L(s) = 1 | + (−0.490 − 1.32i)2-s + (−2.34 + 0.264i)3-s + (−1.51 + 1.30i)4-s + (−0.588 + 1.22i)5-s + (1.50 + 2.98i)6-s + (2.56 + 2.04i)7-s + (2.47 + 1.37i)8-s + (2.52 − 0.575i)9-s + (1.91 + 0.181i)10-s + (−5.07 + 3.19i)11-s + (3.22 − 3.45i)12-s + (−1.29 − 0.296i)13-s + (1.45 − 4.39i)14-s + (1.05 − 3.02i)15-s + (0.615 − 3.95i)16-s + (−3.79 + 3.79i)17-s + ⋯ |
L(s) = 1 | + (−0.346 − 0.937i)2-s + (−1.35 + 0.152i)3-s + (−0.759 + 0.650i)4-s + (−0.263 + 0.546i)5-s + (0.613 + 1.21i)6-s + (0.968 + 0.772i)7-s + (0.873 + 0.486i)8-s + (0.840 − 0.191i)9-s + (0.604 + 0.0573i)10-s + (−1.53 + 0.962i)11-s + (0.930 − 0.998i)12-s + (−0.359 − 0.0821i)13-s + (0.388 − 1.17i)14-s + (0.273 − 0.781i)15-s + (0.153 − 0.988i)16-s + (−0.919 + 0.919i)17-s + ⋯ |
Λ(s)=(=(116s/2ΓC(s)L(s)(0.341−0.939i)Λ(2−s)
Λ(s)=(=(116s/2ΓC(s+1/2)L(s)(0.341−0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
116
= 22⋅29
|
Sign: |
0.341−0.939i
|
Analytic conductor: |
0.926264 |
Root analytic conductor: |
0.962426 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ116(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 116, ( :1/2), 0.341−0.939i)
|
Particular Values
L(1) |
≈ |
0.312544+0.218930i |
L(21) |
≈ |
0.312544+0.218930i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.490+1.32i)T |
| 29 | 1+(−2.93+4.51i)T |
good | 3 | 1+(2.34−0.264i)T+(2.92−0.667i)T2 |
| 5 | 1+(0.588−1.22i)T+(−3.11−3.90i)T2 |
| 7 | 1+(−2.56−2.04i)T+(1.55+6.82i)T2 |
| 11 | 1+(5.07−3.19i)T+(4.77−9.91i)T2 |
| 13 | 1+(1.29+0.296i)T+(11.7+5.64i)T2 |
| 17 | 1+(3.79−3.79i)T−17iT2 |
| 19 | 1+(−0.151+1.34i)T+(−18.5−4.22i)T2 |
| 23 | 1+(−1.29−2.68i)T+(−14.3+17.9i)T2 |
| 31 | 1+(1.44+4.14i)T+(−24.2+19.3i)T2 |
| 37 | 1+(3.02−4.81i)T+(−16.0−33.3i)T2 |
| 41 | 1+(4.55+4.55i)T+41iT2 |
| 43 | 1+(−6.65−2.33i)T+(33.6+26.8i)T2 |
| 47 | 1+(0.260+0.414i)T+(−20.3+42.3i)T2 |
| 53 | 1+(−5.75−2.77i)T+(33.0+41.4i)T2 |
| 59 | 1+6.26iT−59T2 |
| 61 | 1+(−1.38−12.2i)T+(−59.4+13.5i)T2 |
| 67 | 1+(−0.856−3.75i)T+(−60.3+29.0i)T2 |
| 71 | 1+(2.73−11.9i)T+(−63.9−30.8i)T2 |
| 73 | 1+(−7.19−2.51i)T+(57.0+45.5i)T2 |
| 79 | 1+(−2.90+4.62i)T+(−34.2−71.1i)T2 |
| 83 | 1+(2.50−1.99i)T+(18.4−80.9i)T2 |
| 89 | 1+(−12.1+4.23i)T+(69.5−55.4i)T2 |
| 97 | 1+(−0.141+1.25i)T+(−94.5−21.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.27529317641222227306832421421, −12.33539607687439119492156043921, −11.48604338972315137737783879493, −10.84057274976576526471497506241, −10.04491617764103710375010495664, −8.476487547999900586495623286559, −7.29787523402278920438672632460, −5.46175720496265322153308624222, −4.58025810736369975644233136203, −2.35301355645904820615558320807,
0.54925817958332078324495285454, 4.77114294217893018285801994487, 5.24643588503547898886961615030, 6.68069057404575526009919823164, 7.76449064290503183991704218100, 8.754909729854625994031117013443, 10.56030603884577047683239302627, 10.93731770910138042664429062204, 12.33510696412655165691431732871, 13.45005779427224207853718031276