Properties

Label 117.10.a.g
Level 117117
Weight 1010
Character orbit 117.a
Self dual yes
Analytic conductor 60.25960.259
Analytic rank 11
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.259192831260.2591928312
Analytic rank: 11
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82613x6+2010020x4399948096x2+6898597888 x^{8} - 2613x^{6} + 2010020x^{4} - 399948096x^{2} + 6898597888 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 211347 2^{11}\cdot 3^{4}\cdot 7
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β4+141)q4+(β37β1)q5+(β62β5β4+1220)q7+(β3+β2+50β1)q8+(5β6+9β5+4812)q10++(35664β7++14268301β1)q98+O(q100) q + \beta_1 q^{2} + (\beta_{4} + 141) q^{4} + (\beta_{3} - 7 \beta_1) q^{5} + (\beta_{6} - 2 \beta_{5} - \beta_{4} + 1220) q^{7} + ( - \beta_{3} + \beta_{2} + 50 \beta_1) q^{8} + ( - 5 \beta_{6} + 9 \beta_{5} + \cdots - 4812) q^{10}+ \cdots + (35664 \beta_{7} + \cdots + 14268301 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+1130q4+9756q738516q10228488q13314526q16884340q191422584q22+1535856q251630900q2812449540q316019872q34+6397904q3713411388q40+3297114688q97+O(q100) 8 q + 1130 q^{4} + 9756 q^{7} - 38516 q^{10} - 228488 q^{13} - 314526 q^{16} - 884340 q^{19} - 1422584 q^{22} + 1535856 q^{25} - 1630900 q^{28} - 12449540 q^{31} - 6019872 q^{34} + 6397904 q^{37} - 13411388 q^{40}+ \cdots - 3297114688 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82613x6+2010020x4399948096x2+6898597888 x^{8} - 2613x^{6} + 2010020x^{4} - 399948096x^{2} + 6898597888 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (13ν7+36753ν520387252ν34606636608ν)/9832192 ( -13\nu^{7} + 36753\nu^{5} - 20387252\nu^{3} - 4606636608\nu ) / 9832192 Copy content Toggle raw display
β3\beta_{3}== (13ν7+36753ν530219444ν3+5953137600ν)/9832192 ( -13\nu^{7} + 36753\nu^{5} - 30219444\nu^{3} + 5953137600\nu ) / 9832192 Copy content Toggle raw display
β4\beta_{4}== ν2653 \nu^{2} - 653 Copy content Toggle raw display
β5\beta_{5}== (13ν6+36753ν426532372ν2+2208301472)/1229024 ( -13\nu^{6} + 36753\nu^{4} - 26532372\nu^{2} + 2208301472 ) / 1229024 Copy content Toggle raw display
β6\beta_{6}== (93ν6+168385ν468324212ν2+2797233120)/1229024 ( -93\nu^{6} + 168385\nu^{4} - 68324212\nu^{2} + 2797233120 ) / 1229024 Copy content Toggle raw display
β7\beta_{7}== (197ν7+462409ν5303934644ν3+43614769984ν)/9832192 ( -197\nu^{7} + 462409\nu^{5} - 303934644\nu^{3} + 43614769984\nu ) / 9832192 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β4+653 \beta_{4} + 653 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+1074β1 -\beta_{3} + \beta_{2} + 1074\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 13β6+93β5+1285β4+701591 -13\beta_{6} + 93\beta_{5} + 1285\beta_{4} + 701591 Copy content Toggle raw display
ν5\nu^{5}== 104β753β3+1629β2+1256654β1 -104\beta_{7} - 53\beta_{3} + 1629\beta_{2} + 1256654\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 36753β6+168385β5+1591941β4+820633583 -36753\beta_{6} + 168385\beta_{5} + 1591941\beta_{4} + 820633583 Copy content Toggle raw display
ν7\nu^{7}== 294024β7+1418411β3+2280861β2+1514096862β1 -294024\beta_{7} + 1418411\beta_{3} + 2280861\beta_{2} + 1514096862\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−36.0840
