Properties

Label 2-1160-1.1-c3-0-48
Degree $2$
Conductor $1160$
Sign $-1$
Analytic cond. $68.4422$
Root an. cond. $8.27298$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.20·3-s − 5·5-s + 15.1·7-s + 0.117·9-s − 3.79·11-s + 21.8·13-s + 26.0·15-s + 5.42·17-s − 129.·19-s − 79.1·21-s + 58.3·23-s + 25·25-s + 139.·27-s + 29·29-s − 36.2·31-s + 19.7·33-s − 75.9·35-s + 182.·37-s − 113.·39-s − 189.·41-s + 238.·43-s − 0.586·45-s + 94.4·47-s − 112.·49-s − 28.2·51-s + 123.·53-s + 18.9·55-s + ⋯
L(s)  = 1  − 1.00·3-s − 0.447·5-s + 0.820·7-s + 0.00434·9-s − 0.104·11-s + 0.466·13-s + 0.448·15-s + 0.0773·17-s − 1.56·19-s − 0.822·21-s + 0.528·23-s + 0.200·25-s + 0.997·27-s + 0.185·29-s − 0.209·31-s + 0.104·33-s − 0.366·35-s + 0.811·37-s − 0.467·39-s − 0.720·41-s + 0.846·43-s − 0.00194·45-s + 0.292·47-s − 0.327·49-s − 0.0775·51-s + 0.319·53-s + 0.0465·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(68.4422\)
Root analytic conductor: \(8.27298\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1160,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good3 \( 1 + 5.20T + 27T^{2} \)
7 \( 1 - 15.1T + 343T^{2} \)
11 \( 1 + 3.79T + 1.33e3T^{2} \)
13 \( 1 - 21.8T + 2.19e3T^{2} \)
17 \( 1 - 5.42T + 4.91e3T^{2} \)
19 \( 1 + 129.T + 6.85e3T^{2} \)
23 \( 1 - 58.3T + 1.21e4T^{2} \)
31 \( 1 + 36.2T + 2.97e4T^{2} \)
37 \( 1 - 182.T + 5.06e4T^{2} \)
41 \( 1 + 189.T + 6.89e4T^{2} \)
43 \( 1 - 238.T + 7.95e4T^{2} \)
47 \( 1 - 94.4T + 1.03e5T^{2} \)
53 \( 1 - 123.T + 1.48e5T^{2} \)
59 \( 1 - 836.T + 2.05e5T^{2} \)
61 \( 1 - 667.T + 2.26e5T^{2} \)
67 \( 1 + 657.T + 3.00e5T^{2} \)
71 \( 1 + 313.T + 3.57e5T^{2} \)
73 \( 1 + 573.T + 3.89e5T^{2} \)
79 \( 1 - 408.T + 4.93e5T^{2} \)
83 \( 1 + 273.T + 5.71e5T^{2} \)
89 \( 1 + 1.44e3T + 7.04e5T^{2} \)
97 \( 1 + 73.6T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.740592605014439583000210438236, −8.321273210544961643182324042374, −7.25263369626383279386729731299, −6.39637843638587056975740482690, −5.58720537380202361384213691791, −4.75303622966634877976289811765, −3.94586692933649404916740673098, −2.52816332916665470416455967233, −1.16186218263449860805157123776, 0, 1.16186218263449860805157123776, 2.52816332916665470416455967233, 3.94586692933649404916740673098, 4.75303622966634877976289811765, 5.58720537380202361384213691791, 6.39637843638587056975740482690, 7.25263369626383279386729731299, 8.321273210544961643182324042374, 8.740592605014439583000210438236

Graph of the $Z$-function along the critical line