Properties

Label 117.3.bd.d.46.3
Level $117$
Weight $3$
Character 117.46
Analytic conductor $3.188$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(19,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 8 x^{9} + 178 x^{8} - 620 x^{7} + 1088 x^{6} + 640 x^{5} + 7921 x^{4} + \cdots + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 46.3
Root \(2.24591 + 2.24591i\) of defining polynomial
Character \(\chi\) \(=\) 117.46
Dual form 117.3.bd.d.28.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.06798 - 0.822062i) q^{2} +(5.27259 - 3.04413i) q^{4} +(5.58467 + 5.58467i) q^{5} +(-7.30003 - 1.95604i) q^{7} +(4.69005 - 4.69005i) q^{8} +(21.7246 + 12.5427i) q^{10} +(-3.01391 - 11.2481i) q^{11} +(-12.4428 - 3.76518i) q^{13} -24.0043 q^{14} +(-1.64307 + 2.84588i) q^{16} +(10.4817 - 6.05163i) q^{17} +(2.73246 - 10.1977i) q^{19} +(46.4461 + 12.4452i) q^{20} +(-18.4932 - 32.0311i) q^{22} +(3.75368 + 2.16719i) q^{23} +37.3770i q^{25} +(-41.2694 - 1.32273i) q^{26} +(-44.4444 + 11.9089i) q^{28} +(-22.1306 + 38.3313i) q^{29} +(-5.71913 - 5.71913i) q^{31} +(-9.56812 + 35.7087i) q^{32} +(27.1829 - 27.1829i) q^{34} +(-29.8444 - 51.6920i) q^{35} +(8.51041 + 31.7613i) q^{37} -33.5325i q^{38} +52.3847 q^{40} +(58.1365 - 15.5776i) q^{41} +(27.0185 - 15.5991i) q^{43} +(-50.1316 - 50.1316i) q^{44} +(13.2978 + 3.56313i) q^{46} +(-22.4086 + 22.4086i) q^{47} +(7.02906 + 4.05823i) q^{49} +(30.7262 + 114.672i) q^{50} +(-77.0675 + 18.0253i) q^{52} +54.7345 q^{53} +(45.9850 - 79.6483i) q^{55} +(-43.4114 + 25.0636i) q^{56} +(-36.3854 + 135.792i) q^{58} +(13.4735 + 3.61020i) q^{59} +(-42.0454 - 72.8249i) q^{61} +(-22.2476 - 12.8447i) q^{62} +104.274i q^{64} +(-48.4616 - 90.5162i) q^{65} +(62.2390 - 16.6769i) q^{67} +(36.8439 - 63.8155i) q^{68} +(-134.056 - 134.056i) q^{70} +(14.8017 - 55.2406i) q^{71} +(-54.9623 + 54.9623i) q^{73} +(52.2194 + 90.4467i) q^{74} +(-16.6359 - 62.0861i) q^{76} +88.0064i q^{77} -45.0309 q^{79} +(-25.0693 + 6.71729i) q^{80} +(165.555 - 95.5835i) q^{82} +(30.8346 + 30.8346i) q^{83} +(92.3333 + 24.7406i) q^{85} +(70.0685 - 70.0685i) q^{86} +(-66.8893 - 38.6186i) q^{88} +(-5.84679 - 21.8205i) q^{89} +(83.4680 + 51.8245i) q^{91} +26.3888 q^{92} +(-50.3279 + 87.1704i) q^{94} +(72.2104 - 41.6907i) q^{95} +(28.7767 - 107.396i) q^{97} +(24.9011 + 6.67223i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 12 q^{4} - 4 q^{5} - 32 q^{7} + 24 q^{8} + 30 q^{10} - 22 q^{11} + 2 q^{13} - 92 q^{14} + 52 q^{16} + 6 q^{17} + 4 q^{19} + 208 q^{20} - 98 q^{22} + 18 q^{23} + 44 q^{26} - 78 q^{28} - 128 q^{29}+ \cdots + 350 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.06798 0.822062i 1.53399 0.411031i 0.609670 0.792655i \(-0.291302\pi\)
0.924317 + 0.381624i \(0.124635\pi\)
\(3\) 0 0
\(4\) 5.27259 3.04413i 1.31815 0.761032i
\(5\) 5.58467 + 5.58467i 1.11693 + 1.11693i 0.992189 + 0.124744i \(0.0398110\pi\)
0.124744 + 0.992189i \(0.460189\pi\)
\(6\) 0 0
\(7\) −7.30003 1.95604i −1.04286 0.279434i −0.303562 0.952812i \(-0.598176\pi\)
−0.739299 + 0.673378i \(0.764843\pi\)
\(8\) 4.69005 4.69005i 0.586256 0.586256i
\(9\) 0 0
\(10\) 21.7246 + 12.5427i 2.17246 + 1.25427i
\(11\) −3.01391 11.2481i −0.273992 1.02255i −0.956514 0.291686i \(-0.905784\pi\)
0.682523 0.730865i \(-0.260883\pi\)
\(12\) 0 0
\(13\) −12.4428 3.76518i −0.957139 0.289629i
\(14\) −24.0043 −1.71459
\(15\) 0 0
\(16\) −1.64307 + 2.84588i −0.102692 + 0.177868i
\(17\) 10.4817 6.05163i 0.616573 0.355978i −0.158961 0.987285i \(-0.550814\pi\)
0.775533 + 0.631307i \(0.217481\pi\)
\(18\) 0 0
\(19\) 2.73246 10.1977i 0.143814 0.536720i −0.855992 0.516989i \(-0.827053\pi\)
0.999805 0.0197301i \(-0.00628070\pi\)
\(20\) 46.4461 + 12.4452i 2.32230 + 0.622259i
\(21\) 0 0
\(22\) −18.4932 32.0311i −0.840599 1.45596i
\(23\) 3.75368 + 2.16719i 0.163204 + 0.0942256i 0.579377 0.815060i \(-0.303296\pi\)
−0.416174 + 0.909285i \(0.636629\pi\)
\(24\) 0 0
\(25\) 37.3770i 1.49508i
\(26\) −41.2694 1.32273i −1.58729 0.0508743i
\(27\) 0 0
\(28\) −44.4444 + 11.9089i −1.58730 + 0.425316i
\(29\) −22.1306 + 38.3313i −0.763123 + 1.32177i 0.178111 + 0.984010i \(0.443002\pi\)
−0.941233 + 0.337757i \(0.890332\pi\)
\(30\) 0 0
\(31\) −5.71913 5.71913i −0.184488 0.184488i 0.608820 0.793308i \(-0.291643\pi\)
−0.793308 + 0.608820i \(0.791643\pi\)
\(32\) −9.56812 + 35.7087i −0.299004 + 1.11590i
\(33\) 0 0
\(34\) 27.1829 27.1829i 0.799497 0.799497i
\(35\) −29.8444 51.6920i −0.852697 1.47691i
\(36\) 0 0
\(37\) 8.51041 + 31.7613i 0.230011 + 0.858413i 0.980335 + 0.197342i \(0.0632309\pi\)
−0.750324 + 0.661071i \(0.770102\pi\)
\(38\) 33.5325i 0.882433i
\(39\) 0 0
\(40\) 52.3847 1.30962
\(41\) 58.1365 15.5776i 1.41796 0.379942i 0.533202 0.845988i \(-0.320989\pi\)
0.884760 + 0.466046i \(0.154322\pi\)
\(42\) 0 0
\(43\) 27.0185 15.5991i 0.628336 0.362770i −0.151771 0.988416i \(-0.548498\pi\)
0.780107 + 0.625646i \(0.215164\pi\)
\(44\) −50.1316 50.1316i −1.13936 1.13936i
\(45\) 0 0
\(46\) 13.2978 + 3.56313i 0.289082 + 0.0774592i
\(47\) −22.4086 + 22.4086i −0.476779 + 0.476779i −0.904100 0.427321i \(-0.859458\pi\)
0.427321 + 0.904100i \(0.359458\pi\)
\(48\) 0 0
\(49\) 7.02906 + 4.05823i 0.143450 + 0.0828210i
\(50\) 30.7262 + 114.672i 0.614524 + 2.29343i
\(51\) 0 0
\(52\) −77.0675 + 18.0253i −1.48207 + 0.346640i
\(53\) 54.7345 1.03273 0.516363 0.856370i \(-0.327286\pi\)
0.516363 + 0.856370i \(0.327286\pi\)
\(54\) 0 0
\(55\) 45.9850 79.6483i 0.836090 1.44815i
\(56\) −43.4114 + 25.0636i −0.775203 + 0.447564i
\(57\) 0 0
\(58\) −36.3854 + 135.792i −0.627334 + 2.34124i
\(59\) 13.4735 + 3.61020i 0.228364 + 0.0611899i 0.371186 0.928558i \(-0.378951\pi\)
−0.142822 + 0.989748i \(0.545618\pi\)
\(60\) 0 0
\(61\) −42.0454 72.8249i −0.689270 1.19385i −0.972074 0.234673i \(-0.924598\pi\)
0.282805 0.959177i \(-0.408735\pi\)
\(62\) −22.2476 12.8447i −0.358832 0.207172i
\(63\) 0 0
\(64\) 104.274i 1.62929i
\(65\) −48.4616 90.5162i −0.745564 1.39256i
\(66\) 0 0
\(67\) 62.2390 16.6769i 0.928940 0.248909i 0.237537 0.971378i \(-0.423660\pi\)
0.691403 + 0.722470i \(0.256993\pi\)
\(68\) 36.8439 63.8155i 0.541822 0.938463i
\(69\) 0 0
