Properties

Label 1160.4.a.e.1.3
Level $1160$
Weight $4$
Character 1160.1
Self dual yes
Analytic conductor $68.442$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1160,4,Mod(1,1160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4422156067\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 123x^{7} + 288x^{6} + 5092x^{5} - 8936x^{4} - 85488x^{3} + 115600x^{2} + 478480x - 646400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.20744\) of defining polynomial
Character \(\chi\) \(=\) 1160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.20744 q^{3} -5.00000 q^{5} +15.1907 q^{7} +0.117398 q^{9} -3.79422 q^{11} +21.8525 q^{13} +26.0372 q^{15} +5.42391 q^{17} -129.830 q^{19} -79.1048 q^{21} +58.3381 q^{23} +25.0000 q^{25} +139.989 q^{27} +29.0000 q^{29} -36.2252 q^{31} +19.7582 q^{33} -75.9536 q^{35} +182.678 q^{37} -113.796 q^{39} -189.168 q^{41} +238.654 q^{43} -0.586992 q^{45} +94.4059 q^{47} -112.242 q^{49} -28.2447 q^{51} +123.135 q^{53} +18.9711 q^{55} +676.083 q^{57} +836.442 q^{59} +667.146 q^{61} +1.78337 q^{63} -109.263 q^{65} -657.774 q^{67} -303.792 q^{69} -313.728 q^{71} -573.529 q^{73} -130.186 q^{75} -57.6370 q^{77} +408.329 q^{79} -732.156 q^{81} -273.810 q^{83} -27.1196 q^{85} -151.016 q^{87} -1441.55 q^{89} +331.955 q^{91} +188.641 q^{93} +649.152 q^{95} -73.6142 q^{97} -0.445436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{3} - 45 q^{5} - 27 q^{7} + 12 q^{9} + 88 q^{11} - 65 q^{13} + 15 q^{15} + 43 q^{17} + 88 q^{19} + 212 q^{21} - 73 q^{23} + 225 q^{25} - 108 q^{27} + 261 q^{29} - 3 q^{31} + 76 q^{33} + 135 q^{35}+ \cdots - 442 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.20744 −1.00217 −0.501086 0.865398i \(-0.667066\pi\)
−0.501086 + 0.865398i \(0.667066\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 15.1907 0.820222 0.410111 0.912036i \(-0.365490\pi\)
0.410111 + 0.912036i \(0.365490\pi\)
\(8\) 0 0
\(9\) 0.117398 0.00434809
\(10\) 0 0
\(11\) −3.79422 −0.104000 −0.0520000 0.998647i \(-0.516560\pi\)
−0.0520000 + 0.998647i \(0.516560\pi\)
\(12\) 0 0
\(13\) 21.8525 0.466215 0.233107 0.972451i \(-0.425111\pi\)
0.233107 + 0.972451i \(0.425111\pi\)
\(14\) 0 0
\(15\) 26.0372 0.448185
\(16\) 0 0
\(17\) 5.42391 0.0773819 0.0386909 0.999251i \(-0.487681\pi\)
0.0386909 + 0.999251i \(0.487681\pi\)
\(18\) 0 0
\(19\) −129.830 −1.56764 −0.783819 0.620989i \(-0.786731\pi\)
−0.783819 + 0.620989i \(0.786731\pi\)
\(20\) 0 0
\(21\) −79.1048 −0.822004
\(22\) 0 0
\(23\) 58.3381 0.528884 0.264442 0.964402i \(-0.414812\pi\)
0.264442 + 0.964402i \(0.414812\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 139.989 0.997814
\(28\) 0 0
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −36.2252 −0.209879 −0.104939 0.994479i \(-0.533465\pi\)
−0.104939 + 0.994479i \(0.533465\pi\)
\(32\) 0 0
\(33\) 19.7582 0.104226
\(34\) 0 0
\(35\) −75.9536 −0.366815
\(36\) 0 0
\(37\) 182.678 0.811679 0.405839 0.913944i \(-0.366979\pi\)
0.405839 + 0.913944i \(0.366979\pi\)
\(38\) 0 0
\(39\) −113.796 −0.467227
\(40\) 0 0
\(41\) −189.168 −0.720561 −0.360281 0.932844i \(-0.617319\pi\)
−0.360281 + 0.932844i \(0.617319\pi\)
\(42\) 0 0
\(43\) 238.654 0.846382 0.423191 0.906041i \(-0.360910\pi\)
0.423191 + 0.906041i \(0.360910\pi\)
\(44\) 0 0
\(45\) −0.586992 −0.00194453
\(46\) 0 0
\(47\) 94.4059 0.292990 0.146495 0.989211i \(-0.453201\pi\)
0.146495 + 0.989211i \(0.453201\pi\)
\(48\) 0 0
\(49\) −112.242 −0.327235
\(50\) 0 0
\(51\) −28.2447 −0.0775499
\(52\) 0 0
\(53\) 123.135 0.319129 0.159565 0.987188i \(-0.448991\pi\)
0.159565 + 0.987188i \(0.448991\pi\)
\(54\) 0 0
\(55\) 18.9711 0.0465102
\(56\) 0 0
\(57\) 676.083 1.57104
\(58\) 0 0
\(59\) 836.442 1.84569 0.922843 0.385177i \(-0.125859\pi\)
0.922843 + 0.385177i \(0.125859\pi\)
\(60\) 0 0
\(61\) 667.146 1.40032 0.700158 0.713988i \(-0.253113\pi\)
0.700158 + 0.713988i \(0.253113\pi\)
\(62\) 0 0
\(63\) 1.78337 0.00356640
\(64\) 0 0
\(65\) −109.263 −0.208498
\(66\) 0 0
\(67\) −657.774 −1.19940 −0.599700 0.800225i \(-0.704714\pi\)
−0.599700 + 0.800225i \(0.704714\pi\)
\(68\) 0 0
\(69\) −303.792 −0.530032
\(70\) 0 0
\(71\) −313.728 −0.524404 −0.262202 0.965013i \(-0.584449\pi\)
