Properties

Label 116.2.l.b.11.7
Level $116$
Weight $2$
Character 116.11
Analytic conductor $0.926$
Analytic rank $0$
Dimension $144$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,2,Mod(3,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([14, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.l (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.926264663447\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(12\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 11.7
Character \(\chi\) \(=\) 116.11
Dual form 116.2.l.b.95.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.490339 - 1.32649i) q^{2} +(-2.34863 + 0.264627i) q^{3} +(-1.51913 + 1.30086i) q^{4} +(-0.588667 + 1.22238i) q^{5} +(1.50265 + 2.98566i) q^{6} +(2.56130 + 2.04257i) q^{7} +(2.47046 + 1.37725i) q^{8} +(2.52123 - 0.575454i) q^{9} +O(q^{10})\) \(q+(-0.490339 - 1.32649i) q^{2} +(-2.34863 + 0.264627i) q^{3} +(-1.51913 + 1.30086i) q^{4} +(-0.588667 + 1.22238i) q^{5} +(1.50265 + 2.98566i) q^{6} +(2.56130 + 2.04257i) q^{7} +(2.47046 + 1.37725i) q^{8} +(2.52123 - 0.575454i) q^{9} +(1.91012 + 0.181478i) q^{10} +(-5.07822 + 3.19086i) q^{11} +(3.22364 - 3.45723i) q^{12} +(-1.29716 - 0.296069i) q^{13} +(1.45353 - 4.39908i) q^{14} +(1.05908 - 3.02669i) q^{15} +(0.615539 - 3.95236i) q^{16} +(-3.79071 + 3.79071i) q^{17} +(-1.99959 - 3.06221i) q^{18} +(0.151626 - 1.34572i) q^{19} +(-0.695878 - 2.62273i) q^{20} +(-6.55605 - 4.11944i) q^{21} +(6.72268 + 5.17159i) q^{22} +(1.29280 + 2.68452i) q^{23} +(-6.16665 - 2.58089i) q^{24} +(1.96977 + 2.47001i) q^{25} +(0.243319 + 1.86585i) q^{26} +(0.923422 - 0.323119i) q^{27} +(-6.54805 + 0.228950i) q^{28} +(2.93553 - 4.51472i) q^{29} +(-4.53417 + 0.0792436i) q^{30} +(-1.44988 - 4.14352i) q^{31} +(-5.54457 + 1.12149i) q^{32} +(11.0825 - 8.83796i) q^{33} +(6.88707 + 3.16960i) q^{34} +(-4.00455 + 1.92849i) q^{35} +(-3.08150 + 4.15395i) q^{36} +(-3.02614 + 4.81608i) q^{37} +(-1.85942 + 0.458728i) q^{38} +(3.12490 + 0.352092i) q^{39} +(-3.13780 + 2.20910i) q^{40} +(-4.55671 - 4.55671i) q^{41} +(-2.24969 + 10.7164i) q^{42} +(6.65934 + 2.33020i) q^{43} +(3.56365 - 11.4534i) q^{44} +(-0.780741 + 3.42065i) q^{45} +(2.92708 - 3.03121i) q^{46} +(-0.260350 - 0.414345i) q^{47} +(-0.399773 + 9.44549i) q^{48} +(0.830527 + 3.63878i) q^{49} +(2.31058 - 3.82401i) q^{50} +(7.89985 - 9.90609i) q^{51} +(2.35571 - 1.23766i) q^{52} +(5.75234 + 2.77018i) q^{53} +(-0.881404 - 1.06647i) q^{54} +(-0.911059 - 8.08587i) q^{55} +(3.51447 + 8.57364i) q^{56} +3.20071i q^{57} +(-7.42812 - 1.68019i) q^{58} -6.26790i q^{59} +(2.32840 + 5.97567i) q^{60} +(1.38184 + 12.2642i) q^{61} +(-4.78539 + 3.95498i) q^{62} +(7.63303 + 3.67588i) q^{63} +(4.20636 + 6.80489i) q^{64} +(1.12551 - 1.41134i) q^{65} +(-17.1576 - 10.3671i) q^{66} +(0.856051 + 3.75061i) q^{67} +(0.827426 - 10.6898i) q^{68} +(-3.74670 - 5.96283i) q^{69} +(4.52170 + 4.36637i) q^{70} +(-2.73458 + 11.9810i) q^{71} +(7.02115 + 2.05073i) q^{72} +(7.19276 + 2.51686i) q^{73} +(7.87230 + 1.65263i) q^{74} +(-5.27987 - 5.27987i) q^{75} +(1.52025 + 2.24157i) q^{76} +(-19.5244 - 2.19987i) q^{77} +(-1.06522 - 4.31779i) q^{78} +(2.90584 - 4.62461i) q^{79} +(4.46893 + 3.07904i) q^{80} +(-9.07317 + 4.36941i) q^{81} +(-3.81008 + 8.27875i) q^{82} +(-2.50734 + 1.99954i) q^{83} +(15.3183 - 2.27051i) q^{84} +(-2.40222 - 6.86516i) q^{85} +(-0.174352 - 9.97612i) q^{86} +(-5.69974 + 11.3802i) q^{87} +(-16.9402 + 0.888911i) q^{88} +(12.1053 - 4.23583i) q^{89} +(4.92028 - 0.641637i) q^{90} +(-2.71769 - 3.40787i) q^{91} +(-5.45612 - 2.39641i) q^{92} +(4.50171 + 9.34791i) q^{93} +(-0.421963 + 0.548521i) q^{94} +(1.55572 + 0.977524i) q^{95} +(12.7253 - 4.10120i) q^{96} +(0.141905 - 1.25944i) q^{97} +(4.41955 - 2.88592i) q^{98} +(-10.9672 + 10.9672i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 12 q^{2} - 14 q^{4} - 28 q^{5} - 14 q^{6} - 12 q^{8} - 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 12 q^{2} - 14 q^{4} - 28 q^{5} - 14 q^{6} - 12 q^{8} - 28 q^{9} - 8 q^{10} - 12 q^{12} - 28 q^{13} - 14 q^{14} + 2 q^{16} - 4 q^{17} + 14 q^{18} + 14 q^{20} - 28 q^{21} - 14 q^{22} - 22 q^{24} - 12 q^{25} - 30 q^{26} - 36 q^{29} + 16 q^{30} - 12 q^{32} - 28 q^{33} - 56 q^{34} - 50 q^{36} - 36 q^{37} - 14 q^{38} - 60 q^{40} - 12 q^{41} - 14 q^{42} + 30 q^{44} + 36 q^{46} + 136 q^{48} + 12 q^{49} + 56 q^{50} + 66 q^{52} + 48 q^{53} + 56 q^{54} + 52 q^{56} + 184 q^{58} + 108 q^{60} - 28 q^{61} + 84 q^{62} + 112 q^{64} - 68 q^{65} + 92 q^{66} + 68 q^{68} - 44 q^{69} + 46 q^{70} + 4 q^{72} - 148 q^{73} - 32 q^{74} - 14 q^{76} - 60 q^{77} + 2 q^{78} - 14 q^{80} + 36 q^{81} + 6 q^{82} + 28 q^{84} - 92 q^{85} - 48 q^{88} + 28 q^{89} + 28 q^{90} - 14 q^{92} - 28 q^{93} + 62 q^{94} - 56 q^{96} + 184 q^{97} - 110 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(-1\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.490339 1.32649i −0.346722 0.937968i
\(3\) −2.34863 + 0.264627i −1.35598 + 0.152782i −0.759846 0.650103i \(-0.774726\pi\)
−0.596133 + 0.802885i \(0.703297\pi\)
\(4\) −1.51913 + 1.30086i −0.759567 + 0.650429i
\(5\) −0.588667 + 1.22238i −0.263260 + 0.546665i −0.990137 0.140103i \(-0.955257\pi\)
0.726877 + 0.686768i \(0.240971\pi\)
\(6\) 1.50265 + 2.98566i 0.613453 + 1.21889i
\(7\) 2.56130 + 2.04257i 0.968081 + 0.772019i 0.973669 0.227966i \(-0.0732074\pi\)
−0.00558836 + 0.999984i \(0.501779\pi\)
\(8\) 2.47046 + 1.37725i 0.873440 + 0.486931i
\(9\) 2.52123 0.575454i 0.840410 0.191818i
\(10\) 1.91012 + 0.181478i 0.604032 + 0.0573884i
\(11\) −5.07822 + 3.19086i −1.53114 + 0.962080i −0.538285 + 0.842763i \(0.680928\pi\)
−0.992856 + 0.119317i \(0.961930\pi\)
\(12\) 3.22364 3.45723i 0.930584 0.998016i
\(13\) −1.29716 0.296069i −0.359769 0.0821149i 0.0388160 0.999246i \(-0.487641\pi\)
−0.398585 + 0.917131i \(0.630499\pi\)
\(14\) 1.45353 4.39908i 0.388473 1.17570i
\(15\) 1.05908 3.02669i 0.273454 0.781488i
\(16\) 0.615539 3.95236i 0.153885 0.988089i
\(17\) −3.79071 + 3.79071i −0.919383 + 0.919383i −0.996984 0.0776011i \(-0.975274\pi\)
0.0776011 + 0.996984i \(0.475274\pi\)
\(18\) −1.99959 3.06221i −0.471308 0.721770i
\(19\) 0.151626 1.34572i 0.0347854 0.308729i −0.964257 0.264970i \(-0.914638\pi\)
0.999042 0.0437590i \(-0.0139334\pi\)
\(20\) −0.695878 2.62273i −0.155603 0.586461i
\(21\) −6.55605 4.11944i −1.43065 0.898936i
\(22\) 6.72268 + 5.17159i 1.43328 + 1.10259i
\(23\) 1.29280 + 2.68452i 0.269567 + 0.559762i 0.991178 0.132537i \(-0.0423123\pi\)
−0.721611 + 0.692299i \(0.756598\pi\)
\(24\) −6.16665 2.58089i −1.25876 0.526823i
\(25\) 1.96977 + 2.47001i 0.393953 + 0.494002i
\(26\) 0.243319 + 1.86585i 0.0477188 + 0.365923i
\(27\) 0.923422 0.323119i 0.177713 0.0621844i
\(28\) −6.54805 + 0.228950i −1.23747 + 0.0432675i
\(29\) 2.93553 4.51472i 0.545114 0.838362i
\(30\) −4.53417 + 0.0792436i −0.827823 + 0.0144678i
\(31\) −1.44988 4.14352i −0.260406 0.744199i −0.997646 0.0685678i \(-0.978157\pi\)
0.737240 0.675631i \(-0.236129\pi\)
\(32\) −5.54457 + 1.12149i −0.980151 + 0.198253i
\(33\) 11.0825 8.83796i 1.92921 1.53849i
\(34\) 6.88707 + 3.16960i 1.18112 + 0.543581i
\(35\) −4.00455 + 1.92849i −0.676892 + 0.325974i
\(36\) −3.08150 + 4.15395i −0.513584 + 0.692326i
\(37\) −3.02614 + 4.81608i −0.497495 + 0.791759i −0.997227 0.0744214i \(-0.976289\pi\)
0.499732 + 0.866180i \(0.333432\pi\)
\(38\) −1.85942 + 0.458728i −0.301638 + 0.0744155i
\(39\) 3.12490 + 0.352092i 0.500385 + 0.0563798i
\(40\) −3.13780 + 2.20910i −0.496130 + 0.349290i
\(41\) −4.55671 4.55671i −0.711638 0.711638i 0.255239 0.966878i \(-0.417846\pi\)
−0.966878 + 0.255239i \(0.917846\pi\)
\(42\) −2.24969 + 10.7164i −0.347135 + 1.65358i
\(43\) 6.65934 + 2.33020i 1.01554 + 0.355353i 0.786186 0.617990i \(-0.212053\pi\)
0.229354 + 0.973343i \(0.426339\pi\)
\(44\) 3.56365 11.4534i 0.537240 1.72666i
\(45\) −0.780741 + 3.42065i −0.116386 + 0.509921i
\(46\) 2.92708 3.03121i 0.431574 0.446927i
\(47\) −0.260350 0.414345i −0.0379760 0.0604384i 0.827197 0.561912i \(-0.189934\pi\)
−0.865173 + 0.501474i \(0.832791\pi\)
\(48\) −0.399773 + 9.44549i −0.0577023 + 1.36334i