\(70\) −134.056 134.056i −1.91508 1.91508i
\(71\) 14.8017 55.2406i 0.208474 0.778036i −0.779888 0.625919i \(-0.784724\pi\)
0.988362 0.152117i \(-0.0486092\pi\)
\(72\) 0 0
\(73\) −54.9623 + 54.9623i −0.752909 + 0.752909i −0.975021 0.222113i \(-0.928705\pi\)
0.222113 + 0.975021i \(0.428705\pi\)
\(74\) 52.2194 + 90.4467i 0.705668 + 1.22225i
\(75\) 0 0
\(76\) −16.6359 62.0861i −0.218894 0.816922i
\(77\) 88.0064i 1.14294i
\(78\) 0 0
\(79\) −45.0309 −0.570012 −0.285006 0.958526i \(-0.591996\pi\)
−0.285006 + 0.958526i \(0.591996\pi\)
\(80\) −25.0693 + 6.71729i −0.313366 + 0.0839662i
\(81\) 0 0
\(82\) 165.555 95.5835i 2.01897 1.16565i
\(83\) 30.8346 + 30.8346i 0.371501 + 0.371501i 0.868024 0.496523i \(-0.165390\pi\)
−0.496523 + 0.868024i \(0.665390\pi\)
\(84\) 0 0
\(85\) 92.3333 + 24.7406i 1.08627 + 0.291066i
\(86\) 70.0685 70.0685i 0.814750 0.814750i
\(87\) 0 0
\(88\) −66.8893 38.6186i −0.760106 0.438847i
\(89\) −5.84679 21.8205i −0.0656942 0.245174i 0.925268 0.379313i \(-0.123840\pi\)
−0.990963 + 0.134139i \(0.957173\pi\)
\(90\) 0 0
\(91\) 83.4680 + 51.8245i 0.917231 + 0.569500i
\(92\) 26.3888 0.286835
\(93\) 0 0
\(94\) −50.3279 + 87.1704i −0.535403 + 0.927345i
\(95\) 72.2104 41.6907i 0.760110 0.438850i
\(96\) 0 0
\(97\) 28.7767 107.396i 0.296667 1.10718i −0.643217 0.765684i \(-0.722401\pi\)
0.939884 0.341493i \(-0.110933\pi\)
\(98\) 24.9011 + 6.67223i 0.254093 + 0.0680840i
\(99\) 0 0
\(100\) 113.780 + 197.073i 1.13780 + 1.97073i
\(101\) −26.0181 15.0216i −0.257605 0.148728i 0.365637 0.930758i \(-0.380851\pi\)
−0.623242 + 0.782029i \(0.714185\pi\)
\(102\) 0 0
\(103\) 122.717i 1.19143i 0.803197 + 0.595713i \(0.203131\pi\)
−0.803197 + 0.595713i \(0.796869\pi\)
\(104\) −76.0163 + 40.6985i −0.730926 + 0.391332i
\(105\) 0 0
\(106\) 167.924 44.9951i 1.58419 0.424482i
\(107\) −0.253390 + 0.438884i −0.00236813 + 0.00410172i −0.867207 0.497948i \(-0.834087\pi\)
0.864839 + 0.502049i \(0.167420\pi\)
\(108\) 0 0
\(109\) −29.9213 29.9213i −0.274507 0.274507i 0.556404 0.830912i \(-0.312181\pi\)
−0.830912 + 0.556404i \(0.812181\pi\)
\(110\) 75.6049 282.161i 0.687318 2.56510i
\(111\) 0 0
\(112\) 17.5611 17.5611i 0.156796 0.156796i
\(113\) 51.7762 + 89.6790i 0.458197 + 0.793620i 0.998866 0.0476155i \(-0.0151622\pi\)
−0.540669 + 0.841235i \(0.681829\pi\)
\(114\) 0 0
\(115\) 8.86003 + 33.0661i 0.0770437 + 0.287531i
\(116\) 269.473i 2.32304i
\(117\) 0 0
\(118\) 44.3041 0.375458
\(119\) −88.3541 + 23.6744i −0.742472 + 0.198945i
\(120\) 0 0
\(121\) −12.6460 + 7.30120i −0.104513 + 0.0603405i
\(122\) −188.861 188.861i −1.54804 1.54804i
\(123\) 0 0
\(124\) −47.5644 12.7448i −0.383583 0.102781i
\(125\) −69.1213 + 69.1213i −0.552970 + 0.552970i
\(126\) 0 0
\(127\) −202.395 116.853i −1.59366 0.920100i −0.992672 0.120843i \(-0.961440\pi\)
−0.600989 0.799257i \(-0.705226\pi\)
\(128\) 47.4475 + 177.077i 0.370684 + 1.38341i
\(129\) 0 0
\(130\) −223.089 237.863i −1.71607 1.82972i
\(131\) 15.9680 0.121893 0.0609467 0.998141i \(-0.480588\pi\)
0.0609467 + 0.998141i \(0.480588\pi\)
\(132\) 0 0
\(133\) −39.8940 + 69.0985i −0.299955 + 0.519537i
\(134\) 177.238 102.329i 1.32267 0.763646i
\(135\) 0 0
\(136\) 20.7774 77.5423i 0.152775 0.570164i
\(137\) −3.25775 0.872910i −0.0237792 0.00637161i 0.246910 0.969038i \(-0.420585\pi\)
−0.270689 + 0.962667i \(0.587252\pi\)
\(138\) 0 0
\(139\) −18.1577 31.4501i −0.130631 0.226260i 0.793289 0.608845i \(-0.208367\pi\)
−0.923920 + 0.382586i \(0.875034\pi\)
\(140\) −314.714 181.700i −2.24796 1.29786i
\(141\) 0 0
\(142\) 181.645i 1.27919i
\(143\) −4.84950 + 151.305i −0.0339126 + 1.05808i
\(144\) 0 0
\(145\) −337.659 + 90.4755i −2.32868 + 0.623969i
\(146\) −123.441 + 213.805i −0.845484 + 1.46442i
\(147\) 0 0
\(148\) 141.557 + 141.557i 0.956468 + 0.956468i
\(149\) −37.2135 + 138.883i −0.249755 + 0.932099i 0.721178 + 0.692749i \(0.243601\pi\)
−0.970934 + 0.239349i \(0.923066\pi\)
\(150\) 0 0
\(151\) −120.042 + 120.042i −0.794982 + 0.794982i −0.982299 0.187318i \(-0.940021\pi\)
0.187318 + 0.982299i \(0.440021\pi\)
\(152\) −35.0122 60.6430i −0.230344 0.398967i
\(153\) 0 0
\(154\) 72.3467 + 270.002i 0.469784 + 1.75326i
\(155\) 63.8788i 0.412121i
\(156\) 0 0
\(157\) 15.4414 0.0983529 0.0491764 0.998790i \(-0.484340\pi\)
0.0491764 + 0.998790i \(0.484340\pi\)
\(158\) −138.154 + 37.0182i −0.874391 + 0.234292i
\(159\) 0 0
\(160\) −252.856 + 145.986i −1.58035 + 0.912415i
\(161\) −23.1629 23.1629i −0.143869 0.143869i
\(162\) 0 0
\(163\) 266.414 + 71.3853i 1.63444 + 0.437947i 0.955198 0.295967i \(-0.0956420\pi\)
0.679242 + 0.733914i \(0.262309\pi\)
\(164\) 259.109 259.109i 1.57993 1.57993i
\(165\) 0 0
\(166\) 119.948 + 69.2518i 0.722576 + 0.417180i
\(167\) −66.4855 248.127i −0.398116 1.48579i −0.816407 0.577477i \(-0.804037\pi\)
0.418290 0.908313i \(-0.362630\pi\)
\(168\) 0 0
\(169\) 140.647 + 93.6988i 0.832230 + 0.554431i
\(170\) 303.615 1.78597
\(171\) 0 0
\(172\) 94.9714 164.495i 0.552160 0.956368i
\(173\) −217.286 + 125.450i −1.25599 + 0.725147i −0.972293 0.233767i \(-0.924895\pi\)
−0.283698 + 0.958914i \(0.591561\pi\)
\(174\) 0 0
\(175\) 73.1107 272.853i 0.417776 1.55916i
\(176\) 36.9627 + 9.90412i 0.210015 + 0.0562734i
\(177\) 0 0
\(178\) −35.8756 62.1383i −0.201548 0.349092i
\(179\) −7.39919 4.27193i −0.0413363 0.0238655i 0.479189 0.877711i \(-0.340931\pi\)
−0.520526 + 0.853846i \(0.674264\pi\)
\(180\) 0 0
\(181\) 24.6075i 0.135953i −0.997687 0.0679764i \(-0.978346\pi\)
0.997687 0.0679764i \(-0.0216543\pi\)
\(182\) 298.681 + 90.3805i 1.64110 + 0.496596i
\(183\) 0 0
\(184\) 27.7692 7.44073i 0.150919 0.0404387i
\(185\) −129.848 + 224.904i −0.701883 + 1.21570i
\(186\) 0 0
\(187\) −99.6601 99.6601i −0.532941 0.532941i
\(188\) −49.9367 + 186.366i −0.265621 + 0.991310i
\(189\) 0 0
\(190\) 187.268 187.268i 0.985619 0.985619i
\(191\) −129.028 223.482i −0.675537 1.17006i −0.976312 0.216369i \(-0.930579\pi\)
0.300775 0.953695i \(-0.402755\pi\)
\(192\) 0 0
\(193\) −9.79118 36.5412i −0.0507315 0.189333i 0.935910 0.352239i \(-0.114580\pi\)
−0.986641 + 0.162907i \(0.947913\pi\)
\(194\) 353.145i 1.82034i
\(195\) 0 0
\(196\) 49.4151 0.252118
