L(s) = 1 | − 2-s + 5·3-s − 5·6-s − 7-s + 15·9-s − 13-s + 14-s − 15·18-s − 19-s − 5·21-s − 23-s + 5·25-s + 26-s + 35·27-s − 29-s + 38-s − 5·39-s + 5·42-s + 46-s − 47-s − 5·50-s − 53-s − 35·54-s − 5·57-s + 58-s − 15·63-s − 67-s + ⋯ |
L(s) = 1 | − 2-s + 5·3-s − 5·6-s − 7-s + 15·9-s − 13-s + 14-s − 15·18-s − 19-s − 5·21-s − 23-s + 5·25-s + 26-s + 35·27-s − 29-s + 38-s − 5·39-s + 5·42-s + 46-s − 47-s − 5·50-s − 53-s − 35·54-s − 5·57-s + 58-s − 15·63-s − 67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{5} \cdot 389^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{5} \cdot 389^{5}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.287860277\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.287860277\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_1$ | \( ( 1 - T )^{5} \) |
| 389 | $C_1$ | \( ( 1 - T )^{5} \) |
good | 2 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 7 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 11 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 13 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 17 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 19 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 23 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 29 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 31 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 37 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 41 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 43 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 47 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 53 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 59 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 61 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{5}( 1 + T )^{5} \) |
| 67 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 71 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 73 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 79 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 83 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 89 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 97 | $C_{10}$ | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.36846682446945730190917947903, −6.09764420825306209542906928979, −5.79142176760021913483742394559, −5.72671745839240702413507683403, −5.21142217061171932491056936476, −4.83990771535483440572895408671, −4.82919926705836646398097860415, −4.69300577906107586637978379646, −4.52108157339005378501958274171, −4.47838611621930626202250587171, −4.01405220341645790386076565001, −3.83030355696749228678122164890, −3.81845821311401375802259956900, −3.47833707622938345388114532159, −3.14124393247825712580728090305, −3.09944494433352542573417133142, −2.99343319349850598639301025727, −2.82755539355373165210588171710, −2.55297543235675198126211238207, −2.31103571594715577029507389910, −2.24177598155137720708621661188, −1.85773581145050548503592024974, −1.43082190595531194856574421626, −1.26297138692205762875389068277, −1.21490124784255945794302989093,
1.21490124784255945794302989093, 1.26297138692205762875389068277, 1.43082190595531194856574421626, 1.85773581145050548503592024974, 2.24177598155137720708621661188, 2.31103571594715577029507389910, 2.55297543235675198126211238207, 2.82755539355373165210588171710, 2.99343319349850598639301025727, 3.09944494433352542573417133142, 3.14124393247825712580728090305, 3.47833707622938345388114532159, 3.81845821311401375802259956900, 3.83030355696749228678122164890, 4.01405220341645790386076565001, 4.47838611621930626202250587171, 4.52108157339005378501958274171, 4.69300577906107586637978379646, 4.82919926705836646398097860415, 4.83990771535483440572895408671, 5.21142217061171932491056936476, 5.72671745839240702413507683403, 5.79142176760021913483742394559, 6.09764420825306209542906928979, 6.36846682446945730190917947903