\(49\) 0.830527 + 3.63878i 0.118647 + 0.519825i
\(50\) 2.31058 3.82401i 0.326765 0.540797i
\(51\) 7.89985 9.90609i 1.10620 1.38713i
\(52\) 2.35571 1.23766i 0.326678 0.171632i
\(53\) 5.75234 + 2.77018i 0.790144 + 0.380513i 0.785018 0.619474i \(-0.212654\pi\)
0.00512653 + 0.999987i \(0.498368\pi\)
\(54\) −0.881404 1.06647i −0.119944 0.145128i
\(55\) −0.911059 8.08587i −0.122847 1.09030i
\(56\) 3.51447 + 8.57364i 0.469640 + 1.14570i
\(57\) 3.20071i 0.423944i
\(58\) −7.42812 1.68019i −0.975360 0.220620i
\(59\) 6.26790i 0.816011i −0.912979 0.408006i \(-0.866224\pi\)
0.912979 0.408006i \(-0.133776\pi\)
\(60\) 2.32840 + 5.97567i 0.300595 + 0.771455i
\(61\) 1.38184 + 12.2642i 0.176926 + 1.57026i 0.697586 + 0.716501i \(0.254257\pi\)
−0.520660 + 0.853764i \(0.674314\pi\)
\(62\) −4.78539 + 3.95498i −0.607746 + 0.502283i
\(63\) 7.63303 + 3.67588i 0.961672 + 0.463117i
\(64\) 4.20636 + 6.80489i 0.525795 + 0.850611i
\(65\) 1.12551 1.41134i 0.139602 0.175055i
\(66\) −17.1576 10.3671i −2.11195 1.27611i
\(67\) 0.856051 + 3.75061i 0.104583 + 0.458209i 0.999918 + 0.0128152i \(0.00407932\pi\)
−0.895335 + 0.445394i \(0.853064\pi\)
\(68\) 0.827426 10.6898i 0.100340 1.29633i
\(69\) −3.74670 5.96283i −0.451049 0.717841i
\(70\) 4.52170 + 4.36637i 0.540447 + 0.521881i
\(71\) −2.73458 + 11.9810i −0.324534 + 1.42188i 0.504853 + 0.863205i \(0.331547\pi\)
−0.829388 + 0.558673i \(0.811311\pi\)
\(72\) 7.02115 + 2.05073i 0.827450 + 0.241680i
\(73\) 7.19276 + 2.51686i 0.841849 + 0.294576i 0.716543 0.697543i \(-0.245723\pi\)
0.125306 + 0.992118i \(0.460009\pi\)
\(74\) 7.87230 + 1.65263i 0.915137 + 0.192114i
\(75\) −5.27987 5.27987i −0.609667 0.609667i
\(76\) 1.52025 + 2.24157i 0.174384 + 0.257126i
\(77\) −19.5244 2.19987i −2.22501 0.250699i
\(78\) −1.06522 4.31779i −0.120612 0.488893i
\(79\) 2.90584 4.62461i 0.326932 0.520309i −0.642302 0.766452i \(-0.722020\pi\)
0.969234 + 0.246143i \(0.0791632\pi\)
\(80\) 4.46893 + 3.07904i 0.499642 + 0.344248i
\(81\) −9.07317 + 4.36941i −1.00813 + 0.485490i
\(82\) −3.81008 + 8.27875i −0.420753 + 0.914235i
\(83\) −2.50734 + 1.99954i −0.275216 + 0.219478i −0.751365 0.659887i \(-0.770604\pi\)
0.476148 + 0.879365i \(0.342033\pi\)
\(84\) 15.3183 2.27051i 1.67137 0.247733i
\(85\) −2.40222 6.86516i −0.260558 0.744631i
\(86\) −0.174352 9.97612i −0.0188009 1.07575i
\(87\) −5.69974 + 11.3802i −0.611076 + 1.22009i
\(88\) −16.9402 + 0.888911i −1.80583 + 0.0947583i
\(89\) 12.1053 4.23583i 1.28316 0.448997i 0.399331 0.916807i \(-0.369242\pi\)
0.883829 + 0.467809i \(0.154957\pi\)
\(90\) 4.92028 0.641637i 0.518643 0.0676345i
\(91\) −2.71769 3.40787i −0.284891 0.357242i
\(92\) −5.45612 2.39641i −0.568840 0.249843i
\(93\) 4.50171 + 9.34791i 0.466806 + 0.969333i
\(94\) −0.421963 + 0.548521i −0.0435222 + 0.0565756i
\(95\) 1.55572 + 0.977524i 0.159613 + 0.100292i
\(96\) 12.7253 4.10120i 1.29877 0.418577i
\(97\) 0.141905 1.25944i 0.0144082 0.127877i −0.984449 0.175671i \(-0.943791\pi\)
0.998857 + 0.0477942i \(0.0152192\pi\)
\(98\) 4.41955 2.88592i 0.446442 0.291522i
\(99\) −10.9672 + 10.9672i −1.10224 + 1.10224i
\(100\) −6.20547 1.18989i −0.620547 0.118989i
\(101\) 1.77842 5.08243i 0.176959 0.505720i −0.820903 0.571067i \(-0.806530\pi\)
0.997863 + 0.0653467i \(0.0208153\pi\)
\(102\) −17.0139 5.62169i −1.68463 0.556631i
\(103\) −13.8841 3.16896i −1.36804 0.312247i −0.525462 0.850817i \(-0.676107\pi\)
−0.842580 + 0.538571i \(0.818965\pi\)
\(104\) −2.79683 2.51795i −0.274252 0.246905i
\(105\) 8.89486 5.58901i 0.868049 0.545431i
\(106\) 0.854009 8.98873i 0.0829487 0.873062i
\(107\) 15.1947 3.46808i 1.46892 0.335272i 0.588128 0.808768i \(-0.299865\pi\)
0.880796 + 0.473496i \(0.157008\pi\)
\(108\) −0.982470 + 1.69210i −0.0945382 + 0.162823i
\(109\) −3.13660 2.50135i −0.300431 0.239586i 0.461658 0.887058i \(-0.347255\pi\)
−0.762089 + 0.647472i \(0.775826\pi\)
\(110\) −10.2791 + 5.17333i −0.980071 + 0.493257i
\(111\) 5.83282 12.1120i 0.553626 1.14962i
\(112\) 9.64954 8.86589i 0.911796 0.837748i
\(113\) −0.0605474 + 0.00682206i −0.00569582 + 0.000641765i −0.114812 0.993387i \(-0.536627\pi\)
0.109116 + 0.994029i \(0.465198\pi\)
\(114\) 4.24570 1.56943i 0.397646 0.146991i
\(115\) −4.04254 −0.376968
\(116\) 1.41354 + 10.6772i 0.131244 + 0.991350i
\(117\) −3.44083 −0.318104
\(118\) −8.31429 + 3.07340i −0.765392 + 0.282929i
\(119\) −17.4520 + 1.96636i −1.59982 + 0.180256i
\(120\) 6.78494 6.01870i 0.619377 0.549429i
\(121\) 10.8340 22.4971i 0.984912 2.04519i
\(122\) 15.5907 7.84659i 1.41151 0.710397i
\(123\) 11.9078 + 9.49618i 1.07369 + 0.856241i
\(124\) 7.59270 + 4.40848i 0.681844 + 0.395893i
\(125\) −10.7924 + 2.46330i −0.965305 + 0.220325i
\(126\) 1.13322 11.9275i 0.100956 1.06259i
\(127\) −1.61237 + 1.01312i −0.143075 + 0.0899001i −0.601667 0.798747i \(-0.705497\pi\)
0.458592 + 0.888647i \(0.348354\pi\)
\(128\) 6.96405 8.91639i 0.615541 0.788105i
\(129\) −16.2569 3.71054i −1.43134 0.326695i
\(130\) −2.42401 0.800934i −0.212599 0.0702466i
\(131\) −4.51526 + 12.9039i −0.394500 + 1.12742i 0.559815 + 0.828617i \(0.310872\pi\)
−0.954316 + 0.298800i \(0.903414\pi\)
\(132\) −5.33881 + 27.8427i −0.464684 + 2.42340i
\(133\) 3.13708 3.13708i 0.272019 0.272019i
\(134\) 4.55537 2.97461i 0.393524 0.256967i
\(135\) −0.148614 + 1.31898i −0.0127906 + 0.113520i
\(136\) −14.5856 + 4.14405i −1.25070 + 0.355350i
\(137\) 19.0825 + 11.9903i 1.63033 + 1.02440i 0.959065 + 0.283187i \(0.0913918\pi\)
0.671266 + 0.741217i \(0.265751\pi\)
\(138\) −6.07246 + 7.89375i −0.516923 + 0.671961i
\(139\) 4.09956 + 8.51283i 0.347720 + 0.722049i 0.999334 0.0365027i \(-0.0116217\pi\)
−0.651613 + 0.758551i \(0.725907\pi\)
\(140\) 3.57476 8.13898i 0.302122 0.687870i
\(141\) 0.721112 + 0.904246i 0.0607286 + 0.0761512i
\(142\) 17.2335 2.24736i 1.44620 0.188594i
\(143\) 7.53201 2.63556i 0.629858 0.220397i
\(144\) −0.722483 10.3190i −0.0602069 0.859918i
\(145\) 3.79065 + 6.24600i 0.314797 + 0.518702i
\(146\) −0.188318 10.7752i −0.0155853 0.891763i
\(147\) −2.91351 8.32634i −0.240302 0.686745i
\(148\) −1.66791 11.2529i −0.137102 0.924979i
\(149\) 5.12076 4.08367i 0.419509 0.334547i −0.390878 0.920443i \(-0.627828\pi\)
0.810387 + 0.585895i \(0.199257\pi\)
\(150\) −4.41475 + 9.59261i −0.360463 + 0.783233i
\(151\) 1.83267 0.882569i 0.149141 0.0718225i −0.357825 0.933789i \(-0.616481\pi\)
0.506966 + 0.861966i \(0.330767\pi\)
\(152\) 2.22797 3.11571i 0.180713 0.252718i
\(153\) −7.37588 + 11.7386i −0.596305 + 0.949013i
\(154\) 6.65548 + 26.9775i 0.536314 + 2.17391i
\(155\) 5.91846 + 0.666850i 0.475382 + 0.0535627i
\(156\) −5.20517 + 3.53018i −0.416747 + 0.282640i
\(157\) −10.3348 10.3348i −0.824803 0.824803i 0.161989 0.986793i \(-0.448209\pi\)
−0.986793 + 0.161989i \(0.948209\pi\)
\(158\) −7.55933 1.58692i −0.601388 0.126249i
\(159\) −14.2431 4.98389i −1.12955 0.395248i
\(160\) 1.89302 7.43776i 0.149656 0.588006i
\(161\) −2.17208 + 9.51650i −0.171184 + 0.750006i
\(162\) 10.2449 + 9.89294i 0.804915 + 0.777263i
\(163\) 6.00147 + 9.55129i 0.470072 + 0.748115i 0.994656 0.103244i \(-0.0329221\pi\)
−0.524584 + 0.851358i \(0.675779\pi\)
\(164\) 12.8499 + 0.994625i 1.00341 + 0.0776671i
\(165\) 4.27947 + 18.7496i 0.333156 + 1.45965i
\(166\) 3.88181 + 2.34550i 0.301287 + 0.182046i
\(167\) −9.48148 + 11.8894i −0.733699 + 0.920029i −0.999026 0.0441291i \(-0.985949\pi\)
0.265327 + 0.964159i \(0.414520\pi\)
\(168\) −10.5230 19.2063i −0.811866 1.48179i
\(169\) −10.1176 4.87239i −0.778278 0.374799i
\(170\) −7.92864 + 6.55278i −0.608099 + 0.502575i
\(171\) −0.392115 3.48011i −0.0299858 0.266131i
\(172\) −13.1477 + 5.12296i −1.00250 + 0.390622i
\(173\) 9.89244i 0.752108i 0.926598 + 0.376054i \(0.122719\pi\)
−0.926598 + 0.376054i \(0.877281\pi\)
\(174\) 17.8905 + 1.98047i 1.35627 + 0.150139i
\(175\) 10.3498i 0.782373i
\(176\) 9.48556 + 22.0350i 0.715001 + 1.66095i
\(177\) 1.65865 + 14.7209i 0.124672 + 1.10649i
\(178\) −11.5545 13.9805i −0.866046 1.04789i
\(179\) −7.06397 3.40183i −0.527986 0.254265i 0.150847 0.988557i \(-0.451800\pi\)
−0.678833 + 0.734293i \(0.737514\pi\)
\(180\) −3.26373 6.21206i −0.243264 0.463020i