\(197\) 17.6223 4.72189i 0.0894534 0.0239690i −0.213815 0.976874i \(-0.568589\pi\)
0.303268 + 0.952905i \(0.401922\pi\)
\(198\) 0 0
\(199\) −113.637 + 65.6084i −0.571040 + 0.329690i −0.757565 0.652760i \(-0.773611\pi\)
0.186524 + 0.982450i \(0.440278\pi\)
\(200\) 175.300 + 175.300i 0.876499 + 0.876499i
\(201\) 0 0
\(202\) −92.1716 24.6973i −0.456295 0.122264i
\(203\) 236.531 236.531i 1.16518 1.16518i
\(204\) 0 0
\(205\) 411.668 + 237.677i 2.00814 + 1.15940i
\(206\) 100.881 + 376.493i 0.489713 + 1.82763i
\(207\) 0 0
\(208\) 31.1597 29.2243i 0.149806 0.140501i
\(209\) −122.939 −0.588227
\(210\) 0 0
\(211\) −139.029 + 240.806i −0.658907 + 1.14126i 0.321992 + 0.946742i \(0.395648\pi\)
−0.980899 + 0.194518i \(0.937686\pi\)
\(212\) 288.592 166.619i 1.36128 0.785938i
\(213\) 0 0
\(214\) −0.416604 + 1.55479i −0.00194675 + 0.00726537i
\(215\) 238.005 + 63.7732i 1.10700 + 0.296620i
\(216\) 0 0
\(217\) 30.5630 + 52.9366i 0.140843 + 0.243947i
\(218\) −116.395 67.2006i −0.533921 0.308260i
\(219\) 0 0
\(220\) 559.937i 2.54517i
\(221\) −153.208 + 35.8336i −0.693247 + 0.162143i
\(222\) 0 0
\(223\) 209.460 56.1247i 0.939283 0.251680i 0.243474 0.969907i \(-0.421713\pi\)
0.695809 + 0.718227i \(0.255046\pi\)
\(224\) 139.695 241.959i 0.623639 1.08017i
\(225\) 0 0
\(226\) 232.570 + 232.570i 1.02907 + 1.02907i
\(227\) 42.8998 160.104i 0.188986 0.705305i −0.804756 0.593605i \(-0.797704\pi\)
0.993742 0.111699i \(-0.0356293\pi\)
\(228\) 0 0
\(229\) 161.998 161.998i 0.707415 0.707415i −0.258576 0.965991i \(-0.583253\pi\)
0.965991 + 0.258576i \(0.0832533\pi\)
\(230\) 54.3647 + 94.1624i 0.236368 + 0.409402i
\(231\) 0 0
\(232\) 75.9821 + 283.569i 0.327509 + 1.22228i
\(233\) 262.925i 1.12843i 0.825626 + 0.564217i \(0.190822\pi\)
−0.825626 + 0.564217i \(0.809178\pi\)
\(234\) 0 0
\(235\) −250.289 −1.06506
\(236\) 82.0300 21.9799i 0.347585 0.0931350i
\(237\) 0 0
\(238\) −251.606 + 145.265i −1.05717 + 0.610357i
\(239\) 243.702 + 243.702i 1.01967 + 1.01967i 0.999803 + 0.0198720i \(0.00632586\pi\)
0.0198720 + 0.999803i \(0.493674\pi\)
\(240\) 0 0
\(241\) −292.541 78.3860i −1.21386 0.325253i −0.405586 0.914057i \(-0.632932\pi\)
−0.808276 + 0.588804i \(0.799599\pi\)
\(242\) −32.7957 + 32.7957i −0.135520 + 0.135520i
\(243\) 0 0
\(244\) −443.377 255.984i −1.81712 1.04911i
\(245\) 16.5911 + 61.9188i 0.0677188 + 0.252730i
\(246\) 0 0
\(247\) −72.3955 + 116.599i −0.293099 + 0.472063i
\(248\) −53.6460 −0.216314
\(249\) 0 0
\(250\) −155.240 + 268.884i −0.620962 + 1.07554i
\(251\) −178.992 + 103.341i −0.713115 + 0.411717i −0.812213 0.583360i \(-0.801738\pi\)
0.0990983 + 0.995078i \(0.468404\pi\)
\(252\) 0 0
\(253\) 13.0634 48.7533i 0.0516340 0.192701i
\(254\) −717.003 192.120i −2.82285 0.756379i
\(255\) 0 0
\(256\) 82.5869 + 143.045i 0.322605 + 0.558768i
\(257\) 149.916 + 86.5538i 0.583329 + 0.336785i 0.762455 0.647041i \(-0.223994\pi\)
−0.179126 + 0.983826i \(0.557327\pi\)
\(258\) 0 0
\(259\) 248.505i 0.959478i
\(260\) −531.061 329.731i −2.04254 1.26820i
\(261\) 0 0
\(262\) 48.9896 13.1267i 0.186983 0.0501020i
\(263\) 72.7354 125.981i 0.276561 0.479017i −0.693967 0.720007i \(-0.744139\pi\)
0.970528 + 0.240990i \(0.0774720\pi\)
\(264\) 0 0
\(265\) 305.674 + 305.674i 1.15349 + 1.15349i
\(266\) −65.5907 + 244.788i −0.246582 + 0.920255i
\(267\) 0 0
\(268\) 277.394 277.394i 1.03505 1.03505i
\(269\) −45.7415 79.2267i −0.170043 0.294523i 0.768392 0.639980i \(-0.221057\pi\)
−0.938435 + 0.345457i \(0.887724\pi\)
\(270\) 0 0
\(271\) −98.2045 366.504i −0.362378 1.35241i −0.870940 0.491389i \(-0.836489\pi\)
0.508562 0.861025i \(-0.330177\pi\)
\(272\) 39.7730i 0.146224i
\(273\) 0 0
\(274\) −10.7123 −0.0390959
\(275\) 420.418 112.651i 1.52879 0.409639i
\(276\) 0 0
\(277\) 212.035 122.418i 0.765468 0.441943i −0.0657877 0.997834i \(-0.520956\pi\)
0.831255 + 0.555891i \(0.187623\pi\)
\(278\) −81.5614 81.5614i −0.293386 0.293386i
\(279\) 0 0
\(280\) −382.410 102.466i −1.36575 0.365951i
\(281\) 307.450 307.450i 1.09413 1.09413i 0.0990449 0.995083i \(-0.468421\pi\)
0.995083 0.0990449i \(-0.0315787\pi\)
\(282\) 0 0
\(283\) −398.777 230.234i −1.40911 0.813548i −0.413804 0.910366i \(-0.635800\pi\)
−0.995302 + 0.0968187i \(0.969133\pi\)
\(284\) −90.1164 336.319i −0.317311 1.18422i
\(285\) 0 0
\(286\) 109.504 + 468.187i 0.382881 + 1.63702i
\(287\) −454.868 −1.58491
\(288\) 0 0
\(289\) −71.2555 + 123.418i −0.246559 + 0.427053i
\(290\) −961.553 + 555.153i −3.31570 + 1.91432i
\(291\) 0 0
\(292\) −122.481 + 457.106i −0.419456 + 1.56543i
\(293\) 146.553 + 39.2688i 0.500181 + 0.134023i 0.500084 0.865977i \(-0.333302\pi\)
9.70470e−5 1.00000i \(0.499969\pi\)
\(294\) 0 0
\(295\) 55.0830 + 95.4066i 0.186722 + 0.323412i
\(296\) 188.876 + 109.048i 0.638095 + 0.368404i
\(297\) 0 0
\(298\) 456.680i 1.53248i
\(299\) −38.5465 41.0992i −0.128918 0.137456i
\(300\) 0 0
\(301\) −227.748 + 61.0249i −0.756637 + 0.202740i
\(302\) −269.605 + 466.969i −0.892730 + 1.54625i
\(303\) 0 0
\(304\) 24.5317 + 24.5317i 0.0806965 + 0.0806965i
\(305\) 171.893 641.512i 0.563583 2.10332i
\(306\) 0 0
\(307\) 326.284 326.284i 1.06281 1.06281i 0.0649236 0.997890i \(-0.479320\pi\)
0.997890 0.0649236i \(-0.0206804\pi\)
\(308\) 267.903 + 464.021i 0.869815 + 1.50656i
\(309\) 0 0
\(310\) −52.5123 195.979i −0.169395 0.632189i
\(311\) 0.599099i 0.00192636i 1.00000 0.000963181i \(0.000306590\pi\)
−1.00000 0.000963181i \(0.999693\pi\)
\(312\) 0 0
\(313\) −20.6721 −0.0660452 −0.0330226 0.999455i \(-0.510513\pi\)
−0.0330226 + 0.999455i \(0.510513\pi\)
\(314\) 47.3738 12.6938i 0.150872 0.0404261i
\(315\) 0 0
\(316\) −237.429 + 137.080i −0.751359 + 0.433797i
\(317\) 180.500 + 180.500i 0.569402 + 0.569402i 0.931961 0.362559i \(-0.118097\pi\)
−0.362559 + 0.931961i \(0.618097\pi\)
\(318\) 0 0
\(319\) 497.852 + 133.399i 1.56066 + 0.418178i
\(320\) −582.338 + 582.338i −1.81981 + 1.81981i
\(321\) 0 0
\(322\) −90.1044 52.0218i −0.279827 0.161558i
\(323\) −33.0717 123.425i −0.102389 0.382121i
\(324\) 0 0
\(325\) 140.731 465.074i 0.433019 1.43100i
\(326\) 876.034 2.68722
\(327\) 0 0
\(328\) 199.603 345.723i 0.608546 1.05403i
