L(s) = 1 | + (3.06 − 0.822i)2-s + (5.27 − 3.04i)4-s + (5.58 + 5.58i)5-s + (−7.30 − 1.95i)7-s + (4.69 − 4.69i)8-s + (21.7 + 12.5i)10-s + (−3.01 − 11.2i)11-s + (−12.4 − 3.76i)13-s − 24.0·14-s + (−1.64 + 2.84i)16-s + (10.4 − 6.05i)17-s + (2.73 − 10.1i)19-s + (46.4 + 12.4i)20-s + (−18.4 − 32.0i)22-s + (3.75 + 2.16i)23-s + ⋯ |
L(s) = 1 | + (1.53 − 0.411i)2-s + (1.31 − 0.761i)4-s + (1.11 + 1.11i)5-s + (−1.04 − 0.279i)7-s + (0.586 − 0.586i)8-s + (2.17 + 1.25i)10-s + (−0.273 − 1.02i)11-s + (−0.957 − 0.289i)13-s − 1.71·14-s + (−0.102 + 0.177i)16-s + (0.616 − 0.355i)17-s + (0.143 − 0.536i)19-s + (2.32 + 0.622i)20-s + (−0.840 − 1.45i)22-s + (0.163 + 0.0942i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.264i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.964 + 0.264i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.98845 - 0.402942i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.98845 - 0.402942i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (12.4 + 3.76i)T \) |
good | 2 | \( 1 + (-3.06 + 0.822i)T + (3.46 - 2i)T^{2} \) |
| 5 | \( 1 + (-5.58 - 5.58i)T + 25iT^{2} \) |
| 7 | \( 1 + (7.30 + 1.95i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (3.01 + 11.2i)T + (-104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (-10.4 + 6.05i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-2.73 + 10.1i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-3.75 - 2.16i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (22.1 - 38.3i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (5.71 + 5.71i)T + 961iT^{2} \) |
| 37 | \( 1 + (-8.51 - 31.7i)T + (-1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-58.1 + 15.5i)T + (1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (-27.0 + 15.5i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (22.4 - 22.4i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 54.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-13.4 - 3.61i)T + (3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (42.0 + 72.8i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-62.2 + 16.6i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-14.8 + 55.2i)T + (-4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (54.9 - 54.9i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 45.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-30.8 - 30.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (5.84 + 21.8i)T + (-6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-28.7 + 107. i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32320845035805097652694742830, −12.59868268691812867175753678674, −11.24106084971998889082682210719, −10.43000430281335636497624081976, −9.417201797359041677340228281251, −7.15773741436931077895895141280, −6.16485215216766736646164623872, −5.29960695127949138926461678966, −3.37312451787555492692349172075, −2.63424611563544666976536831001,
2.39878544364948873692355449719, 4.22710528124670227309935638839, 5.38019209858196876565615055410, 6.10823049673208701997054505840, 7.44618534116947661133842645631, 9.334018822123375804783373238187, 9.931503867446823317085929500969, 12.00966329077339014054747601190, 12.75102435290159903092945112886, 13.10217236651893767145714461385