L(s) = 1 | − 5.20·3-s − 5·5-s + 15.1·7-s + 0.117·9-s − 3.79·11-s + 21.8·13-s + 26.0·15-s + 5.42·17-s − 129.·19-s − 79.1·21-s + 58.3·23-s + 25·25-s + 139.·27-s + 29·29-s − 36.2·31-s + 19.7·33-s − 75.9·35-s + 182.·37-s − 113.·39-s − 189.·41-s + 238.·43-s − 0.586·45-s + 94.4·47-s − 112.·49-s − 28.2·51-s + 123.·53-s + 18.9·55-s + ⋯ |
L(s) = 1 | − 1.00·3-s − 0.447·5-s + 0.820·7-s + 0.00434·9-s − 0.104·11-s + 0.466·13-s + 0.448·15-s + 0.0773·17-s − 1.56·19-s − 0.822·21-s + 0.528·23-s + 0.200·25-s + 0.997·27-s + 0.185·29-s − 0.209·31-s + 0.104·33-s − 0.366·35-s + 0.811·37-s − 0.467·39-s − 0.720·41-s + 0.846·43-s − 0.00194·45-s + 0.292·47-s − 0.327·49-s − 0.0775·51-s + 0.319·53-s + 0.0465·55-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1160s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+5T |
| 29 | 1−29T |
good | 3 | 1+5.20T+27T2 |
| 7 | 1−15.1T+343T2 |
| 11 | 1+3.79T+1.33e3T2 |
| 13 | 1−21.8T+2.19e3T2 |
| 17 | 1−5.42T+4.91e3T2 |
| 19 | 1+129.T+6.85e3T2 |
| 23 | 1−58.3T+1.21e4T2 |
| 31 | 1+36.2T+2.97e4T2 |
| 37 | 1−182.T+5.06e4T2 |
| 41 | 1+189.T+6.89e4T2 |
| 43 | 1−238.T+7.95e4T2 |
| 47 | 1−94.4T+1.03e5T2 |
| 53 | 1−123.T+1.48e5T2 |
| 59 | 1−836.T+2.05e5T2 |
| 61 | 1−667.T+2.26e5T2 |
| 67 | 1+657.T+3.00e5T2 |
| 71 | 1+313.T+3.57e5T2 |
| 73 | 1+573.T+3.89e5T2 |
| 79 | 1−408.T+4.93e5T2 |
| 83 | 1+273.T+5.71e5T2 |
| 89 | 1+1.44e3T+7.04e5T2 |
| 97 | 1+73.6T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.740592605014439583000210438236, −8.321273210544961643182324042374, −7.25263369626383279386729731299, −6.39637843638587056975740482690, −5.58720537380202361384213691791, −4.75303622966634877976289811765, −3.94586692933649404916740673098, −2.52816332916665470416455967233, −1.16186218263449860805157123776, 0,
1.16186218263449860805157123776, 2.52816332916665470416455967233, 3.94586692933649404916740673098, 4.75303622966634877976289811765, 5.58720537380202361384213691791, 6.39637843638587056975740482690, 7.25263369626383279386729731299, 8.321273210544961643182324042374, 8.740592605014439583000210438236