\(329\) 207.416 119.752i 0.630443 0.363986i
\(330\) 0 0
\(331\) 36.2685 135.356i 0.109572 0.408930i −0.889251 0.457419i \(-0.848774\pi\)
0.998824 + 0.0484891i \(0.0154406\pi\)
\(332\) 256.442 + 68.7135i 0.772417 + 0.206968i
\(333\) 0 0
\(334\) −407.951 706.593i −1.22141 2.11555i
\(335\) 440.719 + 254.449i 1.31558 + 0.759549i
\(336\) 0 0
\(337\) 294.586i 0.874142i 0.899427 + 0.437071i \(0.143984\pi\)
−0.899427 + 0.437071i \(0.856016\pi\)
\(338\) 508.527 + 171.845i 1.50452 + 0.508418i
\(339\) 0 0
\(340\) 562.149 150.627i 1.65338 0.443022i
\(341\) −47.0921 + 81.5660i −0.138100 + 0.239196i
\(342\) 0 0
\(343\) 218.481 + 218.481i 0.636972 + 0.636972i
\(344\) 53.5573 199.879i 0.155690 0.581042i
\(345\) 0 0
\(346\) −563.502 + 563.502i −1.62862 + 1.62862i
\(347\) −181.324 314.062i −0.522547 0.905078i −0.999656 0.0262339i \(-0.991649\pi\)
0.477109 0.878844i \(-0.341685\pi\)
\(348\) 0 0
\(349\) −109.728 409.510i −0.314407 1.17338i −0.924541 0.381083i \(-0.875551\pi\)
0.610134 0.792298i \(-0.291115\pi\)
\(350\) 897.208i 2.56345i
\(351\) 0 0
\(352\) 430.491 1.22299
\(353\) −203.861 + 54.6243i −0.577509 + 0.154743i −0.535738 0.844384i \(-0.679967\pi\)
−0.0417709 + 0.999127i \(0.513300\pi\)
\(354\) 0 0
\(355\) 391.162 225.838i 1.10187 0.636163i
\(356\) −97.2521 97.2521i −0.273180 0.273180i
\(357\) 0 0
\(358\) −26.2123 7.02357i −0.0732188 0.0196189i
\(359\) −297.929 + 297.929i −0.829885 + 0.829885i −0.987501 0.157615i \(-0.949619\pi\)
0.157615 + 0.987501i \(0.449619\pi\)
\(360\) 0 0
\(361\) 216.109 + 124.771i 0.598640 + 0.345625i
\(362\) −20.2288 75.4951i −0.0558808 0.208550i
\(363\) 0 0
\(364\) 597.853 + 19.1619i 1.64245 + 0.0526424i
\(365\) −613.892 −1.68190
\(366\) 0 0
\(367\) −280.845 + 486.438i −0.765246 + 1.32544i 0.174871 + 0.984591i \(0.444049\pi\)
−0.940117 + 0.340853i \(0.889284\pi\)
\(368\) −12.3351 + 7.12169i −0.0335193 + 0.0193524i
\(369\) 0 0
\(370\) −213.487 + 796.743i −0.576991 + 2.15336i
\(371\) −399.563 107.063i −1.07699 0.288578i
\(372\) 0 0
\(373\) 189.783 + 328.714i 0.508801 + 0.881270i 0.999948 + 0.0101929i \(0.00324457\pi\)
−0.491147 + 0.871077i \(0.663422\pi\)
\(374\) −387.681 223.828i −1.03658 0.598470i
\(375\) 0 0
\(376\) 210.195i 0.559030i
\(377\) 419.690 393.623i 1.11324 1.04409i
\(378\) 0 0
\(379\) −474.306 + 127.090i −1.25147 + 0.335330i −0.822903 0.568181i \(-0.807647\pi\)
−0.428564 + 0.903511i \(0.640980\pi\)
\(380\) 253.824 439.636i 0.667958 1.15694i
\(381\) 0 0
\(382\) −579.570 579.570i −1.51720 1.51720i
\(383\) −155.600 + 580.707i −0.406266 + 1.51621i 0.395443 + 0.918491i \(0.370591\pi\)
−0.801709 + 0.597715i \(0.796076\pi\)
\(384\) 0 0
\(385\) −491.486 + 491.486i −1.27659 + 1.27659i
\(386\) −60.0782 104.058i −0.155643 0.269582i
\(387\) 0 0
\(388\) −175.200 653.856i −0.451547 1.68519i
\(389\) 78.5941i 0.202041i 0.994884 + 0.101021i \(0.0322108\pi\)
−0.994884 + 0.101021i \(0.967789\pi\)
\(390\) 0 0
\(391\) 52.4601 0.134169
\(392\) 52.0000 13.9333i 0.132653 0.0355442i
\(393\) 0 0
\(394\) 50.1832 28.9733i 0.127368 0.0735362i
\(395\) −251.483 251.483i −0.636665 0.636665i
\(396\) 0 0
\(397\) −665.065 178.204i −1.67523 0.448875i −0.708713 0.705496i \(-0.750724\pi\)
−0.966512 + 0.256621i \(0.917391\pi\)
\(398\) −294.701 + 294.701i −0.740456 + 0.740456i
\(399\) 0 0
\(400\) −106.370 61.4130i −0.265926 0.153532i
\(401\) 137.621 + 513.607i 0.343194 + 1.28082i 0.894708 + 0.446651i \(0.147384\pi\)
−0.551514 + 0.834165i \(0.685950\pi\)
\(402\) 0 0
\(403\) 49.6284 + 92.6955i 0.123147 + 0.230014i
\(404\) −182.910 −0.452748
\(405\) 0 0
\(406\) 531.228 920.114i 1.30844 2.26629i
\(407\) 331.603 191.451i 0.814749 0.470396i
\(408\) 0 0
\(409\) 180.997 675.491i 0.442536 1.65157i −0.279825 0.960051i \(-0.590277\pi\)
0.722361 0.691516i \(-0.243057\pi\)
\(410\) 1458.37 + 390.770i 3.55701 + 0.953098i
\(411\) 0 0
\(412\) 373.566 + 647.036i 0.906714 + 1.57048i
\(413\) −91.2950 52.7092i −0.221053 0.127625i
\(414\) 0 0
\(415\) 344.402i 0.829883i
\(416\) 253.504 408.291i 0.609385 0.981468i
\(417\) 0 0
\(418\) −377.175 + 101.064i −0.902332 + 0.241779i
\(419\) 180.258 312.217i 0.430211 0.745147i −0.566680 0.823938i \(-0.691773\pi\)
0.996891 + 0.0787906i \(0.0251058\pi\)
\(420\) 0 0
\(421\) −326.554 326.554i −0.775663 0.775663i 0.203427 0.979090i \(-0.434792\pi\)
−0.979090 + 0.203427i \(0.934792\pi\)
\(422\) −228.581 + 853.077i −0.541662 + 2.02151i
\(423\) 0 0
\(424\) 256.707 256.707i 0.605442 0.605442i
\(425\) 226.192 + 391.775i 0.532216 + 0.921825i
\(426\) 0 0
\(427\) 164.485 + 613.866i 0.385210 + 1.43762i
\(428\) 3.08541i 0.00720890i
\(429\) 0 0
\(430\) 782.619 1.82004
\(431\) −11.1213 + 2.97995i −0.0258035 + 0.00691403i −0.271698 0.962383i \(-0.587585\pi\)
0.245894 + 0.969297i \(0.420918\pi\)
\(432\) 0 0
\(433\) −348.424 + 201.163i −0.804675 + 0.464579i −0.845103 0.534603i \(-0.820461\pi\)
0.0404284 + 0.999182i \(0.487128\pi\)
\(434\) 137.284 + 137.284i 0.316322 + 0.316322i
\(435\) 0 0
\(436\) −248.847 66.6783i −0.570750 0.152932i
\(437\) 32.3571 32.3571i 0.0740436 0.0740436i
\(438\) 0 0
\(439\) 611.317 + 352.944i 1.39252 + 0.803973i 0.993594 0.113009i \(-0.0360490\pi\)
0.398928 + 0.916982i \(0.369382\pi\)
\(440\) −157.883 589.226i −0.358824 1.33915i
\(441\) 0 0
\(442\) −440.580 + 235.883i −0.996787 + 0.533672i
\(443\) −47.8296 −0.107968 −0.0539838 0.998542i \(-0.517192\pi\)
−0.0539838 + 0.998542i \(0.517192\pi\)
\(444\) 0 0
\(445\) 89.2078 154.513i 0.200467 0.347219i
\(446\) 596.480 344.378i 1.33740 0.772148i
\(447\) 0 0
\(448\) 203.965 761.206i 0.455278 1.69912i
\(449\) −449.516 120.447i −1.00115 0.268257i −0.279222 0.960227i \(-0.590076\pi\)
−0.721926 + 0.691970i \(0.756743\pi\)
\(450\) 0 0
\(451\) −350.436 606.973i −0.777020 1.34584i
\(452\) 545.989 + 315.227i 1.20794 + 0.697405i
\(453\) 0 0
\(454\) 526.462i 1.15961i
\(455\) 176.718 + 755.563i 0.388392 + 1.66058i
\(456\) 0 0
\(457\) 202.908 54.3691i 0.444001 0.118970i −0.0298902 0.999553i \(-0.509516\pi\)
0.473891 + 0.880584i \(0.342849\pi\)
\(458\) 363.833 630.178i 0.794396 1.37593i
\(459\) 0 0
\(460\) 147.373 + 147.373i 0.320375 + 0.320375i
