.7138 + 33.4761i 0.419153 + 1.19787i
\(782\) −15.7400 18.1085i −0.562860 0.647559i
\(783\) −17.2564 + 10.4830i −0.616693 + 0.374632i
\(784\) 24.4512 + 7.01633i 0.873259 + 0.250583i
\(785\) −24.4576 + 8.55810i −0.872931 + 0.305452i
\(786\) −31.2527 + 34.0179i −1.11475 + 1.21338i
\(787\) 14.4631 + 18.1361i 0.515552 + 0.646482i 0.969658 0.244466i \(-0.0786125\pi\)
−0.454106 + 0.890948i \(0.650041\pi\)
\(788\) 35.2629 + 23.5350i 1.25619 + 0.838400i
\(789\) −9.96506 20.6927i −0.354766 0.736678i
\(790\) 1.45248 + 34.2857i 0.0516771 + 1.21983i
\(791\) 6.97961 + 4.38558i 0.248166 + 0.155933i
\(792\) 42.0006 + 40.7740i 1.49243 + 1.44884i
\(793\) −1.60880 + 14.2785i −0.0571301 + 0.507044i
\(794\) −9.89705 + 32.6572i −0.351233 + 1.15896i
\(795\) −71.9973 + 71.9973i −2.55348 + 2.55348i
\(796\) −3.48403 1.32782i −0.123488 0.0470633i
\(797\) −10.2962 + 29.4249i −0.364711 + 1.04228i 0.604618 + 0.796515i \(0.293326\pi\)
−0.969329 + 0.245767i \(0.920960\pi\)
\(798\) 16.5225 6.57896i 0.584890 0.232893i
\(799\) −13.6878 3.12414i −0.484238 0.110524i
\(800\) 14.1574 + 5.15668i 0.500538 + 0.182316i
\(801\) −7.20708 + 4.52851i −0.254650 + 0.160007i
\(802\) −28.1928 40.9157i −0.995524 1.44478i
\(803\) −14.7826 + 3.37402i −0.521666 + 0.119067i
\(804\) 18.3336 21.7346i 0.646575 0.766520i
\(805\) 5.04295 + 4.02162i 0.177741 + 0.141743i
\(806\) −0.443116 + 1.02948i −0.0156081 + 0.0362617i
\(807\) 3.81662 7.92529i 0.134351 0.278983i
\(808\) 9.05777 + 3.01958i 0.318651 + 0.106228i
\(809\) −30.6338 + 3.45160i −1.07703 + 0.121352i −0.632612 0.774469i \(-0.718017\pi\)
−0.444415 + 0.895821i \(0.646589\pi\)
\(810\) 5.73433 10.0464i 0.201484 0.352995i
\(811\) 34.7966 1.22187 0.610937 0.791679i \(-0.290793\pi\)
0.610937 + 0.791679i \(0.290793\pi\)
\(812\) 0.599314 + 8.59876i 0.0210318 + 0.301757i
\(813\) −18.9761 −0.665522
\(814\) −8.88541 + 15.5670i −0.311434 + 0.545625i
\(815\) −11.4823 + 1.29374i −0.402207 + 0.0453178i
\(816\) −24.2946 58.4777i −0.850482 2.04713i
\(817\) 2.71951 5.64712i 0.0951436 0.197568i
\(818\) −9.59970 + 22.3026i −0.335646 + 0.779793i
\(819\) −7.30766 5.82766i −0.255350 0.203635i
\(820\) −39.8642 33.6263i −1.39212 1.17428i
\(821\) 49.3852 11.2719i 1.72356 0.393390i 0.757727 0.652571i \(-0.226310\pi\)
0.965829 + 0.259181i \(0.0834525\pi\)
\(822\) −1.09674 1.59168i −0.0382532 0.0555161i
\(823\) 22.7792 14.3131i 0.794032 0.498923i −0.0729065 0.997339i \(-0.523227\pi\)
0.866938 + 0.498416i \(0.166085\pi\)
\(824\) 0.142005 0.667611i 0.00494698 0.0232573i
\(825\) 33.3319 + 7.60779i 1.16047 + 0.264869i
\(826\) 11.6992 4.65843i 0.407069 0.162087i