\(181\) −9.23028 + 11.5744i −0.686081 + 0.860319i −0.995899 0.0904773i \(-0.971161\pi\)
0.309817 + 0.950796i \(0.399732\pi\)
\(182\) −3.18791 + 5.27599i −0.236303 + 0.391082i
\(183\) −6.49084 28.4382i −0.479817 2.10222i
\(184\) −0.503451 + 8.41252i −0.0371149 + 0.620179i
\(185\) −4.10569 6.53417i −0.301856 0.480401i
\(186\) 10.1925 10.5551i 0.747351 0.773938i
\(187\) 7.15446 31.3457i 0.523186 2.29223i
\(188\) 0.934511 + 0.290767i 0.0681562 + 0.0212064i
\(189\) 3.02516 + 1.05855i 0.220048 + 0.0769980i
\(190\) 0.533841 2.54296i 0.0387289 0.184486i
\(191\) 2.38215 + 2.38215i 0.172366 + 0.172366i 0.788018 0.615652i \(-0.211107\pi\)
−0.615652 + 0.788018i \(0.711107\pi\)
\(192\) −11.6799 14.8690i −0.842926 1.07308i
\(193\) −4.16676 0.469481i −0.299930 0.0337940i −0.0392830 0.999228i \(-0.512507\pi\)
−0.260647 + 0.965434i \(0.583936\pi\)
\(194\) −1.74021 + 0.429317i −0.124940 + 0.0308232i
\(195\) −2.26992 + 3.61255i −0.162552 + 0.258700i
\(196\) −5.99521 4.44739i −0.428229 0.317671i
\(197\) 17.0865 8.22841i 1.21736 0.586250i 0.288785 0.957394i \(-0.406749\pi\)
0.928575 + 0.371144i \(0.121034\pi\)
\(198\) 19.9254 + 9.17017i 1.41604 + 0.651696i
\(199\) 2.31781 1.84839i 0.164305 0.131029i −0.537886 0.843018i \(-0.680777\pi\)
0.702191 + 0.711989i \(0.252205\pi\)
\(200\) 1.46441 + 8.81492i 0.103550 + 0.623309i
\(201\) −3.00305 8.58223i −0.211819 0.605344i
\(202\) −7.61380 + 0.133066i −0.535705 + 0.00936250i
\(203\) 16.7404 5.56754i 1.17495 0.390764i
\(204\) 0.885487 + 25.3253i 0.0619965 + 1.77312i
\(205\) 8.25241 2.88764i 0.576374 0.201682i
\(206\) 2.60435 + 19.9710i 0.181453 + 1.39144i
\(207\) 4.80426 + 6.02436i 0.333919 + 0.418722i
\(208\) −1.96863 + 4.94461i −0.136500 + 0.342847i
\(209\) 3.52400 + 7.31766i 0.243760 + 0.506173i
\(210\) −11.7752 9.05840i −0.812569 0.625089i
\(211\) 15.0964 + 9.48569i 1.03928 + 0.653022i 0.939697 0.342008i \(-0.111107\pi\)
0.0995808 + 0.995029i \(0.468250\pi\)
\(212\) −12.3422 + 3.27469i −0.847664 + 0.224907i
\(213\) 3.25201 28.8624i 0.222824 1.97762i
\(214\) −12.0509 18.4550i −0.823783 1.26156i
\(215\) −6.76853 + 6.76853i −0.461610 + 0.461610i
\(216\) 2.72630 + 0.473529i 0.185501 + 0.0322196i
\(217\) 4.74985 13.5743i 0.322441 0.921483i
\(218\) −1.78001 + 5.38717i −0.120558 + 0.364865i
\(219\) −17.5591 4.00776i −1.18654 0.270819i
\(220\) 11.9026 + 11.0984i 0.802472 + 0.748252i
\(221\) 6.03950 3.79487i 0.406261 0.255270i
\(222\) −18.9264 1.79818i −1.27026 0.120686i
\(223\) 17.5165 3.99802i 1.17299 0.267727i 0.408742 0.912650i \(-0.365968\pi\)
0.764248 + 0.644923i \(0.223110\pi\)
\(224\) −16.4920 8.45269i −1.10192 0.564769i
\(225\) 6.38761 + 5.09395i 0.425841 + 0.339597i
\(226\) 0.0387382 + 0.0769703i 0.00257682 + 0.00511998i
\(227\) 1.01832 2.11456i 0.0675881 0.140348i −0.864438 0.502740i \(-0.832325\pi\)
0.932026 + 0.362392i \(0.118040\pi\)
\(228\) −4.16367 4.86231i −0.275745 0.322014i
\(229\) 2.33196 0.262749i 0.154100 0.0173629i −0.0345772 0.999402i \(-0.511008\pi\)
0.188678 + 0.982039i \(0.439580\pi\)
\(230\) 1.98221 + 5.36237i 0.130703 + 0.353584i
\(231\) 46.4376 3.05537
\(232\) 13.4700 7.11048i 0.884349 0.466826i
\(233\) −10.1722 −0.666405 −0.333203 0.942855i \(-0.608129\pi\)
−0.333203 + 0.942855i \(0.608129\pi\)
\(234\) 1.68717 + 4.56421i 0.110294 + 0.298372i
\(235\) 0.659747 0.0743356i 0.0430371 0.00484912i
\(236\) 8.15364 + 9.52178i 0.530757 + 0.619815i
\(237\) −5.60092 + 11.6304i −0.363819 + 0.755478i
\(238\) 11.1657 + 22.1856i 0.723767 + 1.43808i
\(239\) −6.95433 5.54589i −0.449838 0.358734i 0.372213 0.928147i \(-0.378599\pi\)
−0.822051 + 0.569413i \(0.807170\pi\)
\(240\) −11.3106 6.04892i −0.730099 0.390456i
\(241\) 5.72199 1.30601i 0.368586 0.0841274i −0.0342160 0.999414i \(-0.510893\pi\)
0.402802 + 0.915287i \(0.368036\pi\)
\(242\) −35.1545 3.33999i −2.25981 0.214702i
\(243\) 17.6681 11.1016i 1.13341 0.712168i
\(244\) −18.0531 16.8333i −1.15573 1.07764i
\(245\) −4.93687 1.12681i −0.315405 0.0719891i
\(246\) 6.75767 20.4519i 0.430854 1.30397i
\(247\) −0.595109 + 1.70072i −0.0378659 + 0.108215i
\(248\) 2.12479 12.2333i 0.134924 0.776813i
\(249\) 5.35967 5.35967i 0.339656 0.339656i
\(250\) 8.55950 + 13.1082i 0.541350 + 0.829034i
\(251\) 0.592621 5.25966i 0.0374059 0.331987i −0.961047 0.276385i \(-0.910864\pi\)
0.998453 0.0556021i \(-0.0177078\pi\)
\(252\) −16.3774 + 4.34534i −1.03168 + 0.273731i
\(253\) −15.1310 9.50747i −0.951281 0.597729i
\(254\) 2.13450 + 1.64202i 0.133931 + 0.103030i
\(255\) 7.45863 + 15.4880i 0.467077 + 0.969896i
\(256\) −15.2422 4.86566i −0.952639 0.304104i
\(257\) −0.685106 0.859095i −0.0427357 0.0535889i 0.760004 0.649918i \(-0.225197\pi\)
−0.802740 + 0.596329i \(0.796625\pi\)
\(258\) 3.04943 + 23.3840i 0.189849 + 1.45583i
\(259\) −17.5880 + 6.15432i −1.09287 + 0.382411i
\(260\) 0.126157 + 3.60814i 0.00782394 + 0.223768i
\(261\) 4.80312 13.0719i 0.297306 0.809131i
\(262\) 19.3308 0.337844i 1.19426 0.0208721i
\(263\) 0.769315 + 2.19858i 0.0474380 + 0.135570i 0.965165 0.261641i \(-0.0842637\pi\)
−0.917727 + 0.397211i \(0.869978\pi\)
\(264\) 39.5509 6.57054i 2.43419 0.404389i
\(265\) −6.77242 + 5.40083i −0.416027 + 0.331770i
\(266\) −5.69953 2.62306i −0.349460 0.160830i
\(267\) −27.3099 + 13.1518i −1.67134 + 0.804875i
\(268\) −6.17946 4.58407i −0.377471 0.280017i
\(269\) −7.93074 + 12.6217i −0.483546 + 0.769559i −0.996019 0.0891445i \(-0.971587\pi\)
0.512473 + 0.858703i \(0.328730\pi\)
\(270\) 1.82248 0.449615i 0.110913 0.0273627i
\(271\) −17.5508 1.97750i −1.06614 0.120125i −0.438577 0.898694i \(-0.644517\pi\)
−0.627559 + 0.778569i \(0.715946\pi\)
\(272\) 12.6489 + 17.3156i 0.766953 + 1.04991i
\(273\) 7.28464 + 7.28464i 0.440887 + 0.440887i
\(274\) 6.54812 31.1921i 0.395586 1.88438i
\(275\) −17.8843 6.25800i −1.07847 0.377372i
\(276\) 13.4485 + 4.18443i 0.809506 + 0.251873i
\(277\) −3.49210 + 15.2999i −0.209820 + 0.919280i 0.754867 + 0.655878i \(0.227702\pi\)
−0.964686 + 0.263402i \(0.915156\pi\)
\(278\) 9.28198 9.61219i 0.556696 0.576501i
\(279\) −6.03989 9.61243i −0.361599 0.575481i
\(280\) −12.5491 0.751007i −0.749952 0.0448813i
\(281\) −1.70279 7.46043i −0.101580 0.445052i −0.999983 0.00587900i \(-0.998129\pi\)
0.898402 0.439173i \(-0.144728\pi\)
\(282\) 0.845880 1.39993i 0.0503714 0.0833648i
\(283\) 8.32098 10.4342i 0.494631 0.620247i −0.470378 0.882465i \(-0.655882\pi\)
0.965009 + 0.262218i \(0.0844538\pi\)
\(284\) −11.4313 21.7580i −0.678325 1.29110i
\(285\) −3.91248 1.88415i −0.231755 0.111608i
\(286\) −7.18928 8.69879i −0.425111 0.514370i
\(287\) −2.36371 20.9785i −0.139525 1.23832i
\(288\) −13.3338 + 6.01818i −0.785700 + 0.354625i
\(289\) 11.7390i 0.690532i
\(290\) 6.42652 8.09091i 0.377378 0.475115i
\(291\) 2.99550i 0.175599i
\(292\) −14.2008 + 5.53331i −0.831041 + 0.323813i
\(293\) −3.68352 32.6922i −0.215194 1.90990i −0.382436 0.923982i \(-0.624915\pi\)
0.167242 0.985916i \(-0.446514\pi\)
\(294\) −9.61617 + 7.94747i −0.560826 + 0.463506i
\(295\) 7.66175 + 3.68971i 0.446085 + 0.214823i
\(296\) −14.1089 + 7.73019i −0.820064 + 0.449308i
\(297\) −3.65831 + 4.58738i −0.212277 + 0.266187i
\(298\) −7.92785 4.79024i −0.459248 0.277491i
\(299\) −0.882167 3.86503i −0.0510171 0.223520i
\(300\) 14.8892 + 1.15247i 0.859628 + 0.0665381i
\(301\) 12.2970 + 19.5705i 0.708786 + 1.12803i
\(302\) −2.06935 1.99826i −0.119078 0.114987i
\(303\) −2.83189 + 12.4073i −0.162688 + 0.712783i
\(304\) −5.22542 1.42762i −0.299698 0.0818797i
\(305\) −15.8049 5.53038i −0.904986 0.316668i
\(306\) 19.1878 + 4.02809i 1.09690 + 0.230270i
\(307\) −4.13225 4.13225i −0.235840 0.235840i 0.579285 0.815125i \(-0.303332\pi\)
−0.815125 + 0.579285i \(0.803332\pi\)
\(308\) 32.5219 22.0566i 1.85311 1.25679i
\(309\) 33.4472 + 3.76859i 1.90274 + 0.214388i
\(310\) −2.01748 8.17774i −0.114585 0.464464i
\(311\) 1.17063 1.86305i 0.0663804 0.105644i −0.811885 0.583818i \(-0.801558\pi\)
0.878265 + 0.478174i \(0.158701\pi\)
\(312\) 7.23503 + 5.17360i 0.409603 + 0.292898i
\(313\) −10.0771 + 4.85288i −0.569592 + 0.274301i −0.696433 0.717622i \(-0.745231\pi\)
0.126841 + 0.991923i \(0.459516\pi\)
\(314\) −8.64138 + 18.7765i −0.487661 + 1.05962i