\(461\) 220.190 821.759i 0.477635 1.78256i −0.133520 0.991046i \(-0.542628\pi\)
0.611154 0.791511i \(-0.290705\pi\)
\(462\) 0 0
\(463\) 167.655 167.655i 0.362107 0.362107i −0.502481 0.864588i \(-0.667579\pi\)
0.864588 + 0.502481i \(0.167579\pi\)
\(464\) −72.7241 125.962i −0.156733 0.271470i
\(465\) 0 0
\(466\) 216.141 + 806.648i 0.463821 + 1.73100i
\(467\) 577.797i 1.23725i 0.785685 + 0.618627i \(0.212311\pi\)
−0.785685 + 0.618627i \(0.787689\pi\)
\(468\) 0 0
\(469\) −486.967 −1.03831
\(470\) −767.882 + 205.753i −1.63379 + 0.437773i
\(471\) 0 0
\(472\) 80.1233 46.2592i 0.169753 0.0980068i
\(473\) −256.891 256.891i −0.543110 0.543110i
\(474\) 0 0
\(475\) 381.158 + 102.131i 0.802438 + 0.215013i
\(476\) −393.787 + 393.787i −0.827283 + 0.827283i
\(477\) 0 0
\(478\) 948.011 + 547.334i 1.98329 + 1.14505i
\(479\) −49.3930 184.337i −0.103117 0.384838i 0.895008 0.446050i \(-0.147170\pi\)
−0.998125 + 0.0612129i \(0.980503\pi\)
\(480\) 0 0
\(481\) 13.6936 427.242i 0.0284690 0.888238i
\(482\) −961.946 −1.99574
\(483\) 0 0
\(484\) −44.4516 + 76.9924i −0.0918421 + 0.159075i
\(485\) 760.480 439.063i 1.56800 0.905285i
\(486\) 0 0
\(487\) −186.160 + 694.760i −0.382259 + 1.42661i 0.460183 + 0.887824i \(0.347784\pi\)
−0.842442 + 0.538787i \(0.818883\pi\)
\(488\) −538.747 144.357i −1.10399 0.295813i
\(489\) 0 0
\(490\) 101.802 + 176.327i 0.207760 + 0.359850i
\(491\) −840.518 485.273i −1.71185 0.988336i −0.932068 0.362283i \(-0.881997\pi\)
−0.779781 0.626053i \(-0.784669\pi\)
\(492\) 0 0
\(493\) 535.704i 1.08662i
\(494\) −126.256 + 417.238i −0.255578 + 0.844611i
\(495\) 0 0
\(496\) 25.6729 6.87903i 0.0517598 0.0138690i
\(497\) −216.105 + 374.305i −0.434819 + 0.753129i
\(498\) 0 0
\(499\) −394.571 394.571i −0.790723 0.790723i 0.190889 0.981612i \(-0.438863\pi\)
−0.981612 + 0.190889i \(0.938863\pi\)
\(500\) −154.034 + 574.862i −0.308068 + 1.14972i
\(501\) 0 0
\(502\) −464.190 + 464.190i −0.924681 + 0.924681i
\(503\) 464.382 + 804.333i 0.923225 + 1.59907i 0.794392 + 0.607406i \(0.207790\pi\)
0.128833 + 0.991666i \(0.458877\pi\)
\(504\) 0 0
\(505\) −61.4120 229.193i −0.121608 0.453847i
\(506\) 160.313i 0.316824i
\(507\) 0 0
\(508\) −1422.86 −2.80090
\(509\) 423.307 113.425i 0.831645 0.222839i 0.182214 0.983259i \(-0.441674\pi\)
0.649431 + 0.760420i \(0.275007\pi\)
\(510\) 0 0
\(511\) 508.735 293.718i 0.995567 0.574791i
\(512\) −147.550 147.550i −0.288184 0.288184i
\(513\) 0 0
\(514\) 531.090 + 142.305i 1.03325 + 0.276858i
\(515\) −685.333 + 685.333i −1.33074 + 1.33074i
\(516\) 0 0
\(517\) 319.591 + 184.516i 0.618165 + 0.356898i
\(518\) −204.286 762.406i −0.394375 1.47183i
\(519\) 0 0
\(520\) −651.813 197.238i −1.25349 0.379304i
\(521\) −100.115 −0.192160 −0.0960801 0.995374i \(-0.530630\pi\)
−0.0960801 + 0.995374i \(0.530630\pi\)
\(522\) 0 0
\(523\) 29.0666 50.3449i 0.0555767 0.0962617i −0.836899 0.547358i \(-0.815634\pi\)
0.892475 + 0.451096i \(0.148967\pi\)
\(524\) 84.1929 48.6088i 0.160673 0.0927649i
\(525\) 0 0
\(526\) 119.586 446.301i 0.227350 0.848481i
\(527\) −94.5564 25.3363i −0.179424 0.0480765i
\(528\) 0 0
\(529\) −255.107 441.858i −0.482243 0.835269i
\(530\) 1189.08 + 686.517i 2.24355 + 1.29531i
\(531\) 0 0
\(532\) 485.770i 0.913102i
\(533\) −782.033 25.0650i −1.46723 0.0470264i
\(534\) 0 0
\(535\) −3.86612 + 1.03592i −0.00722640 + 0.00193631i
\(536\) 213.688 370.119i 0.398672 0.690521i
\(537\) 0 0
\(538\) −205.463 205.463i −0.381902 0.381902i
\(539\) 24.4623 91.2944i 0.0453845 0.169377i
\(540\) 0 0
\(541\) −164.770 + 164.770i −0.304566 + 0.304566i −0.842797 0.538231i \(-0.819093\pi\)
0.538231 + 0.842797i \(0.319093\pi\)
\(542\) −602.578 1043.70i −1.11177 1.92564i
\(543\) 0 0
\(544\) 115.805 + 432.192i 0.212878 + 0.794470i
\(545\) 334.201i 0.613212i
\(546\) 0 0
\(547\) −503.473 −0.920426 −0.460213 0.887809i \(-0.652227\pi\)
−0.460213 + 0.887809i \(0.652227\pi\)
\(548\) −19.8340 + 5.31451i −0.0361934 + 0.00969800i
\(549\) 0 0
\(550\) 1197.23 691.219i 2.17678 1.25676i
\(551\) 330.419 + 330.419i 0.599671 + 0.599671i
\(552\) 0 0
\(553\) 328.727 + 88.0821i 0.594443 + 0.159280i
\(554\) 549.881 549.881i 0.992566 0.992566i
\(555\) 0 0
\(556\) −191.476 110.549i −0.344382 0.198829i
\(557\) 36.2263 + 135.199i 0.0650383 + 0.242726i 0.990790 0.135405i \(-0.0432335\pi\)
−0.925752 + 0.378131i \(0.876567\pi\)
\(558\) 0 0
\(559\) −394.919 + 92.3673i −0.706474 + 0.165237i
\(560\) 196.146 0.350260
\(561\) 0 0
\(562\) 690.506 1195.99i 1.22866 2.12810i
\(563\) −135.385 + 78.1645i −0.240471 + 0.138836i −0.615393 0.788220i \(-0.711003\pi\)
0.374922 + 0.927056i \(0.377669\pi\)
\(564\) 0 0
\(565\) −211.675 + 789.980i −0.374645 + 1.39820i
\(566\) −1412.70 378.533i −2.49594 0.668786i
\(567\) 0 0
\(568\) −189.660 328.502i −0.333909 0.578348i
\(569\) 584.405 + 337.406i 1.02707 + 0.592981i 0.916145 0.400847i \(-0.131284\pi\)
0.110929 + 0.993828i \(0.464617\pi\)
\(570\) 0 0
\(571\) 54.2917i 0.0950817i −0.998869 0.0475409i \(-0.984862\pi\)
0.998869 0.0475409i \(-0.0151384\pi\)
\(572\) 435.023 + 812.533i 0.760530 + 1.42051i
\(573\) 0 0
\(574\) −1395.52 + 373.930i −2.43123 + 0.651445i
\(575\) −81.0030 + 140.301i −0.140875 + 0.244002i
\(576\) 0 0
\(577\) 323.049 + 323.049i 0.559877 + 0.559877i 0.929272 0.369395i \(-0.120435\pi\)
−0.369395 + 0.929272i \(0.620435\pi\)
\(578\) −117.153 + 437.220i −0.202687 + 0.756437i
\(579\) 0 0
\(580\) −1504.92 + 1504.92i −2.59469 + 2.59469i
\(581\) −164.780 285.407i −0.283614 0.491234i
\(582\) 0 0
\(583\) −164.965 615.656i −0.282958 1.05601i
\(584\) 515.552i 0.882795i
\(585\) 0 0
\(586\) 481.903 0.822359
\(587\) −250.071 + 67.0064i −0.426016 + 0.114151i −0.465455 0.885071i \(-0.654109\pi\)
0.0394395 + 0.999222i \(0.487443\pi\)
\(588\) 0 0
\(589\) −73.9490 + 42.6945i −0.125550 + 0.0724864i
\(590\) 247.423 + 247.423i 0.419362 + 0.419362i
\(591\) 0 0
\(592\) −104.372 27.9664i −0.176304 0.0472405i
\(593\) 487.207 487.207i 0.821597 0.821597i −0.164740 0.986337i \(-0.552678\pi\)
0.986337 + 0.164740i \(0.0526785\pi\)
\(594\) 0 0
\(595\) −625.642 361.215i −1.05150 0.607083i
\(596\) 226.565 + 845.554i 0.380143 + 1.41871i
\(597\) 0 0
\(598\) −152.046 94.4038i −0.254257 0.157866i