−0.262202 + 0.965013i \(0.584449\pi\)
\(72\) 0 0
\(73\) −573.529 −0.919542 −0.459771 0.888038i \(-0.652068\pi\)
−0.459771 + 0.888038i \(0.652068\pi\)
\(74\) 0 0
\(75\) −130.186 −0.200434
\(76\) 0 0
\(77\) −57.6370 −0.0853031
\(78\) 0 0
\(79\) 408.329 0.581527 0.290764 0.956795i \(-0.406091\pi\)
0.290764 + 0.956795i \(0.406091\pi\)
\(80\) 0 0
\(81\) −732.156 −1.00433
\(82\) 0 0
\(83\) −273.810 −0.362103 −0.181051 0.983474i \(-0.557950\pi\)
−0.181051 + 0.983474i \(0.557950\pi\)
\(84\) 0 0
\(85\) −27.1196 −0.0346062
\(86\) 0 0
\(87\) −151.016 −0.186099
\(88\) 0 0
\(89\) −1441.55 −1.71690 −0.858450 0.512898i \(-0.828572\pi\)
−0.858450 + 0.512898i \(0.828572\pi\)
\(90\) 0 0
\(91\) 331.955 0.382400
\(92\) 0 0
\(93\) 188.641 0.210335
\(94\) 0 0
\(95\) 649.152 0.701069
\(96\) 0 0
\(97\) −73.6142 −0.0770555 −0.0385278 0.999258i \(-0.512267\pi\)
−0.0385278 + 0.999258i \(0.512267\pi\)
\(98\) 0 0
\(99\) −0.445436 −0.000452202 0
\(100\) 0 0
\(101\) 1098.16 1.08189 0.540946 0.841057i \(-0.318066\pi\)
0.540946 + 0.841057i \(0.318066\pi\)
\(102\) 0 0
\(103\) −1053.69 −1.00799 −0.503994 0.863707i \(-0.668137\pi\)
−0.503994 + 0.863707i \(0.668137\pi\)
\(104\) 0 0
\(105\) 395.524 0.367611
\(106\) 0 0
\(107\) −479.844 −0.433536 −0.216768 0.976223i \(-0.569551\pi\)
−0.216768 + 0.976223i \(0.569551\pi\)
\(108\) 0 0
\(109\) −1.18932 −0.00104510 −0.000522551 1.00000i \(-0.500166\pi\)
−0.000522551 1.00000i \(0.500166\pi\)
\(110\) 0 0
\(111\) −951.285 −0.813441
\(112\) 0 0
\(113\) −1728.39 −1.43888 −0.719441 0.694554i \(-0.755602\pi\)
−0.719441 + 0.694554i \(0.755602\pi\)
\(114\) 0 0
\(115\) −291.690 −0.236524
\(116\) 0 0
\(117\) 2.56545 0.00202715
\(118\) 0 0
\(119\) 82.3932 0.0634703
\(120\) 0 0
\(121\) −1316.60 −0.989184
\(122\) 0 0
\(123\) 985.078 0.722126
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 2195.47 1.53399 0.766994 0.641655i \(-0.221752\pi\)
0.766994 + 0.641655i \(0.221752\pi\)
\(128\) 0 0
\(129\) −1242.78 −0.848220
\(130\) 0 0
\(131\) 1858.21 1.23933 0.619667 0.784865i \(-0.287268\pi\)
0.619667 + 0.784865i \(0.287268\pi\)
\(132\) 0 0
\(133\) −1972.22 −1.28581
\(134\) 0 0
\(135\) −699.947 −0.446236
\(136\) 0 0
\(137\) −2328.20 −1.45191 −0.725956 0.687741i \(-0.758602\pi\)
−0.725956 + 0.687741i \(0.758602\pi\)
\(138\) 0 0
\(139\) 982.079 0.599272 0.299636 0.954054i \(-0.403135\pi\)
0.299636 + 0.954054i \(0.403135\pi\)
\(140\) 0 0
\(141\) −491.613 −0.293626
\(142\) 0 0
\(143\) −82.9132 −0.0484864
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 0 0
\(147\) 584.492 0.327946
\(148\) 0 0
\(149\) −2477.25 −1.36204 −0.681020 0.732265i \(-0.738463\pi\)
−0.681020 + 0.732265i \(0.738463\pi\)
\(150\) 0 0
\(151\) −1708.79 −0.920922 −0.460461 0.887680i \(-0.652316\pi\)
−0.460461 + 0.887680i \(0.652316\pi\)
\(152\) 0 0
\(153\) 0.636759 0.000336463 0
\(154\) 0 0
\(155\) 181.126 0.0938607
\(156\) 0 0
\(157\) −1146.64 −0.582879 −0.291440 0.956589i \(-0.594134\pi\)
−0.291440 + 0.956589i \(0.594134\pi\)
\(158\) 0 0
\(159\) −641.216 −0.319822
\(160\) 0 0
\(161\) 886.198 0.433802
\(162\) 0 0
\(163\) −3764.73 −1.80906 −0.904529 0.426413i \(-0.859777\pi\)
−0.904529 + 0.426413i \(0.859777\pi\)
\(164\) 0 0
\(165\) −98.7908 −0.0466112
\(166\) 0 0
\(167\) 111.820 0.0518139 0.0259069 0.999664i \(-0.491753\pi\)
0.0259069 + 0.999664i \(0.491753\pi\)
\(168\) 0 0
\(169\) −1719.47 −0.782644
\(170\) 0 0
\(171\) −15.2419 −0.00681624
\(172\) 0 0
\(173\) −2917.03 −1.28195 −0.640975 0.767562i \(-0.721470\pi\)
−0.640975 + 0.767562i \(0.721470\pi\)
\(174\) 0 0
\(175\) 379.768 0.164044
\(176\) 0 0
\(177\) −4355.72 −1.84969
\(178\) 0 0
\(179\) −4114.12 −1.71790 −0.858948 0.512062i \(-0.828882\pi\)
−0.858948 + 0.512062i \(0.828882\pi\)
\(180\) 0 0
\(181\) −3406.11 −1.39875 −0.699376 0.714754i \(-0.746539\pi\)
−0.699376 + 0.714754i \(0.746539\pi\)
\(182\) 0 0
\(183\) −3474.12 −1.40336
\(184\) 0 0
\(185\) −913.391 −0.362994
\(186\) 0 0
\(187\) −20.5795 −0.00804772
\(188\) 0 0
\(189\) 2126.54 0.818429
\(190\) 0 0
\(191\) 4998.15 1.89347 0.946737 0.322009i \(-0.104358\pi\)
0.946737 + 0.322009i \(0.104358\pi\)
\(192\) 0 0
\(193\) −2560.69 −0.955038 −0.477519 0.878621i \(-0.658464\pi\)
−0.477519 + 0.878621i \(0.658464\pi\)