\(315\) −8.98663 + 7.16660i −0.506339 + 0.403792i
\(316\) 1.60160 + 10.8055i 0.0900973 + 0.607856i
\(317\) 4.08640 + 11.6783i 0.229515 + 0.655916i 0.999833 + 0.0182567i \(0.00581160\pi\)
−0.770318 + 0.637660i \(0.779903\pi\)
\(318\) 0.372908 + 21.3371i 0.0209117 + 1.19653i
\(319\) −0.501431 + 32.2936i −0.0280747 + 1.80809i
\(320\) −10.7943 + 1.13596i −0.603420 + 0.0635021i
\(321\) −34.7688 + 12.1661i −1.94061 + 0.679048i
\(322\) 13.6886 1.78508i 0.762834 0.0994787i
\(323\) 4.52646 + 5.67600i 0.251859 + 0.315821i
\(324\) 8.09939 18.4406i 0.449966 1.02448i
\(325\) −1.82382 3.78719i −0.101167 0.210076i
\(326\) 9.72690 12.6442i 0.538723 0.700300i
\(327\) 8.02862 + 5.04471i 0.443983 + 0.278973i
\(328\) −4.98145 17.5329i −0.275054 0.968093i
\(329\) 0.179493 1.59305i 0.00989578 0.0878275i
\(330\) 22.7727 14.8703i 1.25359 0.818584i
\(331\) −14.9146 + 14.9146i −0.819782 + 0.819782i −0.986076 0.166294i \(-0.946820\pi\)
0.166294 + 0.986076i \(0.446820\pi\)
\(332\) 1.20787 6.29926i 0.0662907 0.345717i
\(333\) −4.85817 + 13.8839i −0.266226 + 0.760831i
\(334\) 20.4203 + 6.74722i 1.11735 + 0.369191i
\(335\) −5.08859 1.16144i −0.278020 0.0634562i
\(336\) −20.3170 + 23.3762i −1.10838 + 1.27528i
\(337\) −16.8237 + 10.5710i −0.916446 + 0.575841i −0.905615 0.424100i \(-0.860590\pi\)
−0.0108308 + 0.999941i \(0.503448\pi\)
\(338\) −1.50209 + 15.8100i −0.0817030 + 0.859951i
\(339\) 0.140398 0.0320449i 0.00762537 0.00174044i
\(340\) 12.5799 + 7.30415i 0.682241 + 0.396123i
\(341\) 20.5842 + 16.4154i 1.11470 + 0.888942i
\(342\) −4.42406 + 2.22657i −0.239226 + 0.120399i
\(343\) 4.64468 9.64478i 0.250789 0.520769i
\(344\) 13.2424 + 14.9283i 0.713981 + 0.804878i
\(345\) 9.49440 1.06976i 0.511161 0.0575941i
\(346\) 13.1222 4.85065i 0.705454 0.260773i
\(347\) 16.7210 0.897629 0.448814 0.893625i \(-0.351846\pi\)
0.448814 + 0.893625i \(0.351846\pi\)
\(348\) −6.14535 24.7026i −0.329425 1.32420i
\(349\) 3.96295 0.212132 0.106066 0.994359i \(-0.466175\pi\)
0.106066 + 0.994359i \(0.466175\pi\)
\(350\) 13.7289 5.07492i 0.733840 0.271266i
\(351\) −1.29350 + 0.145742i −0.0690417 + 0.00777914i
\(352\) 24.5780 23.3871i 1.31001 1.24654i
\(353\) −7.95794 + 16.5248i −0.423559 + 0.879528i 0.574575 + 0.818452i \(0.305168\pi\)
−0.998133 + 0.0610761i \(0.980547\pi\)
\(354\) 18.7138 9.41844i 0.994629 0.500585i
\(355\) −13.0355 10.3955i −0.691854 0.551735i
\(356\) −12.8794 + 22.1821i −0.682606 + 1.17565i
\(357\) 40.4678 9.23650i 2.14178 0.488848i
\(358\) −1.04874 + 11.0383i −0.0554275 + 0.583393i
\(359\) −2.35090 + 1.47717i −0.124076 + 0.0779621i −0.592640 0.805467i \(-0.701914\pi\)
0.468564 + 0.883429i \(0.344771\pi\)
\(360\) −6.63989 + 7.37531i −0.349953 + 0.388713i
\(361\) 16.7357 + 3.81981i 0.880825 + 0.201042i
\(362\) 19.8793 + 6.56846i 1.04483 + 0.345231i
\(363\) −19.4918 + 55.7042i −1.02305 + 2.92371i
\(364\) 8.56169 + 1.64169i 0.448754 + 0.0860481i
\(365\) −7.31070 + 7.31070i −0.382659 + 0.382659i
\(366\) −34.5402 + 22.5544i −1.80545 + 1.17894i
\(367\) 0.150160 1.33270i 0.00783827 0.0695666i −0.989184 0.146679i \(-0.953142\pi\)
0.997022 + 0.0771126i \(0.0245701\pi\)
\(368\) 11.4060 3.45717i 0.594577 0.180217i
\(369\) −14.1107 8.86633i −0.734573 0.461563i
\(370\) −6.65430 + 8.65010i −0.345941 + 0.449697i
\(371\) 9.07518 + 18.8448i 0.471160 + 0.978374i
\(372\) −18.9990 8.34464i −0.985052 0.432649i
\(373\) 0.852893 + 1.06949i 0.0441611 + 0.0553763i 0.803422 0.595411i \(-0.203011\pi\)
−0.759260 + 0.650787i \(0.774439\pi\)
\(374\) −45.0878 + 5.87975i −2.33143 + 0.304035i
\(375\) 24.6955 8.64134i 1.27527 0.446237i
\(376\) −0.0725286 1.38219i −0.00374037 0.0712811i
\(377\) −5.14453 + 4.98721i −0.264957 + 0.256855i
\(378\) −0.0792034 4.53188i −0.00407378 0.233095i
\(379\) −11.3860 32.5395i −0.584862 1.67144i −0.731166 0.682200i \(-0.761023\pi\)
0.146304 0.989240i \(-0.453262\pi\)
\(380\) −3.63497 + 0.538780i −0.186470 + 0.0276388i
\(381\) 3.51877 2.80612i 0.180272 0.143762i
\(382\) 1.99183 4.32795i 0.101911 0.221437i
\(383\) −3.17316 + 1.52812i −0.162141 + 0.0780831i −0.513194 0.858273i \(-0.671538\pi\)
0.351053 + 0.936356i \(0.385824\pi\)
\(384\) −13.9964 + 22.7841i −0.714252 + 1.16270i
\(385\) 14.1825 22.5712i 0.722805 1.15034i
\(386\) 1.42037 + 5.75736i 0.0722948 + 0.293042i
\(387\) 18.1307 + 2.04283i 0.921633 + 0.103843i
\(388\) 1.42278 + 2.09785i 0.0722305 + 0.106502i
\(389\) 12.4654 + 12.4654i 0.632022 + 0.632022i 0.948575 0.316553i \(-0.102526\pi\)
−0.316553 + 0.948575i \(0.602526\pi\)
\(390\) 5.90503 + 1.23964i 0.299013 + 0.0627715i
\(391\) −15.0769 5.27563i −0.762471 0.266800i
\(392\) −2.95972 + 10.1333i −0.149488 + 0.511809i
\(393\) 7.18995 31.5012i 0.362685 1.58903i
\(394\) −19.2931 18.6303i −0.971970 0.938579i
\(395\) 3.94246 + 6.27439i 0.198367 + 0.315699i
\(396\) 2.39388 30.9273i 0.120297 1.55416i
\(397\) −8.10411 35.5064i −0.406734 1.78202i −0.599080 0.800689i \(-0.704467\pi\)
0.192347 0.981327i \(-0.438390\pi\)
\(398\) −3.58837 2.16820i −0.179869 0.108682i
\(399\) −6.53767 + 8.19798i −0.327293 + 0.410412i
\(400\) 10.9748 6.26483i 0.548741 0.313241i
\(401\) 12.2141 + 5.88201i 0.609944 + 0.293733i 0.713243 0.700917i \(-0.247226\pi\)
−0.103299 + 0.994650i \(0.532940\pi\)
\(402\) −9.91170 + 8.19172i −0.494351 + 0.408566i
\(403\) 0.653965 + 5.80410i 0.0325763 + 0.289123i
\(404\) 3.90986 + 10.0344i 0.194523 + 0.499228i
\(405\) 13.6630i 0.678919i
\(406\) −15.5937 19.4759i −0.773904 0.966574i
\(407\) 34.1131i 1.69092i
\(408\) 33.1594 13.5926i 1.64164 0.672932i
\(409\) 2.43294 + 21.5929i 0.120301 + 1.06770i 0.898284 + 0.439416i \(0.144815\pi\)
−0.777982 + 0.628286i \(0.783757\pi\)
\(410\) −7.87691 9.53079i −0.389013 0.470692i
\(411\) −47.9907 23.1111i −2.36720 1.13999i
\(412\) 25.2142 13.2472i 1.24221 0.652642i
\(413\) 12.8026 16.0540i 0.629976 0.789965i
\(414\) 5.63551 9.32677i 0.276970 0.458386i
\(415\) −0.968206 4.24199i −0.0475273 0.208231i
\(416\) 7.52426 + 0.186819i 0.368907 + 0.00915958i
\(417\) −11.8811 18.9086i −0.581818 0.925958i
\(418\) 7.97883 8.26268i 0.390257 0.404141i
\(419\) 7.39689 32.4079i 0.361362 1.58323i −0.388380 0.921499i \(-0.626965\pi\)
0.749742 0.661730i \(-0.230178\pi\)
\(420\) −6.24198 + 20.0614i −0.304577 + 0.978896i
\(421\) −25.5561 8.94248i −1.24553 0.435830i −0.374577 0.927196i \(-0.622212\pi\)
−0.870953 + 0.491366i \(0.836498\pi\)
\(422\) 5.18029 24.6764i 0.252172 1.20123i
\(423\) −0.894839 0.894839i −0.0435086 0.0435086i
\(424\) 10.3957 + 14.7660i 0.504860 + 0.717102i
\(425\) −16.8299 1.89628i −0.816371 0.0919829i
\(426\) −39.8802 + 9.83863i −1.93220 + 0.476683i
\(427\) −21.5111 + 34.2347i −1.04099 + 1.65673i
\(428\) −18.5713 + 25.0346i −0.897676 + 1.21009i
\(429\) −16.9924 + 8.18312i −0.820402 + 0.395085i
\(430\) 12.2972 + 5.65949i 0.593026 + 0.272925i
\(431\) 10.9810 8.75704i 0.528935 0.421812i −0.322268 0.946649i \(-0.604445\pi\)
0.851203 + 0.524837i \(0.175874\pi\)
\(432\) −0.708680 3.84858i −0.0340964 0.185165i
\(433\) 7.97828 + 22.8006i 0.383412 + 1.09573i 0.960316 + 0.278916i \(0.0899751\pi\)
−0.576904 + 0.816812i \(0.695739\pi\)
\(434\) −20.3352 + 0.355397i −0.976119 + 0.0170596i
\(435\) −10.5557 13.6664i −0.506106 0.655254i
\(436\) 8.01882 0.280375i 0.384032 0.0134275i
\(437\) 3.80863 1.33270i 0.182191 0.0637516i
\(438\) 3.29370 + 25.2571i 0.157379 + 1.20683i
\(439\) 17.1754 + 21.5373i 0.819737 + 1.02792i 0.999026 + 0.0441209i \(0.0140487\pi\)
−0.179290 + 0.983796i \(0.557380\pi\)
\(440\) 8.88553 21.2306i 0.423601 1.01213i
\(441\) 4.18790 + 8.69626i 0.199424 + 0.414108i
\(442\) −7.99524 6.15054i −0.380295 0.292551i
\(443\) 19.2138 + 12.0728i 0.912873 + 0.573596i 0.904549 0.426369i \(-0.140208\pi\)
0.00832387 + 0.999965i \(0.497350\pi\)
\(444\) 6.89511 + 25.9874i 0.327227 + 1.23331i
\(445\) −1.94820 + 17.2908i −0.0923537 + 0.819662i
\(446\) −13.8923 21.2750i −0.657821 1.00740i
\(447\) −10.9461 + 10.9461i −0.517733 + 0.517733i
\(448\) −3.12569 + 26.0212i −0.147675 + 1.22938i
\(449\) 0.624960 1.78603i 0.0294937 0.0842881i −0.928195 0.372094i \(-0.878640\pi\)
0.957689 + 0.287806i \(0.0929257\pi\)
\(450\) 3.62496 10.9708i 0.170882 0.517170i