\(827\) −5.84917 + 16.7160i −0.203396 + 0.581272i −0.999722 0.0235963i \(-0.992488\pi\)
0.796326 + 0.604868i \(0.206774\pi\)
\(828\) 9.08286 23.8323i 0.315651 0.828230i
\(829\) −28.8430 + 28.8430i −1.00176 + 1.00176i −0.00176066 + 0.999998i \(0.500560\pi\)
−0.999998 + 0.00176066i \(0.999440\pi\)
\(830\) −11.1658 + 36.8436i −0.387569 + 1.27886i
\(831\) −5.87394 + 52.1327i −0.203765 + 1.80846i
\(832\) 20.9275 + 4.12829i 0.725530 + 0.143123i
\(833\) −31.3789 19.7167i −1.08721 0.683142i
\(834\) 0.652506 + 15.4023i 0.0225944 + 0.533338i
\(835\) −5.64348 11.7188i −0.195301 0.405546i
\(836\) −30.3422 + 45.4623i −1.04941 + 1.57235i
\(837\) 0.694833 + 0.871294i 0.0240170 + 0.0301163i
\(838\) 2.59329 2.82273i 0.0895836 0.0975097i
\(839\) −50.1924 + 17.5631i −1.73283 + 0.606345i −0.997454 0.0713102i \(-0.977282\pi\)
−0.735380 + 0.677655i \(0.762996\pi\)
\(840\) 9.26968 + 14.2785i 0.319834 + 0.492656i
\(841\) 26.4959 11.7883i 0.913653 0.406494i
\(842\) 13.4713 + 15.4985i 0.464253 + 0.534113i
\(843\) −20.2818 57.9620i −0.698541 1.99632i
\(844\) 0.111805 4.06136i 0.00384849 0.139798i
\(845\) 12.7493 10.1672i 0.438589 0.349763i
\(846\) −3.93382 14.3964i −0.135248 0.494959i
\(847\) 8.16598 3.93253i 0.280586 0.135123i
\(848\) 44.1341 31.3849i 1.51557 1.07776i
\(849\) 2.80194 4.45927i 0.0961625 0.153042i
\(850\) −17.7256 12.9473i −0.607982 0.444090i
\(851\) 7.76052 + 0.874401i 0.266027 + 0.0299741i
\(852\) 37.2176 16.6774i 1.27506 0.571359i
\(853\) 16.2813 + 16.2813i 0.557460 + 0.557460i 0.928583 0.371124i \(-0.121027\pi\)
−0.371124 + 0.928583i \(0.621027\pi\)
\(854\) 5.37833 2.87660i 0.184043 0.0984353i
\(855\) −66.1984 23.1638i −2.26394 0.792186i
\(856\) 4.59448 + 18.8386i 0.157036 + 0.643891i
\(857\) 5.24907 22.9977i 0.179305 0.785586i −0.802647 0.596454i \(-0.796576\pi\)
0.981952 0.189131i \(-0.0605672\pi\)
\(858\) 48.2836 + 3.37863i 1.64838 + 0.115345i
\(859\) 20.0097 + 31.8453i 0.682723 + 1.08655i 0.990819 + 0.135192i \(0.0431651\pi\)
−0.308097 + 0.951355i \(0.599692\pi\)
\(860\) 5.81041 + 1.49554i 0.198133 + 0.0509975i
\(861\) −4.55714 19.9661i −0.155307 0.680445i
\(862\) −34.9134 + 5.43883i −1.18915 + 0.185247i
\(863\) 4.37904 5.49114i 0.149064 0.186921i −0.701693 0.712479i \(-0.747572\pi\)
0.850757 + 0.525559i \(0.176144\pi\)
\(864\) 13.4336 16.4130i 0.457021 0.558383i
\(865\) −29.2344 14.0785i −0.993999 0.478685i
\(866\) −4.20244 + 22.8270i −0.142805 + 0.775694i
\(867\) 5.15815 + 45.7799i 0.175180 + 1.55477i
\(868\) 0.466563 0.0930612i 0.0158362 0.00315870i
\(869\) 41.4160i 1.40494i
\(870\) 34.4769 45.7352i 1.16888 1.55057i