\(599\) 133.236 0.222431 0.111215 0.993796i \(-0.464526\pi\)
0.111215 + 0.993796i \(0.464526\pi\)
\(600\) 0 0
\(601\) 441.546 764.780i 0.734685 1.27251i −0.220176 0.975460i \(-0.570663\pi\)
0.954861 0.297052i \(-0.0960034\pi\)
\(602\) −648.559 + 374.446i −1.07734 + 0.622003i
\(603\) 0 0
\(604\) −267.509 + 998.357i −0.442896 + 1.65291i
\(605\) −111.399 29.8492i −0.184130 0.0493375i
\(606\) 0 0
\(607\) 263.803 + 456.920i 0.434601 + 0.752750i 0.997263 0.0739364i \(-0.0235562\pi\)
−0.562662 + 0.826687i \(0.690223\pi\)
\(608\) 338.001 + 195.145i 0.555923 + 0.320962i
\(609\) 0 0
\(610\) 2109.45i 3.45811i
\(611\) 363.199 194.454i 0.594433 0.318255i
\(612\) 0 0
\(613\) 1083.07 290.208i 1.76684 0.473423i 0.778752 0.627331i \(-0.215853\pi\)
0.988085 + 0.153909i \(0.0491862\pi\)
\(614\) 732.805 1269.26i 1.19349 2.06719i
\(615\) 0 0
\(616\) 412.754 + 412.754i 0.670056 + 0.670056i
\(617\) −82.7504 + 308.829i −0.134117 + 0.500533i 0.865883 + 0.500247i \(0.166758\pi\)
−1.00000 0.000285474i \(0.999909\pi\)
\(618\) 0 0
\(619\) 133.111 133.111i 0.215042 0.215042i −0.591363 0.806405i \(-0.701410\pi\)
0.806405 + 0.591363i \(0.201410\pi\)
\(620\) −194.455 336.807i −0.313638 0.543236i
\(621\) 0 0
\(622\) 0.492496 + 1.83802i 0.000791794 + 0.00295502i
\(623\) 170.727i 0.274040i
\(624\) 0 0
\(625\) 162.386 0.259818
\(626\) −63.4216 + 16.9938i −0.101313 + 0.0271466i
\(627\) 0 0
\(628\) 81.4161 47.0056i 0.129643 0.0748497i
\(629\) 281.411 + 281.411i 0.447395 + 0.447395i
\(630\) 0 0
\(631\) 235.685 + 63.1517i 0.373511 + 0.100082i 0.440691 0.897659i \(-0.354734\pi\)
−0.0671801 + 0.997741i \(0.521400\pi\)
\(632\) −211.197 + 211.197i −0.334173 + 0.334173i
\(633\) 0 0
\(634\) 702.153 + 405.388i 1.10750 + 0.639414i
\(635\) −477.724 1782.89i −0.752322 2.80770i
\(636\) 0 0
\(637\) −72.1813 76.9615i −0.113314 0.120819i
\(638\) 1637.06 2.56592
\(639\) 0 0
\(640\) −723.935 + 1253.89i −1.13115 + 1.95921i
\(641\) −394.159 + 227.568i −0.614913 + 0.355020i −0.774886 0.632101i \(-0.782193\pi\)
0.159973 + 0.987121i \(0.448859\pi\)
\(642\) 0 0
\(643\) −54.7147 + 204.198i −0.0850928 + 0.317571i −0.995332 0.0965128i \(-0.969231\pi\)
0.910239 + 0.414083i \(0.135898\pi\)
\(644\) −192.639 51.6175i −0.299129 0.0801514i
\(645\) 0 0
\(646\) −202.926 351.478i −0.314127 0.544084i
\(647\) 725.468 + 418.849i 1.12128 + 0.647371i 0.941727 0.336378i \(-0.109202\pi\)
0.179552 + 0.983748i \(0.442535\pi\)
\(648\) 0 0
\(649\) 162.431i 0.250279i
\(650\) 49.4397 1542.53i 0.0760611 2.37312i
\(651\) 0 0
\(652\) 1622.00 434.612i 2.48772 0.666584i
\(653\) 250.703 434.229i 0.383924 0.664976i −0.607695 0.794170i \(-0.707906\pi\)
0.991619 + 0.129194i \(0.0412391\pi\)
\(654\) 0 0
\(655\) 89.1762 + 89.1762i 0.136147 + 0.136147i
\(656\) −51.1902 + 191.045i −0.0780339 + 0.291226i
\(657\) 0 0
\(658\) 537.903 537.903i 0.817482 0.817482i
\(659\) 305.919 + 529.868i 0.464217 + 0.804048i 0.999166 0.0408366i \(-0.0130023\pi\)
−0.534948 + 0.844885i \(0.679669\pi\)
\(660\) 0 0
\(661\) 161.747 + 603.648i 0.244700 + 0.913235i 0.973534 + 0.228543i \(0.0733963\pi\)
−0.728833 + 0.684691i \(0.759937\pi\)
\(662\) 445.083i 0.672331i
\(663\) 0 0
\(664\) 289.231 0.435589
\(665\) −608.687 + 163.097i −0.915318 + 0.245259i
\(666\) 0 0
\(667\) −166.142 + 95.9222i −0.249089 + 0.143811i
\(668\) −1105.88 1105.88i −1.65551 1.65551i
\(669\) 0 0
\(670\) 1561.29 + 418.346i 2.33028 + 0.624396i
\(671\) −692.417 + 692.417i −1.03192 + 1.03192i
\(672\) 0 0
\(673\) 160.099 + 92.4331i 0.237888 + 0.137345i 0.614206 0.789146i \(-0.289476\pi\)
−0.376317 + 0.926491i \(0.622810\pi\)
\(674\) 242.168 + 903.782i 0.359299 + 1.34092i
\(675\) 0 0
\(676\) 1026.80 + 65.8881i 1.51894 + 0.0974677i
\(677\) 984.771 1.45461 0.727305 0.686315i \(-0.240773\pi\)
0.727305 + 0.686315i \(0.240773\pi\)
\(678\) 0 0
\(679\) −420.142 + 727.707i −0.618765 + 1.07173i
\(680\) 549.083 317.013i 0.807474 0.466196i
\(681\) 0 0
\(682\) −77.4253 + 288.955i −0.113527 + 0.423688i
\(683\) 1103.55 + 295.696i 1.61574 + 0.432937i 0.949746 0.313020i \(-0.101341\pi\)
0.665995 + 0.745957i \(0.268007\pi\)
\(684\) 0 0
\(685\) −13.3185 23.0683i −0.0194431 0.0336764i
\(686\) 849.900 + 490.690i 1.23892 + 0.715292i
\(687\) 0 0
\(688\) 102.522i 0.149014i
\(689\) −681.050 206.085i −0.988462 0.299108i
\(690\) 0 0
\(691\) 703.381 188.470i 1.01792 0.272750i 0.288984 0.957334i \(-0.406683\pi\)
0.728934 + 0.684584i \(0.240016\pi\)
\(692\) −763.774 + 1322.90i −1.10372 + 1.91170i
\(693\) 0 0
\(694\) −814.476 814.476i −1.17360 1.17360i
\(695\) 74.2335 277.043i 0.106811 0.398623i
\(696\) 0 0
\(697\) 515.101 515.101i 0.739026 0.739026i
\(698\) −673.285 1166.16i −0.964592 1.67072i
\(699\) 0 0
\(700\) −445.117 1661.20i −0.635881 2.37314i
\(701\) 973.569i 1.38883i 0.719575 + 0.694415i \(0.244337\pi\)
−0.719575 + 0.694415i \(0.755663\pi\)
\(702\) 0 0
\(703\) 347.145 0.493806
\(704\) 1172.88 314.274i 1.66603 0.446411i
\(705\) 0 0
\(706\) −580.535 + 335.172i −0.822288 + 0.474748i
\(707\) 160.550 + 160.550i 0.227087 + 0.227087i
\(708\) 0 0
\(709\) −161.771 43.3463i −0.228167 0.0611372i 0.142924 0.989734i \(-0.454350\pi\)
−0.371091 + 0.928596i \(0.621016\pi\)
\(710\) 1014.42 1014.42i 1.42877 1.42877i
\(711\) 0 0
\(712\) −129.761 74.9175i −0.182249 0.105221i
\(713\) −9.07335 33.8622i −0.0127256 0.0474926i
\(714\) 0 0
\(715\) −872.072 + 817.907i −1.21968 + 1.14393i
\(716\) −52.0172 −0.0726497
\(717\) 0 0
\(718\) −669.122 + 1158.95i −0.931925 + 1.61414i
\(719\) −536.036 + 309.481i −0.745530 + 0.430432i −0.824077 0.566478i \(-0.808306\pi\)
0.0785462 + 0.996910i \(0.474972\pi\)
\(720\) 0 0
\(721\) 240.039 895.837i 0.332925 1.24249i
\(722\) 765.586 + 205.138i 1.06037 + 0.284125i
\(723\) 0 0
\(724\) −74.9083 129.745i −0.103465 0.179206i
\(725\) −1432.71 827.173i −1.97615 1.14093i
\(726\) 0 0
\(727\) 58.7377i 0.0807946i −0.999184 0.0403973i \(-0.987138\pi\)
0.999184 0.0403973i \(-0.0128624\pi\)
\(728\) 634.528 148.409i 0.871605 0.203859i
\(729\) 0 0
\(730\) −1883.41 + 504.657i −2.58001 + 0.691311i
\(731\) 188.800 327.011i 0.258277 0.447348i
\(732\) 0 0
