L(s) = 1 | + 5.40·3-s − 5·5-s − 15.8·7-s + 2.26·9-s + 20.7·11-s + 40.3·13-s − 27.0·15-s + 40.6·17-s − 27.4·19-s − 85.6·21-s − 144.·23-s + 25·25-s − 133.·27-s − 29·29-s + 190.·31-s + 112.·33-s + 79.1·35-s + 65.8·37-s + 218.·39-s − 291.·41-s − 274.·43-s − 11.3·45-s + 32.1·47-s − 92.4·49-s + 219.·51-s + 407.·53-s − 103.·55-s + ⋯ |
L(s) = 1 | + 1.04·3-s − 0.447·5-s − 0.854·7-s + 0.0837·9-s + 0.567·11-s + 0.860·13-s − 0.465·15-s + 0.580·17-s − 0.330·19-s − 0.889·21-s − 1.30·23-s + 0.200·25-s − 0.953·27-s − 0.185·29-s + 1.10·31-s + 0.590·33-s + 0.382·35-s + 0.292·37-s + 0.895·39-s − 1.10·41-s − 0.974·43-s − 0.0374·45-s + 0.0999·47-s − 0.269·49-s + 0.603·51-s + 1.05·53-s − 0.253·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1160s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+5T |
| 29 | 1+29T |
good | 3 | 1−5.40T+27T2 |
| 7 | 1+15.8T+343T2 |
| 11 | 1−20.7T+1.33e3T2 |
| 13 | 1−40.3T+2.19e3T2 |
| 17 | 1−40.6T+4.91e3T2 |
| 19 | 1+27.4T+6.85e3T2 |
| 23 | 1+144.T+1.21e4T2 |
| 31 | 1−190.T+2.97e4T2 |
| 37 | 1−65.8T+5.06e4T2 |
| 41 | 1+291.T+6.89e4T2 |
| 43 | 1+274.T+7.95e4T2 |
| 47 | 1−32.1T+1.03e5T2 |
| 53 | 1−407.T+1.48e5T2 |
| 59 | 1−223.T+2.05e5T2 |
| 61 | 1+717.T+2.26e5T2 |
| 67 | 1+684.T+3.00e5T2 |
| 71 | 1+462.T+3.57e5T2 |
| 73 | 1+551.T+3.89e5T2 |
| 79 | 1+529.T+4.93e5T2 |
| 83 | 1+814.T+5.71e5T2 |
| 89 | 1+24.8T+7.04e5T2 |
| 97 | 1+1.49e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.816436108257124544102847005812, −8.360867974740071791021955013109, −7.52341676533148195407732181506, −6.50518415325226059004726269437, −5.79866407409173403305738799128, −4.29773992653080921008112919019, −3.54428738920380317610729779475, −2.85530550695809413871618828389, −1.54090611018359539899695571423, 0,
1.54090611018359539899695571423, 2.85530550695809413871618828389, 3.54428738920380317610729779475, 4.29773992653080921008112919019, 5.79866407409173403305738799128, 6.50518415325226059004726269437, 7.52341676533148195407732181506, 8.360867974740071791021955013109, 8.816436108257124544102847005812