\(194\) 0 0
\(195\) 568.978 0.208950
\(196\) 0 0
\(197\) 2770.55 1.00200 0.500998 0.865448i \(-0.332966\pi\)
0.500998 + 0.865448i \(0.332966\pi\)
\(198\) 0 0
\(199\) 1963.69 0.699509 0.349754 0.936841i \(-0.386265\pi\)
0.349754 + 0.936841i \(0.386265\pi\)
\(200\) 0 0
\(201\) 3425.31 1.20201
\(202\) 0 0
\(203\) 440.531 0.152311
\(204\) 0 0
\(205\) 945.838 0.322245
\(206\) 0 0
\(207\) 6.84880 0.00229964
\(208\) 0 0
\(209\) 492.605 0.163034
\(210\) 0 0
\(211\) −2382.01 −0.777176 −0.388588 0.921412i \(-0.627037\pi\)
−0.388588 + 0.921412i \(0.627037\pi\)
\(212\) 0 0
\(213\) 1633.72 0.525543
\(214\) 0 0
\(215\) −1193.27 −0.378513
\(216\) 0 0
\(217\) −550.288 −0.172147
\(218\) 0 0
\(219\) 2986.62 0.921539
\(220\) 0 0
\(221\) 118.526 0.0360766
\(222\) 0 0
\(223\) −2364.04 −0.709901 −0.354950 0.934885i \(-0.615502\pi\)
−0.354950 + 0.934885i \(0.615502\pi\)
\(224\) 0 0
\(225\) 2.93496 0.000869618 0
\(226\) 0 0
\(227\) 6059.37 1.77169 0.885847 0.463978i \(-0.153578\pi\)
0.885847 + 0.463978i \(0.153578\pi\)
\(228\) 0 0
\(229\) −3537.38 −1.02077 −0.510385 0.859946i \(-0.670497\pi\)
−0.510385 + 0.859946i \(0.670497\pi\)
\(230\) 0 0
\(231\) 300.141 0.0854884
\(232\) 0 0
\(233\) −3295.40 −0.926561 −0.463280 0.886212i \(-0.653328\pi\)
−0.463280 + 0.886212i \(0.653328\pi\)
\(234\) 0 0
\(235\) −472.029 −0.131029
\(236\) 0 0
\(237\) −2126.35 −0.582790
\(238\) 0 0
\(239\) 2581.89 0.698781 0.349391 0.936977i \(-0.386389\pi\)
0.349391 + 0.936977i \(0.386389\pi\)
\(240\) 0 0
\(241\) −1556.14 −0.415934 −0.207967 0.978136i \(-0.566685\pi\)
−0.207967 + 0.978136i \(0.566685\pi\)
\(242\) 0 0
\(243\) 32.9409 0.00869612
\(244\) 0 0
\(245\) 561.209 0.146344
\(246\) 0 0
\(247\) −2837.12 −0.730856
\(248\) 0 0
\(249\) 1425.85 0.362889
\(250\) 0 0
\(251\) −4075.13 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(252\) 0 0
\(253\) −221.347 −0.0550039
\(254\) 0 0
\(255\) 141.223 0.0346814
\(256\) 0 0
\(257\) 2936.60 0.712763 0.356382 0.934340i \(-0.384010\pi\)
0.356382 + 0.934340i \(0.384010\pi\)
\(258\) 0 0
\(259\) 2775.01 0.665757
\(260\) 0 0
\(261\) 3.40456 0.000807420 0
\(262\) 0 0
\(263\) 7894.34 1.85090 0.925448 0.378874i \(-0.123688\pi\)
0.925448 + 0.378874i \(0.123688\pi\)
\(264\) 0 0
\(265\) −615.673 −0.142719
\(266\) 0 0
\(267\) 7506.78 1.72063
\(268\) 0 0
\(269\) 309.360 0.0701191 0.0350596 0.999385i \(-0.488838\pi\)
0.0350596 + 0.999385i \(0.488838\pi\)
\(270\) 0 0
\(271\) 151.636 0.0339898 0.0169949 0.999856i \(-0.494590\pi\)
0.0169949 + 0.999856i \(0.494590\pi\)
\(272\) 0 0
\(273\) −1728.64 −0.383230
\(274\) 0 0
\(275\) −94.8555 −0.0208000
\(276\) 0 0
\(277\) −4067.92 −0.882373 −0.441187 0.897415i \(-0.645442\pi\)
−0.441187 + 0.897415i \(0.645442\pi\)
\(278\) 0 0
\(279\) −4.25279 −0.000912572 0
\(280\) 0 0
\(281\) −516.096 −0.109565 −0.0547824 0.998498i \(-0.517447\pi\)
−0.0547824 + 0.998498i \(0.517447\pi\)
\(282\) 0 0
\(283\) −8451.75 −1.77528 −0.887640 0.460537i \(-0.847657\pi\)
−0.887640 + 0.460537i \(0.847657\pi\)
\(284\) 0 0
\(285\) −3380.42 −0.702592
\(286\) 0 0
\(287\) −2873.59 −0.591020
\(288\) 0 0
\(289\) −4883.58 −0.994012
\(290\) 0 0
\(291\) 383.341 0.0772229
\(292\) 0 0
\(293\) 5462.68 1.08919 0.544595 0.838699i \(-0.316683\pi\)
0.544595 + 0.838699i \(0.316683\pi\)
\(294\) 0 0
\(295\) −4182.21 −0.825416
\(296\) 0 0
\(297\) −531.151 −0.103773
\(298\) 0 0
\(299\) 1274.83 0.246574
\(300\) 0 0
\(301\) 3625.33 0.694221
\(302\) 0 0
\(303\) −5718.61 −1.08424
\(304\) 0 0
\(305\) −3335.73 −0.626241
\(306\) 0 0
\(307\) 2136.17 0.397127 0.198563 0.980088i \(-0.436372\pi\)
0.198563 + 0.980088i \(0.436372\pi\)
\(308\) 0 0
\(309\) 5487.00 1.01018
\(310\) 0 0
\(311\) −6303.14 −1.14926 −0.574628 0.818415i \(-0.694853\pi\)
−0.574628 + 0.818415i \(0.694853\pi\)
\(312\) 0 0
\(313\) 289.779 0.0523300 0.0261650 0.999658i \(-0.491670\pi\)
0.0261650 + 0.999658i \(0.491670\pi\)
\(314\) 0 0
\(315\) −8.91684 −0.00159494
\(316\) 0 0
\(317\) −1427.87 −0.252989 −0.126494 0.991967i \(-0.540373\pi\)
−0.126494 + 0.991967i \(0.540373\pi\)
\(318\) 0 0
\(319\) −110.032 −0.0193123
\(320\) 0 0
\(321\) 2498.76 0.434477
\(322\) 0 0
\(323\) −704.188 −0.121307
\(324\) 0 0