\(451\) 37.6798 + 8.60017i 1.77427 + 0.404966i
\(452\) 0.0831052 0.0891272i 0.00390894 0.00419219i
\(453\) −4.07071 + 2.55780i −0.191259 + 0.120176i
\(454\) −3.30426 0.313934i −0.155076 0.0147336i
\(455\) 5.76553 1.31594i 0.270292 0.0616924i
\(456\) −4.40818 + 7.90723i −0.206432 + 0.370290i
\(457\) −12.1203 9.66562i −0.566964 0.452138i 0.297579 0.954697i \(-0.403821\pi\)
−0.864543 + 0.502559i \(0.832392\pi\)
\(458\) −1.49199 2.96448i −0.0697159 0.138521i
\(459\) −2.27558 + 4.72528i −0.106215 + 0.220557i
\(460\) 6.14116 5.25876i 0.286333 0.245191i
\(461\) 16.2172 1.82724i 0.755310 0.0851030i 0.274091 0.961704i \(-0.411623\pi\)
0.481219 + 0.876601i \(0.340194\pi\)
\(462\) −22.7702 61.5989i −1.05937 2.86584i
\(463\) −33.3937 −1.55194 −0.775969 0.630771i \(-0.782739\pi\)
−0.775969 + 0.630771i \(0.782739\pi\)
\(464\) −16.0368 14.3812i −0.744491 0.667632i
\(465\) −14.0767 −0.652791
\(466\) 4.98785 + 13.4933i 0.231058 + 0.625067i
\(467\) 11.8946 1.34019i 0.550414 0.0620168i 0.167622 0.985851i \(-0.446391\pi\)
0.382792 + 0.923834i \(0.374963\pi\)
\(468\) 5.22708 4.47602i 0.241622 0.206904i
\(469\) −5.46827 + 11.3550i −0.252501 + 0.524324i
\(470\) −0.422105 0.838696i −0.0194702 0.0386861i
\(471\) 27.0073 + 21.5376i 1.24443 + 0.992401i
\(472\) 8.63247 15.4846i 0.397341 0.712737i
\(473\) −41.2530 + 9.41572i −1.89681 + 0.432935i
\(474\) 18.1740 + 1.72669i 0.834758 + 0.0793095i
\(475\) 3.62260 2.27623i 0.166216 0.104441i
\(476\) 23.9539 25.6897i 1.09793 1.17748i
\(477\) 16.0971 + 3.67405i 0.737034 + 0.168223i
\(478\) −3.94657 + 11.9442i −0.180512 + 0.546314i
\(479\) 8.56686 24.4827i 0.391430 1.11864i −0.564598 0.825366i \(-0.690969\pi\)
0.956028 0.293276i \(-0.0947454\pi\)
\(480\) −2.47776 + 17.9694i −0.113094 + 0.820189i
\(481\) 5.35130 5.35130i 0.243998 0.243998i
\(482\) −4.53812 6.94976i −0.206706 0.316553i
\(483\) 2.58308 22.9255i 0.117534 1.04315i
\(484\) 12.8072 + 48.2697i 0.582144 + 2.19408i
\(485\) 1.45598 + 0.914851i 0.0661125 + 0.0415412i
\(486\) −23.3895 17.9930i −1.06097 0.816177i
\(487\) −1.80844 3.75527i −0.0819484 0.170168i 0.855968 0.517029i \(-0.172962\pi\)
−0.937917 + 0.346861i \(0.887248\pi\)
\(488\) −13.4770 + 32.2013i −0.610077 + 1.45768i
\(489\) −16.6227 20.8443i −0.751706 0.942610i
\(490\) 0.926045 + 7.10121i 0.0418345 + 0.320800i
\(491\) 15.3723 5.37898i 0.693740 0.242750i 0.0397018 0.999212i \(-0.487359\pi\)
0.654038 + 0.756461i \(0.273074\pi\)
\(492\) −30.4428 + 1.06442i −1.37247 + 0.0479877i
\(493\) 5.98626 + 28.2418i 0.269608 + 1.27194i
\(494\) 2.54779 0.0445277i 0.114631 0.00200340i
\(495\) −6.95004 19.8621i −0.312381 0.892733i
\(496\) −17.2691 + 3.17994i −0.775407 + 0.142784i
\(497\) −31.4760 + 25.1013i −1.41189 + 1.12595i
\(498\) −9.73760 4.48148i −0.436352 0.200820i
\(499\) 4.64060 2.23479i 0.207742 0.100043i −0.327120 0.944983i \(-0.606078\pi\)
0.534861 + 0.844940i \(0.320364\pi\)
\(500\) 13.1908 17.7815i 0.589909 0.795214i
\(501\) 19.1222 30.4328i 0.854317 1.35964i
\(502\) −7.26746 + 1.79291i −0.324362 + 0.0800217i
\(503\) 2.97694 + 0.335420i 0.132735 + 0.0149556i 0.178082 0.984016i \(-0.443011\pi\)
−0.0453470 + 0.998971i \(0.514439\pi\)
\(504\) 13.7945 + 19.5937i 0.614457 + 0.872773i
\(505\) 5.16576 + 5.16576i 0.229873 + 0.229873i
\(506\) −5.19218 + 24.7330i −0.230821 + 1.09952i
\(507\) 25.0519 + 8.76602i 1.11259 + 0.389313i
\(508\) 1.13149 3.63654i 0.0502016 0.161345i
\(509\) 4.07185 17.8400i 0.180482 0.790742i −0.800919 0.598772i \(-0.795655\pi\)
0.981401 0.191969i \(-0.0614875\pi\)
\(510\) 16.8874 17.4882i 0.747785 0.774388i
\(511\) 13.2820 + 21.1381i 0.587560 + 0.935096i
\(512\) 1.01963 + 22.6044i 0.0450616 + 0.998984i
\(513\) −0.294812 1.29166i −0.0130163 0.0570281i
\(514\) −0.803644 + 1.33003i −0.0354472 + 0.0586652i
\(515\) 12.0468 15.1062i 0.530845 0.665659i
\(516\) 29.5233 15.5111i 1.29969 0.682840i
\(517\) 2.64423 + 1.27340i 0.116293 + 0.0560038i
\(518\) 16.7877 + 20.3126i 0.737611 + 0.892484i
\(519\) −2.61780 23.2336i −0.114909 1.01984i
\(520\) 4.72429 1.93656i 0.207174 0.0849238i
\(521\) 16.9894i 0.744321i −0.928168 0.372161i \(-0.878617\pi\)
0.928168 0.372161i \(-0.121383\pi\)
\(522\) −19.6949 + 0.0383887i −0.862021 + 0.00168023i
\(523\) 10.8616i 0.474943i −0.971395 0.237471i \(-0.923681\pi\)
0.971395 0.237471i \(-0.0763186\pi\)
\(524\) −9.92682 25.4764i −0.433655 1.11294i
\(525\) −2.73884 24.3078i −0.119533 1.06088i
\(526\) 2.53916 2.09853i 0.110712 0.0915004i
\(527\) 21.2030 + 10.2108i 0.923617 + 0.444791i
\(528\) −28.1091 49.2419i −1.22329 2.14298i
\(529\) 8.80493 11.0410i 0.382823 0.480045i
\(530\) 10.4849 + 6.33529i 0.455435 + 0.275187i
\(531\) −3.60689 15.8028i −0.156526 0.685784i
\(532\) −0.684752 + 8.84654i −0.0296878 + 0.383546i
\(533\) 4.56170 + 7.25990i 0.197589 + 0.314461i
\(534\) 30.8368 + 29.7774i 1.33444 + 1.28860i
\(535\) −4.70528 + 20.6152i −0.203427 + 0.891273i
\(536\) −3.05068 + 10.4447i −0.131769 + 0.451143i
\(537\) 17.4908 + 6.12031i 0.754785 + 0.264111i
\(538\) 20.6313 + 4.33111i 0.889478 + 0.186727i
\(539\) −15.8284 15.8284i −0.681778 0.681778i
\(540\) −1.49004 2.19704i −0.0641213 0.0945454i
\(541\) 16.6052 + 1.87095i 0.713912 + 0.0804385i 0.461447 0.887168i \(-0.347330\pi\)
0.252465 + 0.967606i \(0.418759\pi\)
\(542\) 5.98272 + 24.2506i 0.256980 + 1.04165i
\(543\) 18.6156 29.6265i 0.798871 1.27140i
\(544\) 16.7666 25.2691i 0.718863 1.08341i
\(545\) 4.90401 2.36165i 0.210065 0.101162i
\(546\) 6.09104 13.2349i 0.260672 0.566403i
\(547\) −5.45356 + 4.34907i −0.233177 + 0.185953i −0.733107 0.680113i \(-0.761931\pi\)
0.499930 + 0.866066i \(0.333359\pi\)
\(548\) −44.5867 + 6.60870i −1.90465 + 0.282310i
\(549\) 10.5414 + 30.1256i 0.449896 + 1.28573i
\(550\) 0.468241 + 26.7919i 0.0199659 + 1.14241i
\(551\) −5.63043 4.63494i −0.239864 0.197455i
\(552\) −1.04376 19.8911i −0.0444253 0.846621i
\(553\) 16.8888 5.90965i 0.718185 0.251304i
\(554\) 22.0074 2.86991i 0.935004 0.121931i
\(555\) 11.3718 + 14.2598i 0.482708 + 0.605296i
\(556\) −17.3018 7.59919i −0.733758 0.322277i
\(557\) −13.1670 27.3416i −0.557905 1.15850i −0.969035 0.246925i \(-0.920580\pi\)
0.411129 0.911577i \(-0.365134\pi\)
\(558\) −9.78917 + 12.7252i −0.414409 + 0.538700i
\(559\) −7.94836 4.99429i −0.336180 0.211236i
\(560\) 5.15712 + 17.0145i 0.217928 + 0.718992i
\(561\) −8.50823 + 75.5126i −0.359218 + 3.18814i
\(562\) −9.06122 + 5.91688i −0.382224 + 0.249588i
\(563\) −1.97550 + 1.97550i −0.0832575 + 0.0832575i −0.747509 0.664252i \(-0.768750\pi\)
0.664252 + 0.747509i \(0.268750\pi\)
\(564\) −2.27176 0.435607i −0.0956584 0.0183424i
\(565\) 0.0273031 0.0780279i 0.00114865 0.00328266i
\(566\) −17.9209 5.92138i −0.753272 0.248894i
\(567\) −32.1639 7.34121i −1.35076 0.308302i
\(568\) −23.2564 + 25.8323i −0.975819 + 1.08390i
\(569\) 8.20150 5.15334i 0.343825 0.216039i −0.349039 0.937108i \(-0.613492\pi\)
0.692863 + 0.721069i \(0.256349\pi\)
\(570\) −0.580859 + 6.11373i −0.0243295 + 0.256076i
\(571\) 18.4067 4.20122i 0.770298 0.175815i 0.180728 0.983533i \(-0.442155\pi\)
0.589570 + 0.807718i \(0.299297\pi\)
\(572\) −8.01364 + 13.8018i −0.335067 + 0.577084i
\(573\) −6.22515 4.96439i −0.260059 0.207390i
\(574\) −26.6687 + 13.4220i −1.11313 + 0.560224i
\(575\) −4.08428 + 8.48110i −0.170326 + 0.353686i
\(576\) 14.5211 + 14.7361i 0.605046 + 0.614005i
\(577\) 31.8330 3.58672i 1.32523 0.149317i 0.579173 0.815205i \(-0.303376\pi\)
0.746052 + 0.665888i \(0.231947\pi\)
\(578\) −15.5717 + 5.75611i −0.647696 + 0.239423i
\(579\) 9.91040 0.411862
\(580\) −13.8837 4.55741i −0.576488 0.189236i
\(581\) −10.5063 −0.435873
\(582\) 3.97349 1.46881i 0.164706 0.0608842i
\(583\) −38.0509 + 4.28730i −1.57591 + 0.177562i
\(584\) 14.3031 + 16.1240i 0.591866 + 0.667217i
\(585\) 2.02550 4.20600i 0.0837441 0.173897i
\(586\) −41.5596 + 20.9164i −1.71681 + 0.864049i
\(587\) −0.356758 0.284505i −0.0147250 0.0117428i 0.616100 0.787668i \(-0.288712\pi\)
−0.630825 + 0.775925i \(0.717283\pi\)
\(588\) 15.2574 + 8.85877i 0.629205 + 0.365329i
\(589\) −5.79585 + 1.32286i −0.238814 + 0.0545077i
\(590\) 1.13749 11.9724i 0.0468296 0.492897i