\(733\) −114.680 114.680i −0.156453 0.156453i 0.624540 0.780993i \(-0.285287\pi\)
−0.780993 + 0.624540i \(0.785287\pi\)
\(734\) −461.744 + 1723.25i −0.629079 + 2.34775i
\(735\) 0 0
\(736\) −113.303 + 113.303i −0.153945 + 0.153945i
\(737\) −375.165 649.805i −0.509043 0.881689i
\(738\) 0 0
\(739\) 49.4982 + 184.730i 0.0669800 + 0.249973i 0.991295 0.131657i \(-0.0420297\pi\)
−0.924315 + 0.381629i \(0.875363\pi\)
\(740\) 1581.10i 2.13662i
\(741\) 0 0
\(742\) −1313.86 −1.77070
\(743\) −268.179 + 71.8585i −0.360941 + 0.0967139i −0.434732 0.900560i \(-0.643157\pi\)
0.0737908 + 0.997274i \(0.476490\pi\)
\(744\) 0 0
\(745\) −983.438 + 567.788i −1.32005 + 0.762132i
\(746\) 852.472 + 852.472i 1.14272 + 1.14272i
\(747\) 0 0
\(748\) −828.844 222.088i −1.10808 0.296909i
\(749\) 2.70823 2.70823i 0.00361579 0.00361579i
\(750\) 0 0
\(751\) −1074.14 620.156i −1.43028 0.825774i −0.433141 0.901326i \(-0.642595\pi\)
−0.997142 + 0.0755521i \(0.975928\pi\)
\(752\) −26.9533 100.591i −0.0358422 0.133765i
\(753\) 0 0
\(754\) 964.018 1552.64i 1.27854 2.05920i
\(755\) −1340.79 −1.77588
\(756\) 0 0
\(757\) 243.743 422.175i 0.321986 0.557695i −0.658912 0.752220i \(-0.728983\pi\)
0.980898 + 0.194525i \(0.0623164\pi\)
\(758\) −1350.68 + 779.818i −1.78191 + 1.02878i
\(759\) 0 0
\(760\) 143.139 534.202i 0.188341 0.702898i
\(761\) −409.294 109.670i −0.537837 0.144113i −0.0203324 0.999793i \(-0.506472\pi\)
−0.517505 + 0.855680i \(0.673139\pi\)
\(762\) 0 0
\(763\) 159.899 + 276.953i 0.209566 + 0.362979i
\(764\) −1360.62 785.553i −1.78091 1.02821i
\(765\) 0 0
\(766\) 1909.51i 2.49283i
\(767\) −154.055 95.6511i −0.200854 0.124708i
\(768\) 0 0
\(769\) 1110.65 297.599i 1.44428 0.386995i 0.550253 0.834998i \(-0.314531\pi\)
0.894032 + 0.448003i \(0.147865\pi\)
\(770\) −1103.84 + 1911.90i −1.43355 + 2.48299i
\(771\) 0 0
\(772\) −162.861 162.861i −0.210960 0.210960i
\(773\) 242.244 904.069i 0.313382 1.16956i −0.612104 0.790777i \(-0.709677\pi\)
0.925486 0.378781i \(-0.123657\pi\)
\(774\) 0 0
\(775\) 213.764 213.764i 0.275824 0.275824i
\(776\) −368.729 638.658i −0.475166 0.823012i
\(777\) 0 0
\(778\) 64.6092 + 241.125i 0.0830452 + 0.309929i
\(779\) 635.422i 0.815689i
\(780\) 0 0
\(781\) −665.960 −0.852701
\(782\) 160.946 43.1254i 0.205814 0.0551476i
\(783\) 0 0
\(784\) −23.0985 + 13.3359i −0.0294623 + 0.0170101i
\(785\) 86.2350 + 86.2350i 0.109854 + 0.109854i
\(786\) 0 0
\(787\) −1030.19 276.039i −1.30901 0.350748i −0.464161 0.885751i \(-0.653644\pi\)
−0.844850 + 0.535003i \(0.820311\pi\)
\(788\) 78.5412 78.5412i 0.0996715 0.0996715i
\(789\) 0 0
\(790\) −978.277 564.808i −1.23833 0.714947i
\(791\) −202.552 755.936i −0.256071 0.955671i
\(792\) 0 0
\(793\) 248.965 + 1064.45i 0.313953 + 1.34231i
\(794\) −2186.90 −2.75428
\(795\) 0 0
\(796\) −399.441 + 691.852i −0.501810 + 0.869160i
\(797\) 1258.35 726.507i 1.57885 0.911552i 0.583835 0.811872i \(-0.301552\pi\)
0.995020 0.0996795i \(-0.0317817\pi\)
\(798\) 0 0
\(799\) −99.2725 + 370.490i −0.124246 + 0.463692i
\(800\) −1334.68 357.627i −1.66835 0.447034i
\(801\) 0 0
\(802\) 844.434 + 1462.60i 1.05291 + 1.82369i
\(803\) 783.871 + 452.568i 0.976178 + 0.563596i
\(804\) 0 0
\(805\) 258.714i 0.321384i
\(806\) 228.460 + 243.590i 0.283449 + 0.302221i
\(807\) 0 0
\(808\) −192.478 + 51.5744i −0.238215 + 0.0638296i
\(809\) −35.5191 + 61.5210i −0.0439050 + 0.0760457i −0.887143 0.461495i \(-0.847313\pi\)
0.843238 + 0.537541i \(0.180647\pi\)
\(810\) 0 0
\(811\) 688.757 + 688.757i 0.849269 + 0.849269i 0.990042 0.140773i \(-0.0449587\pi\)
−0.140773 + 0.990042i \(0.544959\pi\)
\(812\) 527.099 1967.16i 0.649137 2.42261i
\(813\) 0 0
\(814\) 859.965 859.965i 1.05647 1.05647i
\(815\) 1089.17 + 1886.49i 1.33640 + 2.31472i
\(816\) 0 0
\(817\) −85.2478 318.149i −0.104343 0.389412i
\(818\) 2221.18i 2.71538i
\(819\) 0 0
\(820\) 2894.08 3.52936
\(821\) 507.818 136.069i 0.618536 0.165736i 0.0640739 0.997945i \(-0.479591\pi\)
0.554462 + 0.832209i \(0.312924\pi\)
\(822\) 0 0
\(823\) −1054.57 + 608.856i −1.28137 + 0.739801i −0.977099 0.212784i \(-0.931747\pi\)
−0.304273 + 0.952585i \(0.598414\pi\)
\(824\) 575.549 + 575.549i 0.698481 + 0.698481i
\(825\) 0 0
\(826\) −323.421 86.6604i −0.391551 0.104916i
\(827\) 644.293 644.293i 0.779072 0.779072i −0.200601 0.979673i \(-0.564289\pi\)
0.979673 + 0.200601i \(0.0642894\pi\)
\(828\) 0 0
\(829\) 681.917 + 393.705i 0.822578 + 0.474916i 0.851305 0.524672i \(-0.175812\pi\)
−0.0287265 + 0.999587i \(0.509145\pi\)
\(830\) 283.119 + 1056.62i 0.341108 + 1.27303i
\(831\) 0 0
\(832\) 392.612 1297.47i 0.471890 1.55946i
\(833\) 98.2357 0.117930
\(834\) 0 0
\(835\) 1014.41 1757.01i 1.21486 2.10420i
\(836\) −648.208 + 374.243i −0.775369 + 0.447659i
\(837\) 0 0
\(838\) 296.367 1106.06i 0.353660 1.31988i
\(839\) −98.0991 26.2856i −0.116924 0.0313296i 0.199883 0.979820i \(-0.435944\pi\)
−0.316806 + 0.948490i \(0.602611\pi\)
\(840\) 0 0
\(841\) −559.023 968.257i −0.664713 1.15132i
\(842\) −1270.31 733.412i −1.50868 0.871036i
\(843\) 0 0
\(844\) 1692.89i 2.00580i
\(845\) 262.189 + 1308.74i 0.310283 + 1.54881i
\(846\) 0 0
\(847\) 106.598 28.5628i 0.125853 0.0337223i
\(848\) −89.9325 + 155.768i −0.106053 + 0.183688i
\(849\) 0 0
\(850\) 1016.01 + 1016.01i 1.19531 + 1.19531i
\(851\) −36.8873 + 137.665i −0.0433458 + 0.161769i
\(852\) 0 0
\(853\) −618.373 + 618.373i −0.724939 + 0.724939i −0.969607 0.244668i \(-0.921321\pi\)
0.244668 + 0.969607i \(0.421321\pi\)
\(854\) 1009.27 + 1748.11i 1.18182 + 2.04697i
\(855\) 0 0
\(856\) 0.869978 + 3.24680i 0.00101633 + 0.00379299i
\(857\) 194.182i 0.226584i 0.993562 + 0.113292i \(0.0361395\pi\)
−0.993562 + 0.113292i \(0.963861\pi\)
\(858\) 0 0
\(859\) 330.896 0.385211 0.192605 0.981276i \(-0.438306\pi\)
0.192605 + 0.981276i \(0.438306\pi\)
\(860\) 1449.04 388.268i 1.68492 0.451474i
\(861\) 0 0
\(862\) −31.6702 + 18.2848i −0.0367404 + 0.0212121i
\(863\) −1.75897 1.75897i −0.00203820 0.00203820i 0.706087 0.708125i \(-0.250459\pi\)
−0.708125 + 0.706087i \(0.750459\pi\)
\(864\) 0 0
\(865\) −1914.07 512.874i −2.21280 0.592918i
\(866\) −903.589 + 903.589i −1.04340 + 1.04340i
\(867\) 0 0
\(868\) 322.292 + 186.075i 0.371304 + 0.214372i