\(325\) 546.313 0.0932430
\(326\) 0 0
\(327\) 6.19330 0.00104737
\(328\) 0 0
\(329\) 1434.09 0.240317
\(330\) 0 0
\(331\) 4168.63 0.692232 0.346116 0.938192i \(-0.387500\pi\)
0.346116 + 0.938192i \(0.387500\pi\)
\(332\) 0 0
\(333\) 21.4461 0.00352925
\(334\) 0 0
\(335\) 3288.87 0.536388
\(336\) 0 0
\(337\) −1108.83 −0.179233 −0.0896166 0.995976i \(-0.528564\pi\)
−0.0896166 + 0.995976i \(0.528564\pi\)
\(338\) 0 0
\(339\) 9000.50 1.44201
\(340\) 0 0
\(341\) 137.446 0.0218274
\(342\) 0 0
\(343\) −6915.45 −1.08863
\(344\) 0 0
\(345\) 1518.96 0.237038
\(346\) 0 0
\(347\) −3248.20 −0.502514 −0.251257 0.967920i \(-0.580844\pi\)
−0.251257 + 0.967920i \(0.580844\pi\)
\(348\) 0 0
\(349\) 11502.7 1.76426 0.882132 0.471003i \(-0.156108\pi\)
0.882132 + 0.471003i \(0.156108\pi\)
\(350\) 0 0
\(351\) 3059.12 0.465196
\(352\) 0 0
\(353\) −1492.97 −0.225107 −0.112553 0.993646i \(-0.535903\pi\)
−0.112553 + 0.993646i \(0.535903\pi\)
\(354\) 0 0
\(355\) 1568.64 0.234521
\(356\) 0 0
\(357\) −429.057 −0.0636082
\(358\) 0 0
\(359\) 703.707 0.103455 0.0517274 0.998661i \(-0.483527\pi\)
0.0517274 + 0.998661i \(0.483527\pi\)
\(360\) 0 0
\(361\) 9996.92 1.45749
\(362\) 0 0
\(363\) 6856.13 0.991332
\(364\) 0 0
\(365\) 2867.65 0.411232
\(366\) 0 0
\(367\) −1855.13 −0.263862 −0.131931 0.991259i \(-0.542118\pi\)
−0.131931 + 0.991259i \(0.542118\pi\)
\(368\) 0 0
\(369\) −22.2080 −0.00313307
\(370\) 0 0
\(371\) 1870.50 0.261757
\(372\) 0 0
\(373\) −4666.05 −0.647718 −0.323859 0.946105i \(-0.604980\pi\)
−0.323859 + 0.946105i \(0.604980\pi\)
\(374\) 0 0
\(375\) 650.930 0.0896370
\(376\) 0 0
\(377\) 633.723 0.0865739
\(378\) 0 0
\(379\) 5572.81 0.755293 0.377646 0.925950i \(-0.376734\pi\)
0.377646 + 0.925950i \(0.376734\pi\)
\(380\) 0 0
\(381\) −11432.8 −1.53732
\(382\) 0 0
\(383\) −12192.8 −1.62669 −0.813344 0.581783i \(-0.802355\pi\)
−0.813344 + 0.581783i \(0.802355\pi\)
\(384\) 0 0
\(385\) 288.185 0.0381487
\(386\) 0 0
\(387\) 28.0176 0.00368014
\(388\) 0 0
\(389\) 2289.86 0.298458 0.149229 0.988803i \(-0.452321\pi\)
0.149229 + 0.988803i \(0.452321\pi\)
\(390\) 0 0
\(391\) 316.420 0.0409260
\(392\) 0 0
\(393\) −9676.52 −1.24202
\(394\) 0 0
\(395\) −2041.65 −0.260067
\(396\) 0 0
\(397\) 5087.21 0.643123 0.321562 0.946889i \(-0.395792\pi\)
0.321562 + 0.946889i \(0.395792\pi\)
\(398\) 0 0
\(399\) 10270.2 1.28860
\(400\) 0 0
\(401\) 435.207 0.0541974 0.0270987 0.999633i \(-0.491373\pi\)
0.0270987 + 0.999633i \(0.491373\pi\)
\(402\) 0 0
\(403\) −791.612 −0.0978486
\(404\) 0 0
\(405\) 3660.78 0.449150
\(406\) 0 0
\(407\) −693.121 −0.0844146
\(408\) 0 0
\(409\) −4670.56 −0.564656 −0.282328 0.959318i \(-0.591107\pi\)
−0.282328 + 0.959318i \(0.591107\pi\)
\(410\) 0 0
\(411\) 12124.0 1.45506
\(412\) 0 0
\(413\) 12706.2 1.51387
\(414\) 0 0
\(415\) 1369.05 0.161937
\(416\) 0 0
\(417\) −5114.11 −0.600574
\(418\) 0 0
\(419\) −6522.47 −0.760486 −0.380243 0.924887i \(-0.624160\pi\)
−0.380243 + 0.924887i \(0.624160\pi\)
\(420\) 0 0
\(421\) 5854.71 0.677769 0.338885 0.940828i \(-0.389950\pi\)
0.338885 + 0.940828i \(0.389950\pi\)
\(422\) 0 0
\(423\) 11.0831 0.00127395
\(424\) 0 0
\(425\) 135.598 0.0154764
\(426\) 0 0
\(427\) 10134.4 1.14857
\(428\) 0 0
\(429\) 431.765 0.0485917
\(430\) 0 0
\(431\) −1815.37 −0.202884 −0.101442 0.994841i \(-0.532346\pi\)
−0.101442 + 0.994841i \(0.532346\pi\)
\(432\) 0 0
\(433\) −5560.46 −0.617133 −0.308567 0.951203i \(-0.599849\pi\)
−0.308567 + 0.951203i \(0.599849\pi\)
\(434\) 0 0
\(435\) 755.078 0.0832258
\(436\) 0 0
\(437\) −7574.05 −0.829099
\(438\) 0 0
\(439\) 7209.04 0.783755 0.391878 0.920017i \(-0.371826\pi\)
0.391878 + 0.920017i \(0.371826\pi\)
\(440\) 0 0
\(441\) −13.1770 −0.00142285
\(442\) 0 0
\(443\) −600.141 −0.0643647 −0.0321824 0.999482i \(-0.510246\pi\)
−0.0321824 + 0.999482i \(0.510246\pi\)
\(444\) 0 0
\(445\) 7207.75 0.767821
\(446\) 0 0
\(447\) 12900.1 1.36500
\(448\) 0 0
\(449\) −2528.32 −0.265743 −0.132872 0.991133i \(-0.542420\pi\)
−0.132872 + 0.991133i \(0.542420\pi\)
\(450\) 0 0
\(451\) 717.743 0.0749384
\(452\) 0 0
\(453\) 8898.40 0.922922
\(454\) 0 0
\(455\) −1659.78 −0.171014
\(456\) 0 0
\(457\) −13383.6 −1.36993 −0.684967 0.728574i \(-0.740183\pi\)