\(591\) −37.9523 + 23.8470i −1.56115 + 0.980934i
\(592\) 17.1721 + 14.9249i 0.705771 + 0.613409i
\(593\) 14.8290 + 3.38463i 0.608955 + 0.138990i 0.515868 0.856668i \(-0.327469\pi\)
0.0930870 + 0.995658i \(0.470327\pi\)
\(594\) 7.87891 + 2.60333i 0.323276 + 0.106816i
\(595\) 7.86975 22.4905i 0.322628 0.922019i
\(596\) −2.46685 + 12.8650i −0.101046 + 0.526972i
\(597\) −4.95452 + 4.95452i −0.202775 + 0.202775i
\(598\) −4.69435 + 3.06536i −0.191966 + 0.125352i
\(599\) −3.68671 + 32.7205i −0.150635 + 1.33692i 0.659953 + 0.751307i \(0.270576\pi\)
−0.810588 + 0.585616i \(0.800852\pi\)
\(600\) −5.77202 20.3154i −0.235642 0.829374i
\(601\) 22.3617 + 14.0508i 0.912155 + 0.573145i 0.904334 0.426825i \(-0.140368\pi\)
0.00782019 + 0.999969i \(0.497511\pi\)
\(602\) 19.9303 25.9080i 0.812300 1.05593i
\(603\) 4.31660 + 8.96352i 0.175786 + 0.365023i
\(604\) −1.63598 + 3.72479i −0.0665671 + 0.151560i
\(605\) 21.1224 + 26.4866i 0.858746 + 1.07683i
\(606\) 17.8468 2.32734i 0.724975 0.0945416i
\(607\) −29.3456 + 10.2685i −1.19110 + 0.416785i −0.851787 0.523888i \(-0.824481\pi\)
−0.339315 + 0.940673i \(0.610195\pi\)
\(608\) 0.668508 + 7.63147i 0.0271116 + 0.309497i
\(609\) −37.8436 + 17.5060i −1.53350 + 0.709379i
\(610\) 0.413798 + 23.6768i 0.0167542 + 0.958644i
\(611\) 0.215042 + 0.614556i 0.00869968 + 0.0248623i
\(612\) −4.06535 27.4276i −0.164332 1.10869i
\(613\) −19.6640 + 15.6815i −0.794220 + 0.633369i −0.934186 0.356787i \(-0.883872\pi\)
0.139966 + 0.990156i \(0.455301\pi\)
\(614\) −3.45517 + 7.50758i −0.139439 + 0.302981i
\(615\) −18.6177 + 8.96580i −0.750737 + 0.361536i
\(616\) −45.2045 32.3247i −1.82134 1.30240i
\(617\) 18.5673 29.5496i 0.747490 1.18962i −0.228866 0.973458i \(-0.573502\pi\)
0.976357 0.216166i \(-0.0693553\pi\)
\(618\) −11.4015 46.2151i −0.458635 1.85904i
\(619\) 18.3917 + 2.07225i 0.739226 + 0.0832908i 0.473544 0.880770i \(-0.342974\pi\)
0.265682 + 0.964061i \(0.414403\pi\)
\(620\) −9.85841 + 6.68603i −0.395923 + 0.268518i
\(621\) 2.06122 + 2.06122i 0.0827139 + 0.0827139i
\(622\) −3.04532 0.639301i −0.122106 0.0256336i
\(623\) 39.6573 + 13.8767i 1.58884 + 0.555958i
\(624\) 3.31509 12.1340i 0.132710 0.485749i
\(625\) −0.172945 + 0.757720i −0.00691778 + 0.0303088i
\(626\) 11.3785 + 10.9876i 0.454776 + 0.439153i
\(627\) −10.2130 16.2539i −0.407868 0.649118i
\(628\) 29.1439 + 2.25584i 1.16297 + 0.0900178i
\(629\) −6.78514 29.7276i −0.270541 1.18532i
\(630\) 13.9129 + 8.40658i 0.554303 + 0.334926i
\(631\) 20.2570 25.4015i 0.806419 1.01122i −0.193129 0.981173i \(-0.561864\pi\)
0.999549 0.0300445i \(-0.00956489\pi\)
\(632\) 13.5480 7.42286i 0.538911 0.295266i
\(633\) −37.9659 18.2834i −1.50901 0.726701i
\(634\) 13.4873 11.1469i 0.535650 0.442698i
\(635\) −0.289268 2.56733i −0.0114793 0.101881i
\(636\) 28.1206 10.9571i 1.11505 0.434477i
\(637\) 4.96598i 0.196759i
\(638\) 43.0829 15.1697i 1.70567 0.600573i
\(639\) 31.7804i 1.25721i
\(640\) 6.79971 + 13.7615i 0.268782 + 0.543971i
\(641\) −3.71681 32.9876i −0.146805 1.30293i −0.823773 0.566919i \(-0.808135\pi\)
0.676968 0.736012i \(-0.263293\pi\)
\(642\) 33.1867 + 40.1548i 1.30978 + 1.58479i
\(643\) 26.1204 + 12.5789i 1.03009 + 0.496064i 0.871043 0.491207i \(-0.163444\pi\)
0.159045 + 0.987271i \(0.449158\pi\)
\(644\) −9.07993 17.2824i −0.357800 0.681023i
\(645\) 14.1056 17.6879i 0.555408 0.696459i
\(646\) 5.30964 8.78745i 0.208905 0.345738i
\(647\) 0.928892 + 4.06974i 0.0365185 + 0.159998i 0.989899 0.141772i \(-0.0452798\pi\)
−0.953381 + 0.301770i \(0.902423\pi\)
\(648\) −28.4327 1.70157i −1.11694 0.0668439i
\(649\) 20.0000 + 31.8298i 0.785068 + 1.24943i
\(650\) −4.12937 + 4.27628i −0.161967 + 0.167729i
\(651\) −7.56350 + 33.1379i −0.296437 + 1.29878i
\(652\) −21.5419 6.70263i −0.843646 0.262495i
\(653\) −2.24407 0.785233i −0.0878171 0.0307285i 0.286013 0.958226i \(-0.407670\pi\)
−0.373830 + 0.927497i \(0.621956\pi\)
\(654\) 2.75500 13.1235i 0.107729 0.513168i
\(655\) −13.1155 13.1155i −0.512463 0.512463i
\(656\) −20.8146 + 15.2049i −0.812672 + 0.593652i
\(657\) 19.5829 + 2.20647i 0.764003 + 0.0860825i
\(658\) −2.20117 + 0.543038i −0.0858104 + 0.0211698i
\(659\) −9.83419 + 15.6510i −0.383086 + 0.609677i −0.981489 0.191518i \(-0.938659\pi\)
0.598404 + 0.801195i \(0.295802\pi\)
\(660\) −30.8916 22.9162i −1.20246 0.892010i
\(661\) 1.98958 0.958132i 0.0773857 0.0372670i −0.394791 0.918771i \(-0.629183\pi\)
0.472176 + 0.881504i \(0.343469\pi\)
\(662\) 27.0973 + 12.4708i 1.05317 + 0.484692i
\(663\) −13.1803 + 10.5109i −0.511880 + 0.408211i
\(664\) −8.94815 + 1.48655i −0.347256 + 0.0576892i
\(665\) 1.98801 + 5.68140i 0.0770916 + 0.220315i
\(666\) 20.7989 0.363502i 0.805941 0.0140854i
\(667\) 15.9149 + 2.04387i 0.616228 + 0.0791390i
\(668\) −1.06277 30.3957i −0.0411199 1.17604i
\(669\) −40.0816 + 14.0252i −1.54965 + 0.542245i
\(670\) 0.954505 + 7.31945i 0.0368758 + 0.282775i
\(671\) −46.1505 57.8709i −1.78162 2.23408i
\(672\) 40.9704 + 15.4880i 1.58047 + 0.597462i
\(673\) −8.26809 17.1689i −0.318711 0.661811i 0.678646 0.734466i \(-0.262567\pi\)
−0.997357 + 0.0726548i \(0.976853\pi\)
\(674\) 22.2717 + 17.1330i 0.857873 + 0.659940i
\(675\) 2.61703 + 1.64439i 0.100730 + 0.0632926i
\(676\) 21.7083 5.75977i 0.834935 0.221529i
\(677\) 3.13527 27.8263i 0.120498 1.06945i −0.777326 0.629098i \(-0.783424\pi\)
0.897824 0.440354i \(-0.145147\pi\)
\(678\) −0.111350 0.170523i −0.00427636 0.00654890i
\(679\) 2.93595 2.93595i 0.112671 0.112671i
\(680\) 3.52044 20.2686i 0.135003 0.777265i
\(681\) −1.83208 + 5.23578i −0.0702054 + 0.200636i
\(682\) 11.6815 35.3538i 0.447308 1.35377i
\(683\) −16.9597 3.87094i −0.648945 0.148117i −0.114637 0.993407i \(-0.536571\pi\)
−0.534308 + 0.845290i \(0.679428\pi\)
\(684\) 5.12281 + 4.77668i 0.195875 + 0.182641i
\(685\) −25.8900 + 16.2678i −0.989207 + 0.621560i
\(686\) −15.0711 1.43189i −0.575419 0.0546699i
\(687\) −5.40737 + 1.23420i −0.206304 + 0.0470876i
\(688\) 13.3089 24.8857i 0.507396 0.948760i
\(689\) −6.64156 5.29647i −0.253023 0.201779i
\(690\) −6.07450 12.0697i −0.231252 0.459484i
\(691\) −9.21194 + 19.1288i −0.350439 + 0.727694i −0.999453 0.0330829i \(-0.989467\pi\)
0.649014 + 0.760777i \(0.275182\pi\)
\(692\) −12.8687 15.0280i −0.489193 0.571277i
\(693\) −50.4914 + 5.68902i −1.91801 + 0.216108i
\(694\) −8.19895 22.1802i −0.311228 0.841947i
\(695\) −12.8192 −0.486260
\(696\) −29.7544 + 20.2644i −1.12784 + 0.768119i
\(697\) 34.5464 1.30854
\(698\) −1.94319 5.25680i −0.0735509 0.198973i
\(699\) 23.8908 2.69184i 0.903632 0.101815i
\(700\) −13.4636 15.7228i −0.508878 0.594265i
\(701\) −6.87657 + 14.2793i −0.259724 + 0.539323i −0.989529 0.144332i \(-0.953897\pi\)
0.729805 + 0.683656i \(0.239611\pi\)
\(702\) 0.827577 + 1.64434i 0.0312349 + 0.0620617i
\(703\) 6.02224 + 4.80257i 0.227133 + 0.181133i
\(704\) −43.0743 21.1348i −1.62342 0.796548i
\(705\) −1.52983 + 0.349173i −0.0576166 + 0.0131506i
\(706\) 25.8221 + 2.45333i 0.971826 + 0.0923322i
\(707\) 14.9363 9.38508i 0.561736 0.352962i
\(708\) −21.6696 20.2054i −0.814392 0.759367i
\(709\) −9.00190 2.05463i −0.338073 0.0771631i 0.0501140 0.998744i \(-0.484042\pi\)
−0.388187 + 0.921580i \(0.626899\pi\)
\(710\) −7.39764 + 22.3888i −0.277629 + 0.840236i
\(711\) 4.66503 13.3319i 0.174952 0.499985i
\(712\) 35.7395 + 6.20758i 1.33940 + 0.232639i
\(713\) 9.24898 9.24898i 0.346377 0.346377i
\(714\) −32.0950 49.1509i −1.20113 1.83943i
\(715\) −1.21219 + 10.7584i −0.0453332 + 0.402343i
\(716\) 15.1564 4.02138i 0.566422 0.150286i
\(717\) 17.8007 + 11.1849i 0.664779 + 0.417708i
\(718\) 3.11219 + 2.39413i 0.116146 + 0.0893481i
\(719\) −1.80570 3.74958i −0.0673413 0.139836i 0.864581 0.502493i \(-0.167584\pi\)
−0.931922 + 0.362657i \(0.881869\pi\)
\(720\) 13.0391 + 5.19131i 0.485937 + 0.193469i
\(721\) −29.0886 36.4759i −1.08331 1.35843i
\(722\) −3.13923 24.0726i −0.116830 0.895891i
\(723\) −13.0932 + 4.58151i −0.486942 + 0.170388i
\(724\) −1.03461 29.5904i −0.0384512 1.09972i
\(725\) 16.9337 1.64216i 0.628901 0.0609884i
\(726\) 83.4485 1.45843i 3.09706 0.0541273i
\(727\) −2.68664 7.67798i −0.0996421 0.284761i 0.883262 0.468880i \(-0.155342\pi\)
