Properties

Label 117.10.a.g
Level $117$
Weight $10$
Character orbit 117.a
Self dual yes
Analytic conductor $60.259$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2613x^{6} + 2010020x^{4} - 399948096x^{2} + 6898597888 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{4}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{4} + 141) q^{4} + (\beta_{3} - 7 \beta_1) q^{5} + (\beta_{6} - 2 \beta_{5} - \beta_{4} + 1220) q^{7} + ( - \beta_{3} + \beta_{2} + 50 \beta_1) q^{8} + ( - 5 \beta_{6} + 9 \beta_{5} + \cdots - 4812) q^{10}+ \cdots + (35664 \beta_{7} + \cdots + 14268301 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 1130 q^{4} + 9756 q^{7} - 38516 q^{10} - 228488 q^{13} - 314526 q^{16} - 884340 q^{19} - 1422584 q^{22} + 1535856 q^{25} - 1630900 q^{28} - 12449540 q^{31} - 6019872 q^{34} + 6397904 q^{37} - 13411388 q^{40}+ \cdots - 3297114688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2613x^{6} + 2010020x^{4} - 399948096x^{2} + 6898597888 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -13\nu^{7} + 36753\nu^{5} - 20387252\nu^{3} - 4606636608\nu ) / 9832192 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -13\nu^{7} + 36753\nu^{5} - 30219444\nu^{3} + 5953137600\nu ) / 9832192 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{2} - 653 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -13\nu^{6} + 36753\nu^{4} - 26532372\nu^{2} + 2208301472 ) / 1229024 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -93\nu^{6} + 168385\nu^{4} - 68324212\nu^{2} + 2797233120 ) / 1229024 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -197\nu^{7} + 462409\nu^{5} - 303934644\nu^{3} + 43614769984\nu ) / 9832192 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + 653 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + \beta_{2} + 1074\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -13\beta_{6} + 93\beta_{5} + 1285\beta_{4} + 701591 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -104\beta_{7} - 53\beta_{3} + 1629\beta_{2} + 1256654\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -36753\beta_{6} + 168385\beta_{5} + 1591941\beta_{4} + 820633583 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -294024\beta_{7} + 1418411\beta_{3} + 2280861\beta_{2} + 1514096862\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−36.0840
−31.9131
−16.5372
−4.36150
4.36150
16.5372
31.9131
36.0840
−36.0840 0 790.056 −548.189 0 −6372.32 −10033.4 0 19780.9
1.2 −31.9131 0 506.444 1635.60 0 9377.46 177.316 0 −52197.1
1.3 −16.5372 0 −238.522 −172.959 0 1545.12 12411.5 0 2860.24
1.4 −4.36150 0 −492.977 −2361.10 0 327.747 4383.21 0 10298.0
1.5 4.36150 0 −492.977 2361.10 0 327.747 −4383.21 0 10298.0
1.6 16.5372 0 −238.522 172.959 0 1545.12 −12411.5 0 2860.24
1.7 31.9131 0 506.444 −1635.60 0 9377.46 −177.316 0 −52197.1
1.8 36.0840 0 790.056 548.189 0 −6372.32 10033.4 0 19780.9
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.10.a.g 8
3.b odd 2 1 inner 117.10.a.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.10.a.g 8 1.a even 1 1 trivial
117.10.a.g 8 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 2613T_{2}^{6} + 2010020T_{2}^{4} - 399948096T_{2}^{2} + 6898597888 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(117))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + \cdots + 6898597888 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{4} + \cdots - 30260923880096)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 39\!\cdots\!88 \) Copy content Toggle raw display
$13$ \( (T + 28561)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 42\!\cdots\!28 \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 24\!\cdots\!24)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots - 22\!\cdots\!60)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + \cdots + 75\!\cdots\!48)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 43\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 65\!\cdots\!84)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 21\!\cdots\!92 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 22\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 13\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots - 60\!\cdots\!64)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 36\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots - 57\!\cdots\!28)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 32\!\cdots\!20)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 27\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 58\!\cdots\!28 \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots - 45\!\cdots\!20)^{2} \) Copy content Toggle raw display
show more
show less