−0.684967 + 0.728574i \(0.740183\pi\)
\(458\) 0 0
\(459\) 759.290 0.0772127
\(460\) 0 0
\(461\) 11602.0 1.17215 0.586074 0.810258i \(-0.300673\pi\)
0.586074 + 0.810258i \(0.300673\pi\)
\(462\) 0 0
\(463\) 6367.19 0.639112 0.319556 0.947567i \(-0.396466\pi\)
0.319556 + 0.947567i \(0.396466\pi\)
\(464\) 0 0
\(465\) −943.203 −0.0940645
\(466\) 0 0
\(467\) 7322.47 0.725575 0.362787 0.931872i \(-0.381825\pi\)
0.362787 + 0.931872i \(0.381825\pi\)
\(468\) 0 0
\(469\) −9992.06 −0.983775
\(470\) 0 0
\(471\) 5971.07 0.584145
\(472\) 0 0
\(473\) −905.506 −0.0880237
\(474\) 0 0
\(475\) −3245.76 −0.313528
\(476\) 0 0
\(477\) 14.4558 0.00138760
\(478\) 0 0
\(479\) 7086.76 0.675997 0.337998 0.941147i \(-0.390250\pi\)
0.337998 + 0.941147i \(0.390250\pi\)
\(480\) 0 0
\(481\) 3991.98 0.378417
\(482\) 0 0
\(483\) −4614.82 −0.434744
\(484\) 0 0
\(485\) 368.071 0.0344603
\(486\) 0 0
\(487\) −16558.4 −1.54072 −0.770362 0.637607i \(-0.779924\pi\)
−0.770362 + 0.637607i \(0.779924\pi\)
\(488\) 0 0
\(489\) 19604.6 1.81299
\(490\) 0 0
\(491\) −3437.59 −0.315960 −0.157980 0.987442i \(-0.550498\pi\)
−0.157980 + 0.987442i \(0.550498\pi\)
\(492\) 0 0
\(493\) 157.293 0.0143695
\(494\) 0 0
\(495\) 2.22718 0.000202231 0
\(496\) 0 0
\(497\) −4765.76 −0.430128
\(498\) 0 0
\(499\) 10874.5 0.975574 0.487787 0.872963i \(-0.337804\pi\)
0.487787 + 0.872963i \(0.337804\pi\)
\(500\) 0 0
\(501\) −582.297 −0.0519264
\(502\) 0 0
\(503\) 337.035 0.0298761 0.0149380 0.999888i \(-0.495245\pi\)
0.0149380 + 0.999888i \(0.495245\pi\)
\(504\) 0 0
\(505\) −5490.81 −0.483837
\(506\) 0 0
\(507\) 8954.02 0.784343
\(508\) 0 0
\(509\) 9419.35 0.820246 0.410123 0.912030i \(-0.365486\pi\)
0.410123 + 0.912030i \(0.365486\pi\)
\(510\) 0 0
\(511\) −8712.33 −0.754229
\(512\) 0 0
\(513\) −18174.9 −1.56421
\(514\) 0 0
\(515\) 5268.43 0.450786
\(516\) 0 0
\(517\) −358.197 −0.0304709
\(518\) 0 0
\(519\) 15190.2 1.28473
\(520\) 0 0
\(521\) −5135.61 −0.431853 −0.215926 0.976410i \(-0.569277\pi\)
−0.215926 + 0.976410i \(0.569277\pi\)
\(522\) 0 0
\(523\) 9279.12 0.775808 0.387904 0.921700i \(-0.373199\pi\)
0.387904 + 0.921700i \(0.373199\pi\)
\(524\) 0 0
\(525\) −1977.62 −0.164401
\(526\) 0 0
\(527\) −196.482 −0.0162408
\(528\) 0 0
\(529\) −8763.67 −0.720282
\(530\) 0 0
\(531\) 98.1970 0.00802521
\(532\) 0 0
\(533\) −4133.79 −0.335936
\(534\) 0 0
\(535\) 2399.22 0.193883
\(536\) 0 0
\(537\) 21424.0 1.72163
\(538\) 0 0
\(539\) 425.870 0.0340325
\(540\) 0 0
\(541\) −6375.38 −0.506652 −0.253326 0.967381i \(-0.581525\pi\)
−0.253326 + 0.967381i \(0.581525\pi\)
\(542\) 0 0
\(543\) 17737.1 1.40179
\(544\) 0 0
\(545\) 5.94660 0.000467384 0
\(546\) 0 0
\(547\) −8910.61 −0.696509 −0.348254 0.937400i \(-0.613225\pi\)
−0.348254 + 0.937400i \(0.613225\pi\)
\(548\) 0 0
\(549\) 78.3219 0.00608871
\(550\) 0 0
\(551\) −3765.08 −0.291103
\(552\) 0 0
\(553\) 6202.82 0.476982
\(554\) 0 0
\(555\) 4756.43 0.363782
\(556\) 0 0
\(557\) 9584.35 0.729088 0.364544 0.931186i \(-0.381225\pi\)
0.364544 + 0.931186i \(0.381225\pi\)
\(558\) 0 0
\(559\) 5215.19 0.394596
\(560\) 0 0
\(561\) 107.167 0.00806519
\(562\) 0 0
\(563\) 6005.15 0.449532 0.224766 0.974413i \(-0.427838\pi\)
0.224766 + 0.974413i \(0.427838\pi\)
\(564\) 0 0
\(565\) 8641.97 0.643487
\(566\) 0 0
\(567\) −11122.0 −0.823773
\(568\) 0 0
\(569\) −7364.86 −0.542621 −0.271310 0.962492i \(-0.587457\pi\)
−0.271310 + 0.962492i \(0.587457\pi\)
\(570\) 0 0
\(571\) −5536.67 −0.405784 −0.202892 0.979201i \(-0.565034\pi\)
−0.202892 + 0.979201i \(0.565034\pi\)
\(572\) 0 0
\(573\) −26027.5 −1.89759
\(574\) 0 0
\(575\) 1458.45 0.105777
\(576\) 0 0
\(577\) 8165.85 0.589166 0.294583 0.955626i \(-0.404819\pi\)
0.294583 + 0.955626i \(0.404819\pi\)
\(578\) 0 0
\(579\) 13334.6 0.957112
\(580\) 0 0
\(581\) −4159.37 −0.297005
\(582\) 0 0
\(583\) −467.200 −0.0331894
\(584\) 0 0
\(585\) −12.8273 −0.000906567 0
\(586\) 0 0
\(587\) −4181.78 −0.294038 −0.147019 0.989134i \(-0.546968\pi\)
−0.147019 + 0.989134i \(0.546968\pi\)
\(588\) 0 0
\(589\) 4703.13 0.329014
\(590\) 0 0
\(591\) −14427.4 −1.00417
\(592\) 0 0
\(593\) 2943.62 0.203845 0.101922 0.994792i \(-0.467501\pi\)
0.101922 + 0.994792i \(0.467501\pi\)