−0.982904 + 0.184119i \(0.941057\pi\)
\(728\) −2.02045 12.1620i −0.0748829 0.450752i
\(729\) −14.9378 + 11.9125i −0.553251 + 0.441203i
\(730\) 13.2823 + 6.11282i 0.491599 + 0.226246i
\(731\) −34.0768 + 16.4105i −1.26038 + 0.606965i
\(732\) 46.8546 + 34.7579i 1.73179 + 1.28469i
\(733\) −13.3022 + 21.1703i −0.491328 + 0.781944i −0.996718 0.0809466i \(-0.974206\pi\)
0.505390 + 0.862891i \(0.331349\pi\)
\(734\) −1.84144 + 0.454292i −0.0679689 + 0.0167682i
\(735\) 11.8930 + 1.34002i 0.438681 + 0.0494275i
\(736\) −10.1787 13.4347i −0.375191 0.495208i
\(737\) −16.3149 16.3149i −0.600966 0.600966i
\(738\) −4.84205 + 23.0652i −0.178238 + 0.849040i
\(739\) −30.6055 10.7093i −1.12584 0.393949i −0.297807 0.954626i \(-0.596255\pi\)
−0.828034 + 0.560677i \(0.810541\pi\)
\(740\) 14.7371 + 4.58536i 0.541747 + 0.168561i
\(741\) 0.947632 4.15185i 0.0348121 0.152522i
\(742\) 20.5475 21.2785i 0.754321 0.781157i
\(743\) 5.55297 + 8.83750i 0.203719 + 0.324217i 0.932921 0.360082i \(-0.117251\pi\)
−0.729202 + 0.684299i \(0.760108\pi\)
\(744\) −1.75309 + 29.2936i −0.0642715 + 1.07396i
\(745\) 1.97737 + 8.66344i 0.0724454 + 0.317404i
\(746\) 1.00046 1.65577i 0.0366295 0.0606219i
\(747\) −5.17094 + 6.48416i −0.189195 + 0.237243i
\(748\) 29.9077 + 56.9253i 1.09354 + 2.08139i
\(749\) 46.0019 + 22.1533i 1.68087 + 0.809466i
\(750\) −23.5718 28.5211i −0.860721 1.04144i
\(751\) 3.57577 + 31.7358i 0.130482 + 1.15806i 0.872823 + 0.488036i \(0.162287\pi\)
−0.742342 + 0.670021i \(0.766285\pi\)
\(752\) −1.79789 + 0.773951i −0.0655625 + 0.0282231i
\(753\) 12.5098i 0.455882i
\(754\) 9.13804 + 4.37873i 0.332788 + 0.159464i
\(755\) 2.75976i 0.100438i
\(756\) −5.97264 + 2.32722i −0.217223 + 0.0846402i
\(757\) −1.78210 15.8166i −0.0647717 0.574864i −0.983620 0.180254i \(-0.942308\pi\)
0.918848 0.394611i \(-0.129121\pi\)
\(758\) −37.5801 + 31.0588i −1.36497 + 1.12811i
\(759\) 38.0531 + 18.3254i 1.38124 + 0.665170i
\(760\) 2.49705 + 4.55755i 0.0905776 + 0.165320i
\(761\) −24.9327 + 31.2647i −0.903811 + 1.13334i 0.0867441 + 0.996231i \(0.472354\pi\)
−0.990555 + 0.137113i \(0.956218\pi\)
\(762\) −5.44767 3.29164i −0.197348 0.119244i
\(763\) −2.92458 12.8134i −0.105877 0.463877i
\(764\) −6.71763 0.519968i −0.243035 0.0188118i
\(765\) −10.0071 15.9263i −0.361809 0.575816i
\(766\) 3.58295 + 3.45987i 0.129457 + 0.125010i
\(767\) −1.85573 + 8.13050i −0.0670066 + 0.293575i
\(768\) 37.0859 + 7.39412i 1.33822 + 0.266812i
\(769\) 22.7352 + 7.95539i 0.819853 + 0.286879i 0.707432 0.706782i \(-0.249854\pi\)
0.112421 + 0.993661i \(0.464139\pi\)
\(770\) −36.8947 7.74527i −1.32959 0.279120i
\(771\) 1.83640 + 1.83640i 0.0661362 + 0.0661362i
\(772\) 6.94060 4.70716i 0.249798 0.169414i
\(773\) 24.9831 + 2.81492i 0.898580 + 0.101246i 0.549157 0.835719i \(-0.314949\pi\)
0.349423 + 0.936965i \(0.386378\pi\)
\(774\) −6.18038 25.0518i −0.222149 0.900467i
\(775\) 7.37861 11.7430i 0.265047 0.421820i
\(776\) 2.08513 2.91595i 0.0748518 0.104677i
\(777\) 39.6791 19.1085i 1.42348 0.685512i
\(778\) 10.4229 22.6475i 0.373680 0.811952i
\(779\) −6.82295 + 5.44112i −0.244458 + 0.194948i
\(780\) −1.25111 8.44079i −0.0447968 0.302229i
\(781\) −24.3428 69.5676i −0.871052 2.48932i
\(782\) 0.394737 + 22.5862i 0.0141158 + 0.807679i
\(783\) 1.25194 5.11752i 0.0447406 0.182885i
\(784\) 14.8930 1.04273i 0.531891 0.0372402i
\(785\) 18.7167 6.54927i 0.668029 0.233753i
\(786\) −45.3115 + 5.90892i −1.61621 + 0.210764i
\(787\) 15.5671 + 19.5205i 0.554907 + 0.695832i 0.977607 0.210438i \(-0.0674890\pi\)
−0.422700 + 0.906270i \(0.638918\pi\)
\(788\) −15.2527 + 34.7271i −0.543353 + 1.23710i
\(789\) −2.38863 4.96005i −0.0850376 0.176582i
\(790\) 6.38975 8.30620i 0.227337 0.295521i
\(791\) −0.169015 0.106199i −0.00600947 0.00377600i
\(792\) −42.1985 + 11.9894i −1.49946 + 0.426026i
\(793\) 1.83857 16.3178i 0.0652895 0.579460i
\(794\) −43.1250 + 28.1602i −1.53045 + 0.999368i
\(795\) 14.4767 14.4767i 0.513435 0.513435i
\(796\) −1.11657 + 5.82308i −0.0395757 + 0.206394i
\(797\) −14.1924 + 40.5595i −0.502720 + 1.43669i 0.360927 + 0.932594i \(0.382460\pi\)
−0.863647 + 0.504097i \(0.831825\pi\)
\(798\) 14.0802 + 4.65234i 0.498433 + 0.164691i
\(799\) 2.55758 + 0.583750i 0.0904806 + 0.0206516i
\(800\) −13.6916 11.4861i −0.484071 0.406093i
\(801\) 28.0828 17.6456i 0.992255 0.623475i
\(802\) 1.81334 19.0860i 0.0640314 0.673952i
\(803\) −44.5574 + 10.1699i −1.57239 + 0.358889i
\(804\) 15.7263 + 9.13102i 0.554624 + 0.322026i
\(805\) −10.3542 8.25716i −0.364936 0.291027i
\(806\) 7.37839 3.71345i 0.259893 0.130801i
\(807\) 15.2863 31.7423i 0.538103 1.11738i
\(808\) 11.3933 10.1066i 0.400814 0.355550i
\(809\) −36.0729 + 4.06444i −1.26826 + 0.142898i −0.720331 0.693630i \(-0.756010\pi\)
−0.547924 + 0.836528i \(0.684582\pi\)
\(810\) −18.1238 + 6.69950i −0.636804 + 0.235396i
\(811\) −7.59558 −0.266717 −0.133358 0.991068i \(-0.542576\pi\)
−0.133358 + 0.991068i \(0.542576\pi\)
\(812\) −18.1883 + 30.2347i −0.638286 + 1.06103i
\(813\) 41.7436 1.46401
\(814\) −45.2506 + 16.7270i −1.58603 + 0.586281i
\(815\) −15.2082 + 1.71355i −0.532719 + 0.0600230i
\(816\) −34.2897 37.3206i −1.20038 1.30648i
\(817\) 4.14552 8.60827i 0.145033 0.301165i
\(818\) 27.4498 13.8151i 0.959759 0.483035i
\(819\) −8.81299 7.02812i −0.307951 0.245583i
\(820\) −8.78011 + 15.1219i −0.306615 + 0.528081i
\(821\) −3.23648 + 0.738705i −0.112954 + 0.0257810i −0.278624 0.960400i \(-0.589878\pi\)
0.165670 + 0.986181i \(0.447021\pi\)
\(822\) −7.12484 + 74.9913i −0.248507 + 2.61562i
\(823\) −18.4749 + 11.6085i −0.643994 + 0.404648i −0.814057 0.580785i \(-0.802746\pi\)
0.170063 + 0.985433i \(0.445603\pi\)
\(824\) −29.9357 26.9507i −1.04286 0.938872i
\(825\) 43.6597 + 9.96503i 1.52003 + 0.346938i
\(826\) −27.5730 9.11061i −0.959388 0.316999i
\(827\) −9.91985 + 28.3493i −0.344947 + 0.985802i 0.632489 + 0.774569i \(0.282033\pi\)
−0.977436 + 0.211232i \(0.932252\pi\)
\(828\) −15.1351 2.90214i −0.525983 0.100856i
\(829\) 11.3244 11.3244i 0.393313 0.393313i −0.482554 0.875866i \(-0.660291\pi\)
0.875866 + 0.482554i \(0.160291\pi\)
\(830\) −5.15219 + 3.36432i −0.178835 + 0.116777i
\(831\) 4.15287 36.8578i 0.144062 1.27858i
\(832\) −3.44163 10.0724i −0.119317 0.349199i
\(833\) −16.9418 10.6453i −0.587000 0.368837i
\(834\) −19.2562 + 25.0317i −0.666789 + 0.866777i
\(835\) −8.95193 18.5889i −0.309794 0.643294i
\(836\) −14.8727 6.53229i −0.514382 0.225924i
\(837\) −2.67770 3.35774i −0.0925550 0.116060i
\(838\) −46.6156 + 6.07899i −1.61031 + 0.209995i
\(839\) 46.2406 16.1803i 1.59640 0.558606i 0.621923 0.783078i \(-0.286352\pi\)
0.974480 + 0.224473i \(0.0720659\pi\)
\(840\) 29.6719 1.55699i 1.02378 0.0537213i
\(841\) −11.7654 26.5062i −0.405702 0.914005i
\(842\) 0.669101 + 38.2847i 0.0230587 + 1.31938i
\(843\) 5.97346 + 17.0712i 0.205737 + 0.587962i
\(844\) −35.2730 + 5.22821i −1.21415 + 0.179962i
\(845\) 11.9118 9.49936i 0.409779 0.326788i
\(846\) −0.748218 + 1.62577i −0.0257243 + 0.0558950i
\(847\) 73.7011 35.4926i 2.53240 1.21954i
\(848\) 14.4895 21.0301i 0.497572 0.722177i
\(849\) −16.7817 + 26.7079i −0.575946 + 0.916613i
\(850\) 5.73698 + 23.2545i 0.196777 + 0.797622i
\(851\) −16.8411 1.89753i −0.577305 0.0650466i
\(852\) 32.6057 + 48.0763i 1.11705 + 1.64707i
\(853\) 40.3424 + 40.3424i 1.38130 + 1.38130i 0.842318 + 0.538981i \(0.181190\pi\)
0.538981 + 0.842318i \(0.318810\pi\)
\(854\) 55.9596 + 11.7476i 1.91490 + 0.401993i
\(855\) 4.48485 + 1.56932i 0.153379 + 0.0536695i
\(856\) 42.3143 + 12.3591i 1.44627 + 0.422425i
\(857\) −1.70941 + 7.48940i −0.0583922 + 0.255833i −0.995696 0.0926808i \(-0.970456\pi\)
0.937304 + 0.348514i \(0.113314\pi\)
\(858\) 19.1868 + 18.5277i 0.655028 + 0.632526i
\(859\) −19.2950 30.7078i −0.658337 1.04774i −0.994378 0.105890i \(-0.966231\pi\)
0.336041 0.941848i \(-0.390912\pi\)
\(860\) 1.47741 19.0872i 0.0503794 0.650868i
\(861\) 11.1029 + 48.6451i 0.378387 + 1.65782i
\(862\) −17.0005 10.2722i −0.579040 0.349873i
\(863\) 5.47768 6.86880i 0.186463 0.233817i −0.679810 0.733388i \(-0.737938\pi\)
0.866273 + 0.499572i \(0.166509\pi\)
\(864\) −4.75760 + 2.82717i −0.161857 + 0.0961822i