−31.9131
−16.5372
−4.36150
4.36150
16.5372
31.9131
36.0840
−36.0840 0 790.056 −548.189 0 −6372.32 −10033.4 0 19780.9
1.2 −31.9131 0 506.444 1635.60 0 9377.46 177.316 0 −52197.1
1.3 −16.5372 0 −238.522 −172.959 0 1545.12 12411.5 0 2860.24
1.4 −4.36150 0 −492.977 −2361.10 0 327.747 4383.21 0 10298.0
1.5 4.36150 0 −492.977 2361.10 0 327.747 −4383.21 0 10298.0
1.6 16.5372 0 −238.522 172.959 0 1545.12 −12411.5 0 2860.24
1.7 31.9131 0 506.444 −1635.60 0 9377.46 −177.316 0 −52197.1
1.8 36.0840 0 790.056 548.189 0 −6372.32 10033.4 0 19780.9
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1313 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.10.a.g 8
3.b odd 2 1 inner 117.10.a.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.10.a.g 8 1.a even 1 1 trivial
117.10.a.g 8 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T282613T26+2010020T24399948096T22+6898597888 T_{2}^{8} - 2613T_{2}^{6} + 2010020T_{2}^{4} - 399948096T_{2}^{2} + 6898597888 acting on S10new(Γ0(117))S_{10}^{\mathrm{new}}(\Gamma_0(117)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8++6898597888 T^{8} + \cdots + 6898597888 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8++13 ⁣ ⁣00 T^{8} + \cdots + 13\!\cdots\!00 Copy content Toggle raw display
77 (T4+30260923880096)2 (T^{4} + \cdots - 30260923880096)^{2} Copy content Toggle raw display
1111 T8++39 ⁣ ⁣88 T^{8} + \cdots + 39\!\cdots\!88 Copy content Toggle raw display
1313 (T+28561)8 (T + 28561)^{8} Copy content Toggle raw display
1717 T8++42 ⁣ ⁣28 T^{8} + \cdots + 42\!\cdots\!28 Copy content Toggle raw display
1919 (T4++24 ⁣ ⁣24)2 (T^{4} + \cdots + 24\!\cdots\!24)^{2} Copy content Toggle raw display
2323 T8++11 ⁣ ⁣00 T^{8} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
2929 T8++18 ⁣ ⁣00 T^{8} + \cdots + 18\!\cdots\!00 Copy content Toggle raw display
3131 (T4+22 ⁣ ⁣60)2 (T^{4} + \cdots - 22\!\cdots\!60)^{2} Copy content Toggle raw display
3737 (T4++75 ⁣ ⁣48)2 (T^{4} + \cdots + 75\!\cdots\!48)^{2} Copy content Toggle raw display
4141 T8++43 ⁣ ⁣52 T^{8} + \cdots + 43\!\cdots\!52 Copy content Toggle raw display
4343 (T4++65 ⁣ ⁣84)2 (T^{4} + \cdots + 65\!\cdots\!84)^{2} Copy content Toggle raw display
4747 T8++21 ⁣ ⁣92 T^{8} + \cdots + 21\!\cdots\!92 Copy content Toggle raw display
5353 T8++22 ⁣ ⁣92 T^{8} + \cdots + 22\!\cdots\!92 Copy content Toggle raw display
5959 T8++13 ⁣ ⁣32 T^{8} + \cdots + 13\!\cdots\!32 Copy content Toggle raw display
6161 (T4+60 ⁣ ⁣64)2 (T^{4} + \cdots - 60\!\cdots\!64)^{2} Copy content Toggle raw display
6767 (T4++36 ⁣ ⁣00)2 (T^{4} + \cdots + 36\!\cdots\!00)^{2} Copy content Toggle raw display
7171 T8++26 ⁣ ⁣00 T^{8} + \cdots + 26\!\cdots\!00 Copy content Toggle raw display
7373 (T4+57 ⁣ ⁣28)2 (T^{4} + \cdots - 57\!\cdots\!28)^{2} Copy content Toggle raw display
7979 (T4++32 ⁣ ⁣20)2 (T^{4} + \cdots + 32\!\cdots\!20)^{2} Copy content Toggle raw display
8383 T8++27 ⁣ ⁣48 T^{8} + \cdots + 27\!\cdots\!48 Copy content Toggle raw display
8989 T8++58 ⁣ ⁣28 T^{8} + \cdots + 58\!\cdots\!28 Copy content Toggle raw display
9797 (T4+45 ⁣ ⁣20)2 (T^{4} + \cdots - 45\!\cdots\!20)^{2} Copy content Toggle raw display
show more
show less