\(594\) 0 0
\(595\) −411.966 −0.0283848
\(596\) 0 0
\(597\) −10225.8 −0.701028
\(598\) 0 0
\(599\) −4721.73 −0.322078 −0.161039 0.986948i \(-0.551484\pi\)
−0.161039 + 0.986948i \(0.551484\pi\)
\(600\) 0 0
\(601\) −13462.9 −0.913746 −0.456873 0.889532i \(-0.651031\pi\)
−0.456873 + 0.889532i \(0.651031\pi\)
\(602\) 0 0
\(603\) −77.2216 −0.00521510
\(604\) 0 0
\(605\) 6583.02 0.442377
\(606\) 0 0
\(607\) 20636.8 1.37994 0.689970 0.723838i \(-0.257624\pi\)
0.689970 + 0.723838i \(0.257624\pi\)
\(608\) 0 0
\(609\) −2294.04 −0.152642
\(610\) 0 0
\(611\) 2063.00 0.136596
\(612\) 0 0
\(613\) −4895.44 −0.322553 −0.161276 0.986909i \(-0.551561\pi\)
−0.161276 + 0.986909i \(0.551561\pi\)
\(614\) 0 0
\(615\) −4925.39 −0.322945
\(616\) 0 0
\(617\) 3102.15 0.202412 0.101206 0.994866i \(-0.467730\pi\)
0.101206 + 0.994866i \(0.467730\pi\)
\(618\) 0 0
\(619\) −20003.5 −1.29888 −0.649441 0.760412i \(-0.724997\pi\)
−0.649441 + 0.760412i \(0.724997\pi\)
\(620\) 0 0
\(621\) 8166.71 0.527728
\(622\) 0 0
\(623\) −21898.2 −1.40824
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −2565.21 −0.163388
\(628\) 0 0
\(629\) 990.830 0.0628092
\(630\) 0 0
\(631\) 10604.1 0.669005 0.334502 0.942395i \(-0.391432\pi\)
0.334502 + 0.942395i \(0.391432\pi\)
\(632\) 0 0
\(633\) 12404.1 0.778863
\(634\) 0 0
\(635\) −10977.3 −0.686020
\(636\) 0 0
\(637\) −2452.76 −0.152562
\(638\) 0 0
\(639\) −36.8312 −0.00228016
\(640\) 0 0
\(641\) 14286.4 0.880308 0.440154 0.897922i \(-0.354924\pi\)
0.440154 + 0.897922i \(0.354924\pi\)
\(642\) 0 0
\(643\) −11184.8 −0.685979 −0.342990 0.939339i \(-0.611440\pi\)
−0.342990 + 0.939339i \(0.611440\pi\)
\(644\) 0 0
\(645\) 6213.88 0.379335
\(646\) 0 0
\(647\) 10630.4 0.645944 0.322972 0.946409i \(-0.395318\pi\)
0.322972 + 0.946409i \(0.395318\pi\)
\(648\) 0 0
\(649\) −3173.64 −0.191951
\(650\) 0 0
\(651\) 2865.59 0.172521
\(652\) 0 0
\(653\) −12617.4 −0.756138 −0.378069 0.925777i \(-0.623412\pi\)
−0.378069 + 0.925777i \(0.623412\pi\)
\(654\) 0 0
\(655\) −9291.06 −0.554247
\(656\) 0 0
\(657\) −67.3315 −0.00399825
\(658\) 0 0
\(659\) 8311.90 0.491329 0.245664 0.969355i \(-0.420994\pi\)
0.245664 + 0.969355i \(0.420994\pi\)
\(660\) 0 0
\(661\) −26450.4 −1.55643 −0.778215 0.627998i \(-0.783875\pi\)
−0.778215 + 0.627998i \(0.783875\pi\)
\(662\) 0 0
\(663\) −617.217 −0.0361549
\(664\) 0 0
\(665\) 9861.09 0.575033
\(666\) 0 0
\(667\) 1691.80 0.0982113
\(668\) 0 0
\(669\) 12310.6 0.711442
\(670\) 0 0
\(671\) −2531.30 −0.145633
\(672\) 0 0
\(673\) 2007.05 0.114957 0.0574785 0.998347i \(-0.481694\pi\)
0.0574785 + 0.998347i \(0.481694\pi\)
\(674\) 0 0
\(675\) 3499.74 0.199563
\(676\) 0 0
\(677\) −26811.0 −1.52206 −0.761028 0.648720i \(-0.775305\pi\)
−0.761028 + 0.648720i \(0.775305\pi\)
\(678\) 0 0
\(679\) −1118.25 −0.0632027
\(680\) 0 0
\(681\) −31553.8 −1.77554
\(682\) 0 0
\(683\) 9323.90 0.522356 0.261178 0.965291i \(-0.415889\pi\)
0.261178 + 0.965291i \(0.415889\pi\)
\(684\) 0 0
\(685\) 11641.0 0.649315
\(686\) 0 0
\(687\) 18420.7 1.02299
\(688\) 0 0
\(689\) 2690.80 0.148783
\(690\) 0 0
\(691\) 9312.74 0.512697 0.256348 0.966584i \(-0.417481\pi\)
0.256348 + 0.966584i \(0.417481\pi\)
\(692\) 0 0
\(693\) −6.76649 −0.000370906 0
\(694\) 0 0
\(695\) −4910.39 −0.268003
\(696\) 0 0
\(697\) −1026.03 −0.0557584
\(698\) 0 0
\(699\) 17160.6 0.928573
\(700\) 0 0
\(701\) 14028.6 0.755853 0.377926 0.925836i \(-0.376637\pi\)
0.377926 + 0.925836i \(0.376637\pi\)
\(702\) 0 0
\(703\) −23717.2 −1.27242
\(704\) 0 0
\(705\) 2458.06 0.131314
\(706\) 0 0
\(707\) 16681.9 0.887392
\(708\) 0 0
\(709\) 30882.6 1.63585 0.817927 0.575322i \(-0.195123\pi\)
0.817927 + 0.575322i \(0.195123\pi\)
\(710\) 0 0
\(711\) 47.9373 0.00252853
\(712\) 0 0
\(713\) −2113.31 −0.111002
\(714\) 0 0
\(715\) 414.566 0.0216838
\(716\) 0 0
\(717\) −13445.0 −0.700299
\(718\) 0 0
\(719\) 10273.8 0.532890 0.266445 0.963850i \(-0.414151\pi\)
0.266445 + 0.963850i \(0.414151\pi\)
\(720\) 0 0
\(721\) −16006.3 −0.826774
\(722\) 0 0
\(723\) 8103.52 0.416837
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 20429.4 1.04221 0.521104 0.853493i \(-0.325521\pi\)
0.521104 + 0.853493i \(0.325521\pi\)
\(728\) 0 0
\(729\) 19596.7 0.995614