\(865\) −12.0923 5.82336i −0.411151 0.198000i
\(866\) 26.3327 21.7631i 0.894820 0.739541i
\(867\) 3.10646 + 27.5706i 0.105501 + 0.936347i
\(868\) 10.4426 + 26.8001i 0.354444 + 0.909653i
\(869\) 32.7569i 1.11120i
\(870\) −12.9524 + 20.7031i −0.439128 + 0.701902i
\(871\) 5.11860i 0.173437i
\(872\) −4.30385 10.4994i −0.145747 0.355554i
\(873\) −0.366975 3.25699i −0.0124202 0.110232i
\(874\) −3.63533 4.39862i −0.122967 0.148786i
\(875\) −32.6742 15.7350i −1.10459 0.531942i
\(876\) 31.8882 16.7536i 1.07740 0.566052i
\(877\) −23.9137 + 29.9868i −0.807507 + 1.01258i 0.192006 + 0.981394i \(0.438501\pi\)
−0.999514 + 0.0311883i \(0.990071\pi\)
\(878\) 20.1471 33.3435i 0.679932 1.12529i
\(879\) 17.3024 + 75.8069i 0.583597 + 2.55690i
\(880\) −32.5190 1.37634i −1.09622 0.0463965i
\(881\) 23.8183 + 37.9066i 0.802458 + 1.27710i 0.957280 + 0.289162i \(0.0933768\pi\)
−0.154822 + 0.987942i \(0.549480\pi\)
\(882\) 9.48198 9.81931i 0.319275 0.330633i
\(883\) 6.84148 29.9745i 0.230234 1.00872i −0.719212 0.694791i \(-0.755497\pi\)
0.949446 0.313931i \(-0.101646\pi\)
\(884\) −4.23823 + 13.6214i −0.142547 + 0.458139i
\(885\) −18.9710 6.63823i −0.637703 0.223142i
\(886\) 6.59315 31.4066i 0.221501 1.05512i
\(887\) 36.2012 + 36.2012i 1.21552 + 1.21552i 0.969186 + 0.246330i \(0.0792247\pi\)
0.246330 + 0.969186i \(0.420775\pi\)
\(888\) 31.0910 21.8889i 1.04334 0.734544i
\(889\) −6.19915 0.698476i −0.207913 0.0234261i
\(890\) 23.8913 5.89409i 0.800838 0.197570i
\(891\) 32.1334 51.1400i 1.07651 1.71325i
\(892\) −21.4090 + 28.8600i −0.716827 + 0.966303i
\(893\) −0.597067 + 0.287532i −0.0199801 + 0.00962190i
\(894\) 19.8872 + 9.15256i 0.665126 + 0.306107i
\(895\) 8.31665 6.63231i 0.277995 0.221694i
\(896\) 36.0494 8.61301i 1.20433 0.287740i
\(897\) 3.09467 + 8.84406i 0.103328 + 0.295294i
\(898\) −2.67559 + 0.0467612i −0.0892856 + 0.00156044i
\(899\) −22.9630 5.61762i −0.765859 0.187358i
\(900\) −16.3301 + 0.570977i −0.544338 + 0.0190326i
\(901\) −32.3064 + 11.3045i −1.07628 + 0.376608i
\(902\) −7.06788 54.1987i −0.235335 1.80462i
\(903\) −34.0599 42.7097i −1.13344 1.42129i
\(904\) −0.158976 0.0665353i −0.00528746 0.00221293i
\(905\) −8.71476 18.0964i −0.289688 0.601544i
\(906\) 5.38892 + 4.14556i 0.179035 + 0.137727i
\(907\) −19.5641 12.2930i −0.649616 0.408181i 0.166522 0.986038i \(-0.446746\pi\)
−0.816138 + 0.577857i \(0.803889\pi\)
\(908\) 1.20378 + 4.53699i 0.0399488 + 0.150565i
\(909\) 1.55910 13.8374i 0.0517120 0.458956i
\(910\) −4.57265 7.00264i −0.151582 0.232135i
\(911\) 15.7666 15.7666i 0.522371 0.522371i −0.395916 0.918287i \(-0.629573\pi\)
0.918287 + 0.395916i \(0.129573\pi\)
\(912\) 12.6503 + 1.97016i 0.418894 + 0.0652386i
\(913\) 6.35259 18.1547i 0.210240 0.600832i
\(914\) −6.87825 + 20.8168i −0.227512 + 0.688560i
\(915\) 38.5833 + 8.80638i 1.27552 + 0.291130i
\(916\) −3.20076 + 3.43270i −0.105756 + 0.113420i
\(917\) −37.9220 + 23.8280i −1.25230 + 0.786869i
\(918\) 7.38383 + 0.701530i 0.243703 + 0.0231539i
\(919\) 47.5748 10.8586i 1.56935 0.358194i 0.652614 0.757690i \(-0.273672\pi\)
0.916735 + 0.399497i \(0.130815\pi\)
\(920\) −9.98693 5.56758i −0.329259 0.183558i
\(921\) 10.7986 + 8.61161i 0.355826 + 0.283762i
\(922\) −10.3757 20.6159i −0.341707 0.678949i
\(923\) 7.09439 14.7317i 0.233515 0.484898i
\(924\) −70.5450 + 60.4088i −2.32076 + 1.98730i
\(925\) −17.8565 + 2.01195i −0.587120 + 0.0661525i
\(926\) 16.3743 + 44.2963i 0.538091 + 1.45567i
\(927\) −36.8286 −1.20961
\(928\) −11.2130 + 28.3243i −0.368085 + 0.929792i
\(929\) 17.7945 0.583820 0.291910 0.956446i \(-0.405709\pi\)
0.291910 + 0.956446i \(0.405709\pi\)
\(930\) 6.90236 + 18.6726i 0.226337 + 0.612297i
\(931\) 5.02269 0.565921i 0.164612 0.0185473i
\(932\) 15.4530 13.2326i 0.506180 0.433449i
\(933\) −2.25636 + 4.68539i −0.0738700 + 0.153393i
\(934\) −7.61012 15.1208i −0.249011 0.494768i
\(935\) 34.1048 + 27.1977i 1.11535 + 0.889458i
\(936\) −8.50043 4.73888i −0.277845 0.154895i
\(937\) 23.7318 5.41664i 0.775285 0.176954i 0.183468 0.983026i \(-0.441268\pi\)
0.591818 + 0.806072i \(0.298411\pi\)
\(938\) 17.7435 + 1.68579i 0.579347 + 0.0550431i
\(939\) 22.3832 14.0643i 0.730447 0.458970i
\(940\) −0.905544 + 0.971162i −0.0295356 + 0.0316758i
\(941\) −55.4467 12.6554i −1.80751 0.412553i −0.820295 0.571940i \(-0.806191\pi\)
−0.987216 + 0.159388i \(0.949048\pi\)
\(942\) 15.3266 46.3856i 0.499368 1.51132i
\(943\) 6.34169 18.1235i 0.206514 0.590182i
\(944\) −24.7730 3.85814i −0.806291 0.125572i
\(945\) −3.07476 + 3.07476i −0.100022 + 0.100022i
\(946\) 32.7178 + 50.1046i 1.06375 + 1.62904i
\(947\) −1.70840 + 15.1625i −0.0555155 + 0.492714i 0.934932 + 0.354826i \(0.115460\pi\)
−0.990448 + 0.137888i \(0.955969\pi\)
\(948\) −6.62099 24.9542i −0.215040 0.810475i
\(949\) −8.58503 5.39433i −0.278682 0.175107i
\(950\) −4.79569 3.68920i −0.155593 0.119694i
\(951\) −12.6878 26.3465i −0.411430 0.854343i
\(952\) −45.8226 19.1779i −1.48512 0.621559i
\(953\) 29.9243 + 37.5239i 0.969343 + 1.21552i 0.976494 + 0.215544i \(0.0691524\pi\)
−0.00715083 + 0.999974i \(0.502276\pi\)
\(954\) −3.01945 23.1541i −0.0977582 0.749641i
\(955\) −4.31418 + 1.50960i −0.139604 + 0.0488494i
\(956\) 17.7790 0.621634i 0.575013 0.0201051i
\(957\) −7.36807 75.9782i −0.238176 2.45603i
\(958\) −36.6766 + 0.640995i −1.18497 + 0.0207096i
\(959\) 24.3850 + 69.6883i 0.787432 + 2.25035i
\(960\) 25.0512 5.52441i 0.808523 0.178299i
\(961\) 9.17015 7.31295i 0.295811 0.235902i
\(962\) −9.72239 4.47448i −0.313462 0.144263i
\(963\) 36.3135 17.4877i 1.17019 0.563532i
\(964\) −6.99355 + 9.42750i −0.225247 + 0.303639i
\(965\) 3.02672 4.81700i 0.0974336 0.155065i
\(966\) −31.6769 + 7.81485i −1.01919 + 0.251439i
\(967\) −41.9356 4.72501i −1.34856 0.151946i −0.592035 0.805912i \(-0.701675\pi\)
−0.756524 + 0.653966i \(0.773104\pi\)
\(968\) 57.7492 40.6571i 1.85613 1.30677i
\(969\) −12.1330 12.1330i −0.389767 0.389767i
\(970\) 0.499615 2.37992i 0.0160417 0.0764147i
\(971\) −19.6281 6.86817i −0.629895 0.220410i −0.00359722 0.999994i \(-0.501145\pi\)
−0.626298 + 0.779584i \(0.715431\pi\)
\(972\) −12.3986 + 39.8485i −0.397686 + 1.27814i
\(973\) −6.88783 + 30.1776i −0.220814 + 0.967448i
\(974\) −4.09457 + 4.24023i −0.131198 + 0.135866i
\(975\) 5.28565 + 8.41207i 0.169276 + 0.269402i
\(976\) 49.3229 + 2.08756i 1.57879 + 0.0668210i
\(977\) 1.47420 + 6.45891i 0.0471639 + 0.206639i 0.993020 0.117948i \(-0.0376318\pi\)
−0.945856 + 0.324587i \(0.894775\pi\)
\(978\) −19.4988 + 32.2706i −0.623504 + 1.03190i
\(979\) −47.9575 + 60.1368i −1.53273 + 1.92198i
\(980\) 8.96559 4.71039i 0.286395 0.150468i
\(981\) −9.34750 4.50152i −0.298443 0.143722i
\(982\) −14.6728 17.7536i −0.468227 0.566539i
\(983\) −2.15147 19.0948i −0.0686213 0.609031i −0.980215 0.197938i \(-0.936576\pi\)
0.911593 0.411093i \(-0.134853\pi\)
\(984\) 16.3392 + 39.8600i 0.520875 + 1.27069i
\(985\) 25.7300i 0.819825i
\(986\) 34.5270 21.7887i 1.09956 0.693895i
\(987\) 3.78897i 0.120604i
\(988\) −1.30835 3.35778i −0.0416241 0.106825i
\(989\) 2.35370 + 20.8896i 0.0748432 + 0.664252i
\(990\) −22.9389 + 18.9583i −0.729046 + 0.602534i
\(991\) 4.35015 + 2.09492i 0.138187 + 0.0665474i 0.501700 0.865042i \(-0.332708\pi\)
−0.363512 + 0.931589i \(0.618423\pi\)
\(992\) 12.6859 + 21.3480i 0.402777 + 0.677800i
\(993\) 31.0820 38.9757i 0.986359 1.23686i
\(994\) 48.7305 + 29.4444i 1.54564 + 0.933919i
\(995\) 0.895017 + 3.92132i 0.0283739 + 0.124314i
\(996\) −1.16989 + 15.1142i −0.0370695 + 0.478913i
\(997\) −23.2987 37.0796i −0.737876 1.17432i −0.979006 0.203831i \(-0.934661\pi\)
0.241130 0.970493i \(-0.422482\pi\)
\(998\) −5.23989 5.05988i −0.165866 0.160168i
\(999\) −1.23824 + 5.42508i −0.0391762 + 0.171642i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 116.2.l.b.11.7 144
4.3 odd 2 inner 116.2.l.b.11.9 yes 144
29.8 odd 28 inner 116.2.l.b.95.9 yes 144
116.95 even 28 inner 116.2.l.b.95.7 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.l.b.11.7 144 1.1 even 1 trivial
116.2.l.b.11.9 yes 144 4.3 odd 2 inner
116.2.l.b.95.7 yes 144 116.95 even 28 inner
116.2.l.b.95.9 yes 144 29.8 odd 28 inner