\(871\) 13.9540i 0.472812i
\(872\) −13.3261 + 17.2280i −0.451280 + 0.583414i
\(873\) 0.867418 + 7.69854i 0.0293576 + 0.260556i
\(874\) 23.4207 + 4.31174i 0.792218 + 0.145847i
\(875\) −4.66383 2.24598i −0.157666 0.0759280i
\(876\) 5.30364 + 16.6097i 0.179193 + 0.561189i
\(877\) 16.1732 20.2805i 0.546129 0.684824i −0.429797 0.902926i \(-0.641415\pi\)
0.975926 + 0.218101i \(0.0699863\pi\)
\(878\) −4.17349 26.7908i −0.140848 0.904145i
\(879\) 12.0483 + 52.7873i 0.406381 + 1.78047i
\(880\) −48.3588 19.9711i −1.63018 0.673225i
\(881\) 20.1862 + 32.1261i 0.680089 + 1.08236i 0.991250 + 0.131998i \(0.0421392\pi\)
−0.311161 + 0.950357i \(0.600718\pi\)
\(882\) 2.74984 39.2976i 0.0925920 1.32322i
\(883\) −11.1907 + 49.0296i −0.376597 + 1.64998i 0.331200 + 0.943561i \(0.392547\pi\)
−0.707796 + 0.706417i \(0.750311\pi\)
\(884\) −27.6165 14.2486i −0.928844 0.479231i
\(885\) −78.9780 27.6356i −2.65482 0.928961i
\(886\) 3.95948 + 7.40296i 0.133021 + 0.248707i
\(887\) 13.2494 + 13.2494i 0.444870 + 0.444870i 0.893645 0.448775i \(-0.148140\pi\)
−0.448775 + 0.893645i \(0.648140\pi\)
\(888\) 18.7008 + 8.66689i 0.627559 + 0.290842i
\(889\) −10.4146 1.17344i −0.349293 0.0393559i
\(890\) 4.48737 6.14345i 0.150417 0.205929i
\(891\) −7.42768 + 11.8211i −0.248837 + 0.396021i
\(892\) −38.5444 40.7267i −1.29056 1.36363i
\(893\) 12.5552 6.04626i 0.420143 0.202330i
\(894\) 22.7039 6.20384i 0.759333 0.207487i
\(895\) 46.1859 36.8320i 1.54382 1.23116i
\(896\) −3.59734 8.30921i −0.120179 0.277591i
\(897\) −6.96511 19.9051i −0.232558 0.664613i
\(898\) −22.7440 + 19.7692i −0.758978 + 0.659706i
\(899\) −0.831037 1.36799i −0.0277166 0.0456251i
\(900\) 3.24959 23.1060i 0.108320 0.770200i
\(901\) −74.4689 + 26.0578i −2.48092 + 0.868111i
\(902\) 46.3507 + 42.5831i 1.54331 + 1.41786i
\(903\) 1.46897 + 1.84203i 0.0488842 + 0.0612989i
\(904\) 3.69034 + 28.8976i 0.122739 + 0.961121i
\(905\) 6.96683 + 14.4668i 0.231585 + 0.480892i
\(906\) 30.5095 1.29251i 1.01361 0.0429407i
\(907\) 18.1008 + 11.3735i 0.601028 + 0.377651i 0.797910 0.602776i \(-0.205939\pi\)
−0.196882 + 0.980427i \(0.563082\pi\)
\(908\) −48.8590 + 4.14718i −1.62144 + 0.137629i
\(909\) 1.65550 14.6930i 0.0549094 0.487335i
\(910\) 7.99513 + 2.42299i 0.265036 + 0.0803214i
\(911\) 38.7092 38.7092i 1.28249 1.28249i 0.343250 0.939244i \(-0.388472\pi\)
0.939244 0.343250i \(-0.111528\pi\)
\(912\) 55.0415 + 30.3446i 1.82261 + 1.00481i
\(913\) 15.3458 43.8558i 0.507872 1.45141i
\(914\) −11.4034 28.6386i −0.377190 0.947280i
\(915\) −39.5116 9.01826i −1.30621 0.298134i
\(916\) −16.6113 22.0484i −0.548854 0.728498i
