Properties

Label 2-117-1.1-c9-0-40
Degree $2$
Conductor $117$
Sign $-1$
Analytic cond. $60.2591$
Root an. cond. $7.76267$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 31.9·2-s + 506.·4-s − 1.63e3·5-s + 9.37e3·7-s − 177.·8-s − 5.21e4·10-s − 74.3·11-s − 2.85e4·13-s + 2.99e5·14-s − 2.64e5·16-s − 2.10e4·17-s − 9.67e5·19-s − 8.28e5·20-s − 2.37e3·22-s + 1.49e6·23-s + 7.22e5·25-s − 9.11e5·26-s + 4.74e6·28-s + 7.44e5·29-s − 5.33e6·31-s − 8.36e6·32-s − 6.72e5·34-s − 1.53e7·35-s − 1.21e7·37-s − 3.08e7·38-s + 2.90e5·40-s + 1.06e7·41-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.989·4-s − 1.17·5-s + 1.47·7-s − 0.0153·8-s − 1.65·10-s − 0.00153·11-s − 0.277·13-s + 2.08·14-s − 1.01·16-s − 0.0612·17-s − 1.70·19-s − 1.15·20-s − 0.00216·22-s + 1.11·23-s + 0.369·25-s − 0.391·26-s + 1.46·28-s + 0.195·29-s − 1.03·31-s − 1.41·32-s − 0.0863·34-s − 1.72·35-s − 1.06·37-s − 2.40·38-s + 0.0179·40-s + 0.588·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117\)    =    \(3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(60.2591\)
Root analytic conductor: \(7.76267\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 117,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 + 2.85e4T \)
good2 \( 1 - 31.9T + 512T^{2} \)
5 \( 1 + 1.63e3T + 1.95e6T^{2} \)
7 \( 1 - 9.37e3T + 4.03e7T^{2} \)
11 \( 1 + 74.3T + 2.35e9T^{2} \)
17 \( 1 + 2.10e4T + 1.18e11T^{2} \)
19 \( 1 + 9.67e5T + 3.22e11T^{2} \)
23 \( 1 - 1.49e6T + 1.80e12T^{2} \)
29 \( 1 - 7.44e5T + 1.45e13T^{2} \)
31 \( 1 + 5.33e6T + 2.64e13T^{2} \)
37 \( 1 + 1.21e7T + 1.29e14T^{2} \)
41 \( 1 - 1.06e7T + 3.27e14T^{2} \)
43 \( 1 + 3.31e7T + 5.02e14T^{2} \)
47 \( 1 + 5.10e7T + 1.11e15T^{2} \)
53 \( 1 + 8.32e7T + 3.29e15T^{2} \)
59 \( 1 - 9.70e7T + 8.66e15T^{2} \)
61 \( 1 + 1.05e8T + 1.16e16T^{2} \)
67 \( 1 + 2.17e8T + 2.72e16T^{2} \)
71 \( 1 - 3.05e8T + 4.58e16T^{2} \)
73 \( 1 - 8.93e7T + 5.88e16T^{2} \)
79 \( 1 + 8.48e7T + 1.19e17T^{2} \)
83 \( 1 - 4.41e8T + 1.86e17T^{2} \)
89 \( 1 - 2.29e8T + 3.50e17T^{2} \)
97 \( 1 - 4.66e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.47075465292176968363282110410, −10.84561727408536642982128716651, −8.796272172215031836474411432759, −7.84690148808459190211136384266, −6.64491396162887946814348396506, −5.09441152839897224961790429079, −4.47706398241931041920243857030, −3.42524621144022122251053826039, −1.90660955126249441691964062889, 0, 1.90660955126249441691964062889, 3.42524621144022122251053826039, 4.47706398241931041920243857030, 5.09441152839897224961790429079, 6.64491396162887946814348396506, 7.84690148808459190211136384266, 8.796272172215031836474411432759, 10.84561727408536642982128716651, 11.47075465292176968363282110410

Graph of the $Z$-function along the critical line