L(s) = 1 | + (3.06 − 0.822i)2-s + (5.27 − 3.04i)4-s + (5.58 + 5.58i)5-s + (−7.30 − 1.95i)7-s + (4.69 − 4.69i)8-s + (21.7 + 12.5i)10-s + (−3.01 − 11.2i)11-s + (−12.4 − 3.76i)13-s − 24.0·14-s + (−1.64 + 2.84i)16-s + (10.4 − 6.05i)17-s + (2.73 − 10.1i)19-s + (46.4 + 12.4i)20-s + (−18.4 − 32.0i)22-s + (3.75 + 2.16i)23-s + ⋯ |
L(s) = 1 | + (1.53 − 0.411i)2-s + (1.31 − 0.761i)4-s + (1.11 + 1.11i)5-s + (−1.04 − 0.279i)7-s + (0.586 − 0.586i)8-s + (2.17 + 1.25i)10-s + (−0.273 − 1.02i)11-s + (−0.957 − 0.289i)13-s − 1.71·14-s + (−0.102 + 0.177i)16-s + (0.616 − 0.355i)17-s + (0.143 − 0.536i)19-s + (2.32 + 0.622i)20-s + (−0.840 − 1.45i)22-s + (0.163 + 0.0942i)23-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.964+0.264i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.964+0.264i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.964+0.264i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(46,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.964+0.264i)
|
Particular Values
L(23) |
≈ |
2.98845−0.402942i |
L(21) |
≈ |
2.98845−0.402942i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1+(12.4+3.76i)T |
good | 2 | 1+(−3.06+0.822i)T+(3.46−2i)T2 |
| 5 | 1+(−5.58−5.58i)T+25iT2 |
| 7 | 1+(7.30+1.95i)T+(42.4+24.5i)T2 |
| 11 | 1+(3.01+11.2i)T+(−104.+60.5i)T2 |
| 17 | 1+(−10.4+6.05i)T+(144.5−250.i)T2 |
| 19 | 1+(−2.73+10.1i)T+(−312.−180.5i)T2 |
| 23 | 1+(−3.75−2.16i)T+(264.5+458.i)T2 |
| 29 | 1+(22.1−38.3i)T+(−420.5−728.i)T2 |
| 31 | 1+(5.71+5.71i)T+961iT2 |
| 37 | 1+(−8.51−31.7i)T+(−1.18e3+684.5i)T2 |
| 41 | 1+(−58.1+15.5i)T+(1.45e3−840.5i)T2 |
| 43 | 1+(−27.0+15.5i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(22.4−22.4i)T−2.20e3iT2 |
| 53 | 1−54.7T+2.80e3T2 |
| 59 | 1+(−13.4−3.61i)T+(3.01e3+1.74e3i)T2 |
| 61 | 1+(42.0+72.8i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−62.2+16.6i)T+(3.88e3−2.24e3i)T2 |
| 71 | 1+(−14.8+55.2i)T+(−4.36e3−2.52e3i)T2 |
| 73 | 1+(54.9−54.9i)T−5.32e3iT2 |
| 79 | 1+45.0T+6.24e3T2 |
| 83 | 1+(−30.8−30.8i)T+6.88e3iT2 |
| 89 | 1+(5.84+21.8i)T+(−6.85e3+3.96e3i)T2 |
| 97 | 1+(−28.7+107.i)T+(−8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.32320845035805097652694742830, −12.59868268691812867175753678674, −11.24106084971998889082682210719, −10.43000430281335636497624081976, −9.417201797359041677340228281251, −7.15773741436931077895895141280, −6.16485215216766736646164623872, −5.29960695127949138926461678966, −3.37312451787555492692349172075, −2.63424611563544666976536831001,
2.39878544364948873692355449719, 4.22710528124670227309935638839, 5.38019209858196876565615055410, 6.10823049673208701997054505840, 7.44618534116947661133842645631, 9.334018822123375804783373238187, 9.931503867446823317085929500969, 12.00966329077339014054747601190, 12.75102435290159903092945112886, 13.10217236651893767145714461385