Properties

Label 2-1160-1.1-c3-0-24
Degree $2$
Conductor $1160$
Sign $-1$
Analytic cond. $68.4422$
Root an. cond. $8.27298$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.2·3-s − 5·5-s − 25.3·7-s + 77.6·9-s − 38.5·11-s − 60.1·13-s + 51.1·15-s + 62.2·17-s − 11.7·19-s + 258.·21-s + 14.8·23-s + 25·25-s − 517.·27-s − 29·29-s + 37.9·31-s + 393.·33-s + 126.·35-s + 118.·37-s + 615.·39-s + 447.·41-s + 391.·43-s − 388.·45-s + 104.·47-s + 297.·49-s − 636.·51-s − 524.·53-s + 192.·55-s + ⋯
L(s)  = 1  − 1.96·3-s − 0.447·5-s − 1.36·7-s + 2.87·9-s − 1.05·11-s − 1.28·13-s + 0.880·15-s + 0.887·17-s − 0.142·19-s + 2.69·21-s + 0.134·23-s + 0.200·25-s − 3.69·27-s − 0.185·29-s + 0.220·31-s + 2.07·33-s + 0.611·35-s + 0.527·37-s + 2.52·39-s + 1.70·41-s + 1.38·43-s − 1.28·45-s + 0.323·47-s + 0.867·49-s − 1.74·51-s − 1.36·53-s + 0.472·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(68.4422\)
Root analytic conductor: \(8.27298\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1160,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
29 \( 1 + 29T \)
good3 \( 1 + 10.2T + 27T^{2} \)
7 \( 1 + 25.3T + 343T^{2} \)
11 \( 1 + 38.5T + 1.33e3T^{2} \)
13 \( 1 + 60.1T + 2.19e3T^{2} \)
17 \( 1 - 62.2T + 4.91e3T^{2} \)
19 \( 1 + 11.7T + 6.85e3T^{2} \)
23 \( 1 - 14.8T + 1.21e4T^{2} \)
31 \( 1 - 37.9T + 2.97e4T^{2} \)
37 \( 1 - 118.T + 5.06e4T^{2} \)
41 \( 1 - 447.T + 6.89e4T^{2} \)
43 \( 1 - 391.T + 7.95e4T^{2} \)
47 \( 1 - 104.T + 1.03e5T^{2} \)
53 \( 1 + 524.T + 1.48e5T^{2} \)
59 \( 1 - 99.7T + 2.05e5T^{2} \)
61 \( 1 - 691.T + 2.26e5T^{2} \)
67 \( 1 + 462.T + 3.00e5T^{2} \)
71 \( 1 - 435.T + 3.57e5T^{2} \)
73 \( 1 - 881.T + 3.89e5T^{2} \)
79 \( 1 + 43.2T + 4.93e5T^{2} \)
83 \( 1 + 530.T + 5.71e5T^{2} \)
89 \( 1 + 1.04e3T + 7.04e5T^{2} \)
97 \( 1 + 1.18e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.502892505999533086217128350372, −7.73142142465983467405000346340, −7.23922123534429879540891237230, −6.34083682197021405767930040549, −5.64141522941227902312445598784, −4.90667821512521181259987068105, −3.95754368450771663202925012259, −2.61789890344880446666978331750, −0.78113423144040520703420115014, 0, 0.78113423144040520703420115014, 2.61789890344880446666978331750, 3.95754368450771663202925012259, 4.90667821512521181259987068105, 5.64141522941227902312445598784, 6.34083682197021405767930040549, 7.23922123534429879540891237230, 7.73142142465983467405000346340, 9.502892505999533086217128350372

Graph of the $Z$-function along the critical line