[N,k,chi] = [117,10,Mod(1,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
13 13 1 3
+ 1 +1 + 1
This newform subspace can be constructed as the kernel of the linear operator
T 2 8 − 2613 T 2 6 + 2010020 T 2 4 − 399948096 T 2 2 + 6898597888 T_{2}^{8} - 2613T_{2}^{6} + 2010020T_{2}^{4} - 399948096T_{2}^{2} + 6898597888 T 2 8 − 2 6 1 3 T 2 6 + 2 0 1 0 0 2 0 T 2 4 − 3 9 9 9 4 8 0 9 6 T 2 2 + 6 8 9 8 5 9 7 8 8 8
T2^8 - 2613*T2^6 + 2010020*T2^4 - 399948096*T2^2 + 6898597888
acting on S 10 n e w ( Γ 0 ( 117 ) ) S_{10}^{\mathrm{new}}(\Gamma_0(117)) S 1 0 n e w ( Γ 0 ( 1 1 7 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 + ⋯ + 6898597888 T^{8} + \cdots + 6898597888 T 8 + ⋯ + 6 8 9 8 5 9 7 8 8 8
T^8 - 2613*T^6 + 2010020*T^4 - 399948096*T^2 + 6898597888
3 3 3
T 8 T^{8} T 8
T^8
5 5 5
T 8 + ⋯ + 13 ⋯ 00 T^{8} + \cdots + 13\!\cdots\!00 T 8 + ⋯ + 1 3 ⋯ 0 0
T^8 - 8580428*T^6 + 17648689558128*T^4 - 5002029831164749376*T^2 + 134069339035563609932800
7 7 7
( T 4 + ⋯ − 30260923880096 ) 2 (T^{4} + \cdots - 30260923880096)^{2} ( T 4 + ⋯ − 3 0 2 6 0 9 2 3 8 8 0 0 9 6 ) 2
(T^4 - 4878*T^3 - 53621596*T^2 + 110393317944*T - 30260923880096)^2
11 11 1 1
T 8 + ⋯ + 39 ⋯ 88 T^{8} + \cdots + 39\!\cdots\!88 T 8 + ⋯ + 3 9 ⋯ 8 8
T^8 - 6466304368*T^6 + 12382730752123288320*T^4 - 7123895121174399243191013376*T^2 + 39416784547982161242986185228288
13 13 1 3
( T + 28561 ) 8 (T + 28561)^{8} ( T + 2 8 5 6 1 ) 8
(T + 28561)^8
17 17 1 7
T 8 + ⋯ + 42 ⋯ 28 T^{8} + \cdots + 42\!\cdots\!28 T 8 + ⋯ + 4 2 ⋯ 2 8
T^8 - 199341534528*T^6 + 178990664687406940160*T^4 - 49926938652399795014882820096*T^2 + 4295662206737191277594202833082646528
19 19 1 9
( T 4 + ⋯ + 24 ⋯ 24 ) 2 (T^{4} + \cdots + 24\!\cdots\!24)^{2} ( T 4 + ⋯ + 2 4 ⋯ 2 4 ) 2
(T^4 + 442170*T^3 - 556280113444*T^2 - 22178702641905576*T + 24135476072946170593024)^2
23 23 2 3
T 8 + ⋯ + 11 ⋯ 00 T^{8} + \cdots + 11\!\cdots\!00 T 8 + ⋯ + 1 1 ⋯ 0 0
T^8 - 5894580598576*T^6 + 8622681784732206557193984*T^4 - 1021366459619971762109666910440230912*T^2 + 11831030606707340420604706425721915024506880000
29 29 2 9
T 8 + ⋯ + 18 ⋯ 00 T^{8} + \cdots + 18\!\cdots\!00 T 8 + ⋯ + 1 8 ⋯ 0 0
T^8 - 21552447553408*T^6 + 156669413558142549017481216*T^4 - 409282636066946954600312034931857424384*T^2 + 182457120662075773661933394991416732721401875660800
31 31 3 1
( T 4 + ⋯ − 22 ⋯ 60 ) 2 (T^{4} + \cdots - 22\!\cdots\!60)^{2} ( T 4 + ⋯ − 2 2 ⋯ 6 0 ) 2
(T^4 + 6224770*T^3 - 41749832780188*T^2 - 289276895844921674248*T - 220057825848104867156512160)^2
37 37 3 7
( T 4 + ⋯ + 75 ⋯ 48 ) 2 (T^{4} + \cdots + 75\!\cdots\!48)^{2} ( T 4 + ⋯ + 7 5 ⋯ 4 8 ) 2
(T^4 - 3198952*T^3 - 581485993738888*T^2 + 1462188172765512765664*T + 75821368059659011808857775248)^2
41 41 4 1
T 8 + ⋯ + 43 ⋯ 52 T^{8} + \cdots + 43\!\cdots\!52 T 8 + ⋯ + 4 3 ⋯ 5 2
T^8 - 1325594733727212*T^6 + 545601151243013629160038373744*T^4 - 84933504068305421676124603480241945015576640*T^2 + 4382068382196124028793614044958109302274977851350226404352