\(917\) 8.14790 5.11967i 0.269067 0.169066i
\(918\) −25.4438 + 17.5320i −0.839770 + 0.578642i
\(919\) 31.4718 7.18322i 1.03816 0.236953i 0.330720 0.943729i \(-0.392708\pi\)
0.707437 + 0.706776i \(0.249851\pi\)
\(920\) 0.337751 + 22.7934i 0.0111353 + 0.751476i
\(921\) 0.946679 + 0.754951i 0.0311941 + 0.0248765i
\(922\) −47.8787 20.6084i −1.57680 0.678701i
\(923\) 8.68383 18.0322i 0.285832 0.593536i
\(924\) −10.4480 17.6906i −0.343715 0.581979i
\(925\) 7.09991 0.799968i 0.233444 0.0263028i
\(926\) −29.3484 16.7516i −0.964449 0.550492i
\(927\) −1.05700 −0.0347165
\(928\) −22.1310 + 20.9336i −0.726487 + 0.687180i
\(929\) −17.3669 −0.569790 −0.284895 0.958559i \(-0.591959\pi\)
−0.284895 + 0.958559i \(0.591959\pi\)
\(930\) −2.74547 1.56707i −0.0900276 0.0513863i
\(931\) 36.5519 4.11841i 1.19794 0.134975i
\(932\) −14.6342 24.7787i −0.479361 0.811654i
\(933\) −29.1246 + 60.4779i −0.953497 + 1.97996i
\(934\) 44.0466 + 18.9589i 1.44125 + 0.620355i
\(935\) 59.5932 + 47.5240i 1.94891 + 1.55420i
\(936\) −0.489429 33.0296i −0.0159975 1.07961i
\(937\) 27.1976 6.20768i 0.888508 0.202796i 0.246178 0.969225i \(-0.420825\pi\)
0.642330 + 0.766428i \(0.277968\pi\)
\(938\) −4.87742 + 3.36078i −0.159254 + 0.109733i
\(939\) −18.2359 + 11.4584i −0.595106 + 0.373930i
\(940\) 8.02676 + 10.6540i 0.261804 + 0.347495i
\(941\) 17.3640 + 3.96322i 0.566050 + 0.129197i 0.495963 0.868344i \(-0.334815\pi\)
0.0700871 + 0.997541i \(0.477672\pi\)
\(942\) −13.3031 33.4096i −0.433439 1.08855i
\(943\) 9.05750 25.8848i 0.294953 0.842926i
\(944\) 38.9738 + 21.4864i 1.26849 + 0.699322i
\(945\) 5.87378 5.87378i 0.191074 0.191074i
\(946\) −6.92982 2.10014i −0.225308 0.0682815i
\(947\) −5.11859 + 45.4287i −0.166332 + 1.47624i 0.582150 + 0.813081i \(0.302211\pi\)
−0.748482 + 0.663155i \(0.769217\pi\)
\(948\) −47.4544 + 4.02796i −1.54125 + 0.130822i
\(949\) 7.24503 + 4.55235i 0.235184 + 0.147776i
\(950\) 21.7676 0.922166i 0.706234 0.0299190i
\(951\) 30.1905 + 62.6912i 0.978994 + 2.03290i
\(952\) 1.67097 + 13.0847i 0.0541565 + 0.424078i
\(953\) −4.45264 5.58344i −0.144235 0.180865i 0.704466 0.709738i \(-0.251186\pi\)
−0.848701 + 0.528872i \(0.822615\pi\)
\(954\) −61.7594 56.7393i −1.99953 1.83700i
\(955\) −22.3090 + 7.80624i −0.721901 + 0.252604i
\(956\) −7.89681 + 56.1498i −0.255401 + 1.81602i
\(957\) −43.9087 + 53.3866i −1.41937 + 1.72574i
\(958\) −2.74064 + 2.38218i −0.0885462 + 0.0769646i
\(959\) 0.132988 + 0.380057i 0.00429440 + 0.0122727i
\(960\) −18.1796 + 57.3517i −0.586745 + 1.85102i
\(961\) 24.1677 19.2731i 0.779603 0.621713i
\(962\) 9.75727 2.66617i 0.314587 0.0859608i