\(730\) 0 0
\(731\) 1294.44 0.0654946
\(732\) 0 0
\(733\) −32179.7 −1.62154 −0.810768 0.585368i \(-0.800950\pi\)
−0.810768 + 0.585368i \(0.800950\pi\)
\(734\) 0 0
\(735\) −2922.46 −0.146662
\(736\) 0 0
\(737\) 2495.74 0.124738
\(738\) 0 0
\(739\) −12103.9 −0.602503 −0.301251 0.953545i \(-0.597404\pi\)
−0.301251 + 0.953545i \(0.597404\pi\)
\(740\) 0 0
\(741\) 14774.1 0.732444
\(742\) 0 0
\(743\) 4069.71 0.200947 0.100473 0.994940i \(-0.467964\pi\)
0.100473 + 0.994940i \(0.467964\pi\)
\(744\) 0 0
\(745\) 12386.2 0.609122
\(746\) 0 0
\(747\) −32.1449 −0.00157446
\(748\) 0 0
\(749\) −7289.19 −0.355596
\(750\) 0 0
\(751\) −22410.9 −1.08893 −0.544465 0.838783i \(-0.683267\pi\)
−0.544465 + 0.838783i \(0.683267\pi\)
\(752\) 0 0
\(753\) 21221.0 1.02701
\(754\) 0 0
\(755\) 8543.94 0.411849
\(756\) 0 0
\(757\) 11846.2 0.568769 0.284385 0.958710i \(-0.408211\pi\)
0.284385 + 0.958710i \(0.408211\pi\)
\(758\) 0 0
\(759\) 1152.65 0.0551234
\(760\) 0 0
\(761\) −27216.2 −1.29643 −0.648216 0.761456i \(-0.724485\pi\)
−0.648216 + 0.761456i \(0.724485\pi\)
\(762\) 0 0
\(763\) −18.0666 −0.000857216 0
\(764\) 0 0
\(765\) −3.18379 −0.000150471 0
\(766\) 0 0
\(767\) 18278.4 0.860486
\(768\) 0 0
\(769\) 39079.9 1.83259 0.916293 0.400508i \(-0.131166\pi\)
0.916293 + 0.400508i \(0.131166\pi\)
\(770\) 0 0
\(771\) −15292.2 −0.714311
\(772\) 0 0
\(773\) 20855.1 0.970384 0.485192 0.874408i \(-0.338750\pi\)
0.485192 + 0.874408i \(0.338750\pi\)
\(774\) 0 0
\(775\) −905.631 −0.0419758
\(776\) 0 0
\(777\) −14450.7 −0.667203
\(778\) 0 0
\(779\) 24559.7 1.12958
\(780\) 0 0
\(781\) 1190.35 0.0545380
\(782\) 0 0
\(783\) 4059.69 0.185289
\(784\) 0 0
\(785\) 5733.21 0.260672
\(786\) 0 0
\(787\) 15857.5 0.718244 0.359122 0.933291i \(-0.383076\pi\)
0.359122 + 0.933291i \(0.383076\pi\)
\(788\) 0 0
\(789\) −41109.3 −1.85492
\(790\) 0 0
\(791\) −26255.6 −1.18020
\(792\) 0 0
\(793\) 14578.8 0.652849
\(794\) 0 0
\(795\) 3206.08 0.143029
\(796\) 0 0
\(797\) −34420.6 −1.52978 −0.764892 0.644158i \(-0.777208\pi\)
−0.764892 + 0.644158i \(0.777208\pi\)
\(798\) 0 0
\(799\) 512.049 0.0226721
\(800\) 0 0
\(801\) −169.236 −0.00746524
\(802\) 0 0
\(803\) 2176.10 0.0956324
\(804\) 0 0
\(805\) −4430.99 −0.194002
\(806\) 0 0
\(807\) −1610.98 −0.0702714
\(808\) 0 0
\(809\) −19841.6 −0.862289 −0.431144 0.902283i \(-0.641890\pi\)
−0.431144 + 0.902283i \(0.641890\pi\)
\(810\) 0 0
\(811\) −12635.4 −0.547087 −0.273543 0.961860i \(-0.588196\pi\)
−0.273543 + 0.961860i \(0.588196\pi\)
\(812\) 0 0
\(813\) −789.635 −0.0340636
\(814\) 0 0
\(815\) 18823.6 0.809035
\(816\) 0 0
\(817\) −30984.5 −1.32682
\(818\) 0 0
\(819\) 38.9711 0.00166271
\(820\) 0 0
\(821\) 41953.8 1.78343 0.891716 0.452595i \(-0.149502\pi\)
0.891716 + 0.452595i \(0.149502\pi\)
\(822\) 0 0
\(823\) −32285.7 −1.36745 −0.683724 0.729741i \(-0.739641\pi\)
−0.683724 + 0.729741i \(0.739641\pi\)
\(824\) 0 0
\(825\) 493.954 0.0208452
\(826\) 0 0
\(827\) −13277.6 −0.558290 −0.279145 0.960249i \(-0.590051\pi\)
−0.279145 + 0.960249i \(0.590051\pi\)
\(828\) 0 0
\(829\) 7888.29 0.330485 0.165242 0.986253i \(-0.447159\pi\)
0.165242 + 0.986253i \(0.447159\pi\)
\(830\) 0 0
\(831\) 21183.4 0.884290
\(832\) 0 0
\(833\) −608.789 −0.0253221
\(834\) 0 0
\(835\) −559.102 −0.0231719
\(836\) 0 0
\(837\) −5071.15 −0.209420
\(838\) 0 0
\(839\) 11675.4 0.480430 0.240215 0.970720i \(-0.422782\pi\)
0.240215 + 0.970720i \(0.422782\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 2687.54 0.109803
\(844\) 0 0
\(845\) 8597.34 0.350009
\(846\) 0 0
\(847\) −20000.2 −0.811351
\(848\) 0 0
\(849\) 44012.0 1.77914
\(850\) 0 0
\(851\) 10657.1 0.429284
\(852\) 0 0
\(853\) 18187.7 0.730053 0.365026 0.930997i \(-0.381060\pi\)
0.365026 + 0.930997i \(0.381060\pi\)
\(854\) 0 0
\(855\) 76.2094 0.00304831
\(856\) 0 0
\(857\) 16155.0 0.643926 0.321963 0.946752i \(-0.395657\pi\)
0.321963 + 0.946752i \(0.395657\pi\)
\(858\) 0 0
\(859\) −6942.41 −0.275753 −0.137877 0.990449i \(-0.544028\pi\)
−0.137877 + 0.990449i \(0.544028\pi\)
\(860\) 0 0
\(861\) 14964.1 0.592304
\(862\) 0 0
\(863\) −24632.9 −0.971628 −0.485814 0.874062i \(-0.661477\pi\)
−0.485814 + 0.874062i \(0.661477\pi\)
\(864\) 0 0
