L(s) = 1 | − 2.90·3-s + 5-s + 0.903·7-s + 5.42·9-s − 5.52·11-s − 0.622·13-s − 2.90·15-s + 3.52·17-s − 1.09·19-s − 2.62·21-s + 5.33·23-s + 25-s − 7.05·27-s − 29-s − 1.65·31-s + 16.0·33-s + 0.903·35-s − 2.28·37-s + 1.80·39-s − 7.67·41-s − 1.09·43-s + 5.42·45-s − 1.65·47-s − 6.18·49-s − 10.2·51-s − 2.42·53-s − 5.52·55-s + ⋯ |
L(s) = 1 | − 1.67·3-s + 0.447·5-s + 0.341·7-s + 1.80·9-s − 1.66·11-s − 0.172·13-s − 0.749·15-s + 0.855·17-s − 0.251·19-s − 0.572·21-s + 1.11·23-s + 0.200·25-s − 1.35·27-s − 0.185·29-s − 0.297·31-s + 2.79·33-s + 0.152·35-s − 0.374·37-s + 0.289·39-s − 1.19·41-s − 0.167·43-s + 0.809·45-s − 0.241·47-s − 0.883·49-s − 1.43·51-s − 0.333·53-s − 0.745·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1+T |
good | 3 | 1+2.90T+3T2 |
| 7 | 1−0.903T+7T2 |
| 11 | 1+5.52T+11T2 |
| 13 | 1+0.622T+13T2 |
| 17 | 1−3.52T+17T2 |
| 19 | 1+1.09T+19T2 |
| 23 | 1−5.33T+23T2 |
| 31 | 1+1.65T+31T2 |
| 37 | 1+2.28T+37T2 |
| 41 | 1+7.67T+41T2 |
| 43 | 1+1.09T+43T2 |
| 47 | 1+1.65T+47T2 |
| 53 | 1+2.42T+53T2 |
| 59 | 1−9.28T+59T2 |
| 61 | 1+10.9T+61T2 |
| 67 | 1+11.1T+67T2 |
| 71 | 1+7.18T+71T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1+15.3T+79T2 |
| 83 | 1+7.95T+83T2 |
| 89 | 1+16.6T+89T2 |
| 97 | 1+11.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.775592692298337126488356008762, −8.489508094732840610101553209066, −7.51629027743510684930393975044, −6.77864928260940692321226489053, −5.72132808141391004203115933649, −5.28200868374108976956855982509, −4.60275181891390001987840159542, −2.99132596284260544879359330678, −1.50414343902988283527027987869, 0,
1.50414343902988283527027987869, 2.99132596284260544879359330678, 4.60275181891390001987840159542, 5.28200868374108976956855982509, 5.72132808141391004203115933649, 6.77864928260940692321226489053, 7.51629027743510684930393975044, 8.489508094732840610101553209066, 9.775592692298337126488356008762