\(963\) 27.0551 13.0291i 0.871839 0.419856i
\(964\) −20.9712 22.1585i −0.675437 0.713678i
\(965\) −1.01269 + 1.61168i −0.0325995 + 0.0518819i
\(966\) −5.28005 + 7.22866i −0.169883 + 0.232578i
\(967\) −16.3159 1.83836i −0.524685 0.0591178i −0.154350 0.988016i \(-0.549328\pi\)
−0.370335 + 0.928898i \(0.620757\pi\)
\(968\) 29.0626 + 13.4690i 0.934107 + 0.432912i
\(969\) −64.7465 64.7465i −2.07996 2.07996i
\(970\) −3.26580 6.10601i −0.104859 0.196052i
\(971\) −16.4925 5.77099i −0.529271 0.185200i 0.0523971 0.998626i \(-0.483314\pi\)
−0.581668 + 0.813427i \(0.697600\pi\)
\(972\) 34.2591 + 17.6758i 1.09886 + 0.566950i
\(973\) 0.714591 3.13083i 0.0229087 0.100370i
\(974\) −3.94686 + 56.4041i −0.126466 + 1.80730i
\(975\) −10.2647 16.3362i −0.328733 0.523176i
\(976\) 19.9237 + 8.22802i 0.637741 + 0.263373i
\(977\) −2.49822 10.9454i −0.0799251 0.350175i 0.919115 0.393990i \(-0.128906\pi\)
−0.999040 + 0.0438158i \(0.986049\pi\)
\(978\) −2.46835 15.8451i −0.0789293 0.506669i
\(979\) −5.72472 + 7.17857i −0.182963 + 0.229428i
\(980\) 10.7102 + 33.5417i 0.342125 + 1.07145i
\(981\) 30.3894 + 14.6348i 0.970258 + 0.467252i
\(982\) −3.21830 0.592486i −0.102700 0.0189070i
\(983\) −4.63022 41.0944i −0.147681 1.31071i −0.820818 0.571189i \(-0.806482\pi\)
0.673137 0.739518i \(-0.264946\pi\)
\(984\) 44.2837 57.2499i 1.41171 1.82506i
\(985\) 58.6818i 1.86976i
\(986\) 39.4455 20.3379i 1.25620 0.647690i
\(987\) 5.23817i 0.166733i
\(988\) 30.2483 6.03336i 0.962326 0.191947i
\(989\) 0.353239 + 3.13509i 0.0112324 + 0.0996899i
\(990\) −14.6700 + 79.6851i −0.466242 + 2.53256i
\(991\) 2.26102 + 1.08885i 0.0718235 + 0.0345884i 0.469451 0.882959i \(-0.344452\pi\)
−0.397627 + 0.917547i \(0.630166\pi\)
\(992\) 1.30114 + 1.06494i 0.0413111 + 0.0338120i
\(993\) −2.45041 + 3.07272i −0.0777615 + 0.0975099i
\(994\) −8.39438 + 1.30768i −0.266254 + 0.0414772i
\(995\) −1.14839 5.03141i −0.0364063 0.159506i
\(996\) −51.7423 13.3179i −1.63952 0.421995i
\(997\) 6.01422 + 9.57158i 0.190472 + 0.303135i 0.928284 0.371871i \(-0.121284\pi\)
−0.737812 + 0.675006i \(0.764141\pi\)
\(998\) −20.6621 1.44583i −0.654048 0.0457669i
\(999\) 2.23801 9.80538i 0.0708076 0.310228i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 116.2.l.b.11.12 yes 144
4.3 odd 2 inner 116.2.l.b.11.10 144
29.8 odd 28 inner 116.2.l.b.95.10 yes 144
116.95 even 28 inner 116.2.l.b.95.12 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.l.b.11.10 144 4.3 odd 2 inner
116.2.l.b.11.12 yes 144 1.1 even 1 trivial
116.2.l.b.95.10 yes 144 29.8 odd 28 inner
116.2.l.b.95.12 yes 144 116.95 even 28 inner