\(865\) 14585.1 0.573305
\(866\) 0 0
\(867\) 25430.9 0.996171
\(868\) 0 0
\(869\) −1549.29 −0.0604788
\(870\) 0 0
\(871\) −14374.0 −0.559179
\(872\) 0 0
\(873\) −8.64219 −0.000335044 0
\(874\) 0 0
\(875\) −1898.84 −0.0733629
\(876\) 0 0
\(877\) −10567.7 −0.406893 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(878\) 0 0
\(879\) −28446.5 −1.09156
\(880\) 0 0
\(881\) −27130.1 −1.03750 −0.518748 0.854927i \(-0.673602\pi\)
−0.518748 + 0.854927i \(0.673602\pi\)
\(882\) 0 0
\(883\) −41743.8 −1.59093 −0.795465 0.605999i \(-0.792774\pi\)
−0.795465 + 0.605999i \(0.792774\pi\)
\(884\) 0 0
\(885\) 21778.6 0.827208
\(886\) 0 0
\(887\) −3233.84 −0.122414 −0.0612072 0.998125i \(-0.519495\pi\)
−0.0612072 + 0.998125i \(0.519495\pi\)
\(888\) 0 0
\(889\) 33350.8 1.25821
\(890\) 0 0
\(891\) 2777.96 0.104450
\(892\) 0 0
\(893\) −12256.8 −0.459302
\(894\) 0 0
\(895\) 20570.6 0.768267
\(896\) 0 0
\(897\) −6638.61 −0.247109
\(898\) 0 0
\(899\) −1050.53 −0.0389735
\(900\) 0 0
\(901\) 667.871 0.0246948
\(902\) 0 0
\(903\) −18878.7 −0.695729
\(904\) 0 0
\(905\) 17030.6 0.625541
\(906\) 0 0
\(907\) −6543.88 −0.239566 −0.119783 0.992800i \(-0.538220\pi\)
−0.119783 + 0.992800i \(0.538220\pi\)
\(908\) 0 0
\(909\) 128.922 0.00470417
\(910\) 0 0
\(911\) −9902.90 −0.360151 −0.180076 0.983653i \(-0.557634\pi\)
−0.180076 + 0.983653i \(0.557634\pi\)
\(912\) 0 0
\(913\) 1038.90 0.0376587
\(914\) 0 0
\(915\) 17370.6 0.627601
\(916\) 0 0
\(917\) 28227.6 1.01653
\(918\) 0 0
\(919\) −76.8989 −0.00276024 −0.00138012 0.999999i \(-0.500439\pi\)
−0.00138012 + 0.999999i \(0.500439\pi\)
\(920\) 0 0
\(921\) −11124.0 −0.397989
\(922\) 0 0
\(923\) −6855.74 −0.244485
\(924\) 0 0
\(925\) 4566.95 0.162336
\(926\) 0 0
\(927\) −123.701 −0.00438282
\(928\) 0 0
\(929\) −41387.6 −1.46166 −0.730831 0.682558i \(-0.760867\pi\)
−0.730831 + 0.682558i \(0.760867\pi\)
\(930\) 0 0
\(931\) 14572.4 0.512987
\(932\) 0 0
\(933\) 32823.2 1.15175
\(934\) 0 0
\(935\) 102.898 0.00359905
\(936\) 0 0
\(937\) 1361.85 0.0474809 0.0237404 0.999718i \(-0.492442\pi\)
0.0237404 + 0.999718i \(0.492442\pi\)
\(938\) 0 0
\(939\) −1509.01 −0.0524436
\(940\) 0 0
\(941\) −16032.2 −0.555405 −0.277702 0.960667i \(-0.589573\pi\)
−0.277702 + 0.960667i \(0.589573\pi\)
\(942\) 0 0
\(943\) −11035.7 −0.381093
\(944\) 0 0
\(945\) −10632.7 −0.366013
\(946\) 0 0
\(947\) −17141.3 −0.588190 −0.294095 0.955776i \(-0.595018\pi\)
−0.294095 + 0.955776i \(0.595018\pi\)
\(948\) 0 0
\(949\) −12533.1 −0.428704
\(950\) 0 0
\(951\) 7435.56 0.253538
\(952\) 0 0
\(953\) 47724.2 1.62218 0.811091 0.584920i \(-0.198874\pi\)
0.811091 + 0.584920i \(0.198874\pi\)
\(954\) 0 0
\(955\) −24990.7 −0.846787
\(956\) 0 0
\(957\) 572.987 0.0193543
\(958\) 0 0
\(959\) −35367.1 −1.19089
\(960\) 0 0
\(961\) −28478.7 −0.955951
\(962\) 0 0
\(963\) −56.3330 −0.00188505
\(964\) 0 0
\(965\) 12803.4 0.427106
\(966\) 0 0
\(967\) −48259.7 −1.60489 −0.802444 0.596727i \(-0.796468\pi\)
−0.802444 + 0.596727i \(0.796468\pi\)
\(968\) 0 0
\(969\) 3667.02 0.121570
\(970\) 0 0
\(971\) −48301.7 −1.59637 −0.798185 0.602413i \(-0.794206\pi\)
−0.798185 + 0.602413i \(0.794206\pi\)
\(972\) 0 0
\(973\) 14918.5 0.491536
\(974\) 0 0
\(975\) −2844.89 −0.0934455
\(976\) 0 0
\(977\) 9396.18 0.307687 0.153844 0.988095i \(-0.450835\pi\)
0.153844 + 0.988095i \(0.450835\pi\)
\(978\) 0 0
\(979\) 5469.56 0.178558
\(980\) 0 0
\(981\) −0.139624 −4.54420e−6 0
\(982\) 0 0
\(983\) 21460.9 0.696334 0.348167 0.937433i \(-0.386804\pi\)
0.348167 + 0.937433i \(0.386804\pi\)
\(984\) 0 0
\(985\) −13852.7 −0.448106
\(986\) 0 0
\(987\) −7467.95 −0.240839
\(988\) 0 0
\(989\) 13922.6 0.447637
\(990\) 0 0
\(991\) −46424.2 −1.48811 −0.744054 0.668120i \(-0.767099\pi\)
−0.744054 + 0.668120i \(0.767099\pi\)
\(992\) 0 0
\(993\) −21707.9 −0.693735
\(994\) 0 0
\(995\) −9818.45 −0.312830
\(996\) 0 0
\(997\) −32624.6 −1.03634 −0.518170 0.855278i \(-0.673386\pi\)
−0.518170 + 0.855278i \(0.673386\pi\)
\(998\) 0 0
\(999\) 25573.0 0.809904
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.4.a.e.1.3 9
4.3 odd 2 2320.4.a.w.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.4.a.e.1.3 9 1.1 even 1 trivial
2320.4.a.w.1.7 9 4.3 odd 2