Properties

Label 1167.1.d.a
Level $1167$
Weight $1$
Character orbit 1167.d
Self dual yes
Analytic conductor $0.582$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -1167
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1167,1,Mod(1166,1167)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1167, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1167.1166");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1167 = 3 \cdot 389 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1167.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.582408869743\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.2164483503590607.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + q^{3} + ( - \beta_{3} + 1) q^{4} + \beta_{4} q^{6} + \beta_{2} q^{7} + (\beta_{4} - \beta_1) q^{8} + q^{9} + ( - \beta_{3} + 1) q^{12} - \beta_1 q^{13} + ( - \beta_{4} + \beta_{3} + \beta_1 - 1) q^{14}+ \cdots + (\beta_{4} - \beta_{3} + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 5 q^{3} + 4 q^{4} - q^{6} - q^{7} - 2 q^{8} + 5 q^{9} + 4 q^{12} - q^{13} - 2 q^{14} + 3 q^{16} - q^{18} - q^{19} - q^{21} - q^{23} - 2 q^{24} + 5 q^{25} - 2 q^{26} + 5 q^{27} - 3 q^{28}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{22} + \zeta_{22}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1167\mathbb{Z}\right)^\times\).

\(n\) \(391\) \(779\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1166.1
1.30972
−1.68251
−0.830830
1.91899
0.284630
−1.91899 1.00000 2.68251 0 −1.91899 −0.284630 −3.22871 1.00000 0
1166.2 −1.30972 1.00000 0.715370 0 −1.30972 0.830830 0.372786 1.00000 0
1166.3 −0.284630 1.00000 −0.918986 0 −0.284630 −1.30972 0.546200 1.00000 0
1166.4 0.830830 1.00000 −0.309721 0 0.830830 1.68251 −1.08816 1.00000 0
1166.5 1.68251 1.00000 1.83083 0 1.68251 −1.91899 1.39788 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1166.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
1167.d odd 2 1 CM by \(\Q(\sqrt{-1167}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1167.1.d.a 5
3.b odd 2 1 1167.1.d.b yes 5
389.b even 2 1 1167.1.d.b yes 5
1167.d odd 2 1 CM 1167.1.d.a 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1167.1.d.a 5 1.a even 1 1 trivial
1167.1.d.a 5 1167.d odd 2 1 CM
1167.1.d.b yes 5 3.b odd 2 1
1167.1.d.b yes 5 389.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} + T_{2}^{4} - 4T_{2}^{3} - 3T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1167, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{5} \) Copy content Toggle raw display
$37$ \( T^{5} \) Copy content Toggle raw display
$41$ \( T^{5} \) Copy content Toggle raw display
$43$ \( T^{5} \) Copy content Toggle raw display
$47$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{5} \) Copy content Toggle raw display
$61$ \( T^{5} \) Copy content Toggle raw display
$67$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less