\(869\) 135.719 + 506.510i 0.156178 + 0.582866i
\(870\) 0 0
\(871\) −837.219 26.8338i −0.961216 0.0308080i
\(872\) −280.665 −0.321863
\(873\) 0 0
\(874\) 72.6712 125.870i 0.0831478 0.144016i
\(875\) 639.791 369.383i 0.731190 0.422152i
\(876\) 0 0
\(877\) −91.5191 + 341.554i −0.104355 + 0.389457i −0.998271 0.0587764i \(-0.981280\pi\)
0.893916 + 0.448234i \(0.147947\pi\)
\(878\) 2165.65 + 580.284i 2.46657 + 0.660915i
\(879\) 0 0
\(880\) 151.113 + 261.735i 0.171719 + 0.297427i
\(881\) −1056.30 609.854i −1.19898 0.692229i −0.238649 0.971106i \(-0.576705\pi\)
−0.960327 + 0.278877i \(0.910038\pi\)
\(882\) 0 0
\(883\) 161.934i 0.183390i 0.995787 + 0.0916952i \(0.0292286\pi\)
−0.995787 + 0.0916952i \(0.970771\pi\)
\(884\) −698.718 + 655.320i −0.790405 + 0.741312i
\(885\) 0 0
\(886\) −146.740 + 39.3189i −0.165621 + 0.0443780i
\(887\) −57.8301 + 100.165i −0.0651974 + 0.112925i −0.896782 0.442474i \(-0.854101\pi\)
0.831584 + 0.555399i \(0.187434\pi\)
\(888\) 0 0
\(889\) 1248.92 + 1248.92i 1.40486 + 1.40486i
\(890\) 146.669 547.375i 0.164796 0.615028i
\(891\) 0 0
\(892\) 933.546 933.546i 1.04658 1.04658i
\(893\) 167.285 + 289.747i 0.187330 + 0.324464i
\(894\) 0 0
\(895\) −17.4647 65.1793i −0.0195137 0.0728260i
\(896\) 1385.47i 1.54629i
\(897\) 0 0
\(898\) −1478.12 −1.64601
\(899\) 345.789 92.6538i 0.384637 0.103063i
\(900\) 0 0
\(901\) 573.712 331.233i 0.636750 0.367628i
\(902\) −1574.10 1574.10i −1.74512 1.74512i
\(903\) 0 0
\(904\) 663.432 + 177.766i 0.733885 + 0.196644i
\(905\) 137.424 137.424i 0.151850 0.151850i
\(906\) 0 0
\(907\) −86.2343 49.7874i −0.0950765 0.0548924i 0.451708 0.892166i \(-0.350815\pi\)
−0.546784 + 0.837273i \(0.684148\pi\)
\(908\) −261.185 974.756i −0.287649 1.07352i
\(909\) 0 0
\(910\) 1163.29 + 2172.78i 1.27834 + 2.38767i
\(911\) 902.996 0.991214 0.495607 0.868547i \(-0.334946\pi\)
0.495607 + 0.868547i \(0.334946\pi\)
\(912\) 0 0
\(913\) 253.896 439.762i 0.278090 0.481667i
\(914\) 577.823 333.606i 0.632191 0.364996i
\(915\) 0 0
\(916\) 361.005 1347.29i 0.394111 1.47084i
\(917\) −116.567 31.2341i −0.127118 0.0340611i
\(918\) 0 0
\(919\) 481.991 + 834.834i 0.524474 + 0.908415i 0.999594 + 0.0284943i \(0.00907124\pi\)
−0.475120 + 0.879921i \(0.657595\pi\)
\(920\) 196.636 + 113.528i 0.213734 + 0.123400i
\(921\) 0 0
\(922\) 2702.15i 2.93074i
\(923\) −392.165 + 631.617i −0.424881 + 0.684308i
\(924\) 0 0
\(925\) −1187.14 + 318.093i −1.28339 + 0.343885i
\(926\) 376.540 652.186i 0.406630 0.704304i
\(927\) 0 0
\(928\) −1157.01 1157.01i −1.24678 1.24678i
\(929\) 123.886 462.347i 0.133354 0.497683i −0.866646 0.498924i \(-0.833729\pi\)
0.999999 + 0.00124161i \(0.000395217\pi\)
\(930\) 0 0
\(931\) 60.5911 60.5911i 0.0650818 0.0650818i
\(932\) 800.378 + 1386.30i 0.858775 + 1.48744i
\(933\) 0 0
\(934\) 474.985 + 1772.67i 0.508549 + 1.89793i
\(935\) 1113.14i 1.19052i
\(936\) 0 0
\(937\) 405.888 0.433178 0.216589 0.976263i \(-0.430507\pi\)
0.216589 + 0.976263i \(0.430507\pi\)
\(938\) −1494.00 + 400.317i −1.59275 + 0.426777i
\(939\) 0 0
\(940\) −1319.67 + 761.913i −1.40391 + 0.810546i
\(941\) 507.937 + 507.937i 0.539784 + 0.539784i 0.923465 0.383682i \(-0.125344\pi\)
−0.383682 + 0.923465i \(0.625344\pi\)
\(942\) 0 0
\(943\) 251.985 + 67.5193i 0.267217 + 0.0716005i
\(944\) −32.4121 + 32.4121i −0.0343348 + 0.0343348i
\(945\) 0 0
\(946\) −999.315 576.955i −1.05636 0.609889i
\(947\) 158.360 + 591.006i 0.167222 + 0.624083i 0.997746 + 0.0670995i \(0.0213745\pi\)
−0.830524 + 0.556983i \(0.811959\pi\)
\(948\) 0 0
\(949\) 890.829 476.942i 0.938702 0.502574i
\(950\) 1253.34 1.31931
\(951\) 0 0
\(952\) −303.351 + 525.419i −0.318646 + 0.551911i
\(953\) −884.041 + 510.401i −0.927640 + 0.535573i −0.886064 0.463562i \(-0.846571\pi\)
−0.0415756 + 0.999135i \(0.513238\pi\)
\(954\) 0 0
\(955\) 527.498 1968.65i 0.552354 2.06141i
\(956\) 2026.80 + 543.080i 2.12009 + 0.568075i
\(957\) 0 0
\(958\) −303.073 524.938i −0.316360 0.547952i
\(959\) 22.0742 + 12.7445i 0.0230179 + 0.0132894i
\(960\) 0 0
\(961\) 895.583i 0.931928i
\(962\) −309.208 1322.03i −0.321422 1.37425i
\(963\) 0 0
\(964\) −1781.06 + 477.234i −1.84758 + 0.495057i
\(965\) 149.390 258.751i 0.154808 0.268135i
\(966\) 0 0
\(967\) −100.629 100.629i −0.104063 0.104063i 0.653158 0.757221i \(-0.273444\pi\)
−0.757221 + 0.653158i \(0.773444\pi\)
\(968\) −25.0676 + 93.5536i −0.0258963 + 0.0966463i
\(969\) 0 0
\(970\) 1972.20 1972.20i 2.03319 2.03319i
\(971\) −746.211 1292.47i −0.768497 1.33108i −0.938378 0.345611i \(-0.887672\pi\)
0.169881 0.985465i \(-0.445662\pi\)
\(972\) 0 0
\(973\) 71.0343 + 265.104i 0.0730055 + 0.272460i
\(974\) 2284.54i 2.34552i
\(975\) 0 0
\(976\) 276.334 0.283130
\(977\) 474.362 127.105i 0.485529 0.130097i −0.00774697 0.999970i \(-0.502466\pi\)
0.493276 + 0.869873i \(0.335799\pi\)
\(978\) 0 0
\(979\) −227.817 + 131.530i −0.232703 + 0.134351i
\(980\) 275.967 + 275.967i 0.281599 + 0.281599i
\(981\) 0 0
\(982\) −2977.61 797.849i −3.03219 0.812473i
\(983\) 315.927 315.927i 0.321391 0.321391i −0.527909 0.849301i \(-0.677024\pi\)
0.849301 + 0.527909i \(0.177024\pi\)
\(984\) 0 0
\(985\) 124.785 + 72.0446i 0.126685 + 0.0731417i
\(986\) 440.382 + 1643.53i 0.446635 + 1.66686i
\(987\) 0 0
\(988\) −26.7679 + 835.162i −0.0270930 + 0.845306i
\(989\) 135.225 0.136729
\(990\) 0 0
\(991\) −840.227 + 1455.32i −0.847857 + 1.46853i 0.0352592 + 0.999378i \(0.488774\pi\)
−0.883117 + 0.469154i \(0.844559\pi\)
\(992\) 258.944 149.501i 0.261032 0.150707i
\(993\) 0 0
\(994\) −355.303 + 1326.01i −0.357448 + 1.33401i
\(995\) −1001.03 268.224i −1.00606 0.269572i
\(996\) 0 0
\(997\) −186.953 323.812i −0.187516 0.324787i 0.756906 0.653524i \(-0.226710\pi\)
−0.944421 + 0.328737i \(0.893377\pi\)
\(998\) −1534.90 886.172i −1.53797 0.887948i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.bd.d.46.3 12
3.2 odd 2 39.3.l.b.7.1 12
13.2 odd 12 inner 117.3.bd.d.28.3 12
39.2 even 12 39.3.l.b.28.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.3.l.b.7.1 12 3.2 odd 2
39.3.l.b.28.1 yes 12 39.2 even 12
117.3.bd.d.28.3 12 13.2 odd 12 inner
117.3.bd.d.46.3 12 1.1 even 1 trivial