43 43 4 3
( T 4 + ⋯ + 65 ⋯ 84 ) 2 (T^{4} + \cdots + 65\!\cdots\!84)^{2} ( T 4 + ⋯ + 6 5 ⋯ 8 4 ) 2
(T^4 + 26522312*T^3 - 1471164735077440*T^2 - 21844179338841636643328*T + 651523597252354254556760080384)^2
47 47 4 7
T 8 + ⋯ + 21 ⋯ 92 T^{8} + \cdots + 21\!\cdots\!92 T 8 + ⋯ + 2 1 ⋯ 9 2
T^8 - 6540531812648288*T^6 + 14398605260063676045972626659584*T^4 - 11625635414236708330633014142559978020767088640*T^2 + 2147533412889388229680357712287875248624487461035769218465792
53 53 5 3
T 8 + ⋯ + 22 ⋯ 92 T^{8} + \cdots + 22\!\cdots\!92 T 8 + ⋯ + 2 2 ⋯ 9 2
T^8 - 18655996495855984*T^6 + 85244370330098077647029669849856*T^4 - 28132832821667779486345814496115351987382210560*T^2 + 2224195150025339612981427996826063645587306578018752572424192
59 59 5 9
T 8 + ⋯ + 13 ⋯ 32 T^{8} + \cdots + 13\!\cdots\!32 T 8 + ⋯ + 1 3 ⋯ 3 2
T^8 - 20750202028393200*T^6 + 132029107174606341330599129103104*T^4 - 253112277355158103560684483365113610889097433088*T^2 + 139061753028763908892715650947282908107166919456242686316511232
61 61 6 1
( T 4 + ⋯ − 60 ⋯ 64 ) 2 (T^{4} + \cdots - 60\!\cdots\!64)^{2} ( T 4 + ⋯ − 6 0 ⋯ 6 4 ) 2
(T^4 + 149250580*T^3 - 2344911187346416*T^2 - 739897103099671203313744*T - 607986006601709070606513014864)^2
67 67 6 7
( T 4 + ⋯ + 36 ⋯ 00 ) 2 (T^{4} + \cdots + 36\!\cdots\!00)^{2} ( T 4 + ⋯ + 3 6 ⋯ 0 0 ) 2
(T^4 + 356695478*T^3 + 26561343319305068*T^2 - 811353232328343365811800*T + 362834413707061511102192468800)^2
71 71 7 1
T 8 + ⋯ + 26 ⋯ 00 T^{8} + \cdots + 26\!\cdots\!00 T 8 + ⋯ + 2 6 ⋯ 0 0
T^8 - 189132811626766048*T^6 + 11863295903366567704257742188830976*T^4 - 301991592638587904830443209393188853461774163918848*T^2 + 2690888060503693675818059977774750728499044764638109492252036300800
73 73 7 3
( T 4 + ⋯ − 57 ⋯ 28 ) 2 (T^{4} + \cdots - 57\!\cdots\!28)^{2} ( T 4 + ⋯ − 5 7 ⋯ 2 8 ) 2
(T^4 + 476629680*T^3 + 54673273728516104*T^2 - 3001430767284272342243328*T - 572842900810248086175531712830128)^2
79 79 7 9
( T 4 + ⋯ + 32 ⋯ 20 ) 2 (T^{4} + \cdots + 32\!\cdots\!20)^{2} ( T 4 + ⋯ + 3 2 ⋯ 2 0 ) 2
(T^4 + 635016816*T^3 + 131065293505753568*T^2 + 10948154197587628700719872*T + 321428686395256151124763120625920)^2
83 83 8 3
T 8 + ⋯ + 27 ⋯ 48 T^{8} + \cdots + 27\!\cdots\!48 T 8 + ⋯ + 2 7 ⋯ 4 8
T^8 - 490334574517620912*T^6 + 71061099495867283965835802914658048*T^4 - 2772283737255938153879137280470769527659886576865280*T^2 + 27973578989867675256696013106303716376806312928711989543125337243648
89 89 8 9
T 8 + ⋯ + 58 ⋯ 28 T^{8} + \cdots + 58\!\cdots\!28 T 8 + ⋯ + 5 8 ⋯ 2 8
T^8 - 1365583728021423980*T^6 + 323004350048423616239432439904866672*T^4 - 13472059478501528962711576575144397599535092311314496*T^2 + 5863279349212756308356559120726284926650349905218104448635736163328
97 97 9 7
( T 4 + ⋯ − 45 ⋯ 20 ) 2 (T^{4} + \cdots - 45\!\cdots\!20)^{2} ( T 4 + ⋯ − 4 5 ⋯ 2 0 ) 2
(T^4 + 1648557344*T^3 + 80172048961705448*T^2 - 400273825994867767940324288*T - 45517502576720712665616627372918320)^2
show more
show less