Properties

Label 2-1160-1.1-c3-0-70
Degree $2$
Conductor $1160$
Sign $-1$
Analytic cond. $68.4422$
Root an. cond. $8.27298$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.40·3-s − 5·5-s − 15.8·7-s + 2.26·9-s + 20.7·11-s + 40.3·13-s − 27.0·15-s + 40.6·17-s − 27.4·19-s − 85.6·21-s − 144.·23-s + 25·25-s − 133.·27-s − 29·29-s + 190.·31-s + 112.·33-s + 79.1·35-s + 65.8·37-s + 218.·39-s − 291.·41-s − 274.·43-s − 11.3·45-s + 32.1·47-s − 92.4·49-s + 219.·51-s + 407.·53-s − 103.·55-s + ⋯
L(s)  = 1  + 1.04·3-s − 0.447·5-s − 0.854·7-s + 0.0837·9-s + 0.567·11-s + 0.860·13-s − 0.465·15-s + 0.580·17-s − 0.330·19-s − 0.889·21-s − 1.30·23-s + 0.200·25-s − 0.953·27-s − 0.185·29-s + 1.10·31-s + 0.590·33-s + 0.382·35-s + 0.292·37-s + 0.895·39-s − 1.10·41-s − 0.974·43-s − 0.0374·45-s + 0.0999·47-s − 0.269·49-s + 0.603·51-s + 1.05·53-s − 0.253·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(68.4422\)
Root analytic conductor: \(8.27298\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1160,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
29 \( 1 + 29T \)
good3 \( 1 - 5.40T + 27T^{2} \)
7 \( 1 + 15.8T + 343T^{2} \)
11 \( 1 - 20.7T + 1.33e3T^{2} \)
13 \( 1 - 40.3T + 2.19e3T^{2} \)
17 \( 1 - 40.6T + 4.91e3T^{2} \)
19 \( 1 + 27.4T + 6.85e3T^{2} \)
23 \( 1 + 144.T + 1.21e4T^{2} \)
31 \( 1 - 190.T + 2.97e4T^{2} \)
37 \( 1 - 65.8T + 5.06e4T^{2} \)
41 \( 1 + 291.T + 6.89e4T^{2} \)
43 \( 1 + 274.T + 7.95e4T^{2} \)
47 \( 1 - 32.1T + 1.03e5T^{2} \)
53 \( 1 - 407.T + 1.48e5T^{2} \)
59 \( 1 - 223.T + 2.05e5T^{2} \)
61 \( 1 + 717.T + 2.26e5T^{2} \)
67 \( 1 + 684.T + 3.00e5T^{2} \)
71 \( 1 + 462.T + 3.57e5T^{2} \)
73 \( 1 + 551.T + 3.89e5T^{2} \)
79 \( 1 + 529.T + 4.93e5T^{2} \)
83 \( 1 + 814.T + 5.71e5T^{2} \)
89 \( 1 + 24.8T + 7.04e5T^{2} \)
97 \( 1 + 1.49e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.816436108257124544102847005812, −8.360867974740071791021955013109, −7.52341676533148195407732181506, −6.50518415325226059004726269437, −5.79866407409173403305738799128, −4.29773992653080921008112919019, −3.54428738920380317610729779475, −2.85530550695809413871618828389, −1.54090611018359539899695571423, 0, 1.54090611018359539899695571423, 2.85530550695809413871618828389, 3.54428738920380317610729779475, 4.29773992653080921008112919019, 5.79866407409173403305738799128, 6.50518415325226059004726269437, 7.52341676533148195407732181506, 8.360867974740071791021955013109, 8.816436108257124544102847005812

Graph of the $Z$-function along the critical line