Properties

Label 1160.4.a.b
Level $1160$
Weight $4$
Character orbit 1160.a
Self dual yes
Analytic conductor $68.442$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1556.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 3) q^{3} - 5 q^{5} + (\beta_{2} - 2 \beta_1 - 15) q^{7} + ( - 6 \beta_{2} + 6 \beta_1 + 25) q^{9} + (3 \beta_{2} + 4 \beta_1 - 23) q^{11} + (8 \beta_{2} - 8 \beta_1 + 10) q^{13} + ( - 5 \beta_{2} + 15) q^{15}+ \cdots + (243 \beta_{2} - 248 \beta_1 - 851) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 8 q^{3} - 15 q^{5} - 42 q^{7} + 63 q^{9} - 70 q^{11} + 46 q^{13} + 40 q^{15} + 226 q^{17} - 58 q^{19} + 176 q^{21} - 126 q^{23} + 75 q^{25} - 512 q^{27} - 87 q^{29} + 194 q^{31} + 672 q^{33} + 210 q^{35}+ \cdots - 2062 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 9x + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} + 2\nu - 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} - \beta _1 + 12 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.27082
−3.08060
2.80979
0 −10.2284 0 −5.00000 0 −25.3117 0 77.6202 0
1.2 0 −3.18096 0 −5.00000 0 −0.858544 0 −16.8815 0
1.3 0 5.40937 0 −5.00000 0 −15.8298 0 2.26124 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1160.4.a.b 3
4.b odd 2 1 2320.4.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1160.4.a.b 3 1.a even 1 1 trivial
2320.4.a.j 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 8T_{3}^{2} - 40T_{3} - 176 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1160))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 8 T^{2} + \cdots - 176 \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 42 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$11$ \( T^{3} + 70 T^{2} + \cdots - 41624 \) Copy content Toggle raw display
$13$ \( T^{3} - 46 T^{2} + \cdots + 159704 \) Copy content Toggle raw display
$17$ \( T^{3} - 226 T^{2} + \cdots - 311464 \) Copy content Toggle raw display
$19$ \( T^{3} + 58 T^{2} + \cdots + 6072 \) Copy content Toggle raw display
$23$ \( T^{3} + 126 T^{2} + \cdots + 7688 \) Copy content Toggle raw display
$29$ \( (T + 29)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 194 T^{2} + \cdots + 249864 \) Copy content Toggle raw display
$37$ \( T^{3} - 350 T^{2} + \cdots - 1293048 \) Copy content Toggle raw display
$41$ \( T^{3} - 230 T^{2} + \cdots + 9639544 \) Copy content Toggle raw display
$43$ \( T^{3} - 288 T^{2} + \cdots + 18447088 \) Copy content Toggle raw display
$47$ \( T^{3} - 188 T^{2} + \cdots - 173072 \) Copy content Toggle raw display
$53$ \( T^{3} + 202 T^{2} + \cdots - 18070088 \) Copy content Toggle raw display
$59$ \( T^{3} - 176 T^{2} + \cdots + 3281664 \) Copy content Toggle raw display
$61$ \( T^{3} + 474 T^{2} + \cdots - 222535688 \) Copy content Toggle raw display
$67$ \( T^{3} + 1750 T^{2} + \cdots + 190883464 \) Copy content Toggle raw display
$71$ \( T^{3} - 588 T^{2} + \cdots + 123963328 \) Copy content Toggle raw display
$73$ \( T^{3} + 170 T^{2} + \cdots - 243279448 \) Copy content Toggle raw display
$79$ \( T^{3} + 1138 T^{2} + \cdots + 12958616 \) Copy content Toggle raw display
$83$ \( T^{3} + 510 T^{2} + \cdots - 360723192 \) Copy content Toggle raw display
$89$ \( T^{3} + 1514 T^{2} + \cdots + 11526456 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 2533137368 \) Copy content Toggle raw display
show more
show less