Properties

Label 39.3.l.b.28.1
Level $39$
Weight $3$
Character 39.28
Analytic conductor $1.063$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,3,Mod(7,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 39.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06267303101\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 8 x^{9} + 178 x^{8} - 620 x^{7} + 1088 x^{6} + 640 x^{5} + 7921 x^{4} + \cdots + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.1
Root \(2.24591 - 2.24591i\) of defining polynomial
Character \(\chi\) \(=\) 39.28
Dual form 39.3.l.b.7.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.06798 - 0.822062i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(5.27259 + 3.04413i) q^{4} +(-5.58467 + 5.58467i) q^{5} +(1.42385 + 5.31389i) q^{6} +(-7.30003 + 1.95604i) q^{7} +(-4.69005 - 4.69005i) q^{8} +(-1.50000 + 2.59808i) q^{9} +(21.7246 - 12.5427i) q^{10} +(3.01391 - 11.2481i) q^{11} -10.5452i q^{12} +(-12.4428 + 3.76518i) q^{13} +24.0043 q^{14} +(13.2135 + 3.54054i) q^{15} +(-1.64307 - 2.84588i) q^{16} +(-10.4817 - 6.05163i) q^{17} +(6.73774 - 6.73774i) q^{18} +(2.73246 + 10.1977i) q^{19} +(-46.4461 + 12.4452i) q^{20} +(9.25606 + 9.25606i) q^{21} +(-18.4932 + 32.0311i) q^{22} +(-3.75368 + 2.16719i) q^{23} +(-2.97337 + 11.0968i) q^{24} -37.3770i q^{25} +(41.2694 - 1.32273i) q^{26} +5.19615 q^{27} +(-44.4444 - 11.9089i) q^{28} +(22.1306 + 38.3313i) q^{29} +(-37.6280 - 21.7246i) q^{30} +(-5.71913 + 5.71913i) q^{31} +(9.56812 + 35.7087i) q^{32} +(-19.4822 + 5.22024i) q^{33} +(27.1829 + 27.1829i) q^{34} +(29.8444 - 51.6920i) q^{35} +(-15.8178 + 9.13239i) q^{36} +(8.51041 - 31.7613i) q^{37} -33.5325i q^{38} +(16.4236 + 15.4035i) q^{39} +52.3847 q^{40} +(-58.1365 - 15.5776i) q^{41} +(-20.7883 - 36.0064i) q^{42} +(27.0185 + 15.5991i) q^{43} +(50.1316 - 50.1316i) q^{44} +(-6.13239 - 22.8864i) q^{45} +(13.2978 - 3.56313i) q^{46} +(22.4086 + 22.4086i) q^{47} +(-2.84588 + 4.92921i) q^{48} +(7.02906 - 4.05823i) q^{49} +(-30.7262 + 114.672i) q^{50} +20.9635i q^{51} +(-77.0675 - 18.0253i) q^{52} -54.7345 q^{53} +(-15.9417 - 4.27156i) q^{54} +(45.9850 + 79.6483i) q^{55} +(43.4114 + 25.0636i) q^{56} +(12.9301 - 12.9301i) q^{57} +(-36.3854 - 135.792i) q^{58} +(-13.4735 + 3.61020i) q^{59} +(58.8913 + 58.8913i) q^{60} +(-42.0454 + 72.8249i) q^{61} +(22.2476 - 12.8447i) q^{62} +(5.86811 - 21.9001i) q^{63} -104.274i q^{64} +(48.4616 - 90.5162i) q^{65} +64.0623 q^{66} +(62.2390 + 16.6769i) q^{67} +(-36.8439 - 63.8155i) q^{68} +(6.50157 + 3.75368i) q^{69} +(-134.056 + 134.056i) q^{70} +(-14.8017 - 55.2406i) q^{71} +(19.2202 - 5.15003i) q^{72} +(-54.9623 - 54.9623i) q^{73} +(-52.2194 + 90.4467i) q^{74} +(-56.0655 + 32.3694i) q^{75} +(-16.6359 + 62.0861i) q^{76} +88.0064i q^{77} +(-37.7245 - 60.7586i) q^{78} -45.0309 q^{79} +(25.0693 + 6.71729i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(165.555 + 95.5835i) q^{82} +(-30.8346 + 30.8346i) q^{83} +(20.6267 + 76.9800i) q^{84} +(92.3333 - 24.7406i) q^{85} +(-70.0685 - 70.0685i) q^{86} +(38.3313 - 66.3917i) q^{87} +(-66.8893 + 38.6186i) q^{88} +(5.84679 - 21.8205i) q^{89} +75.2561i q^{90} +(83.4680 - 51.8245i) q^{91} -26.3888 q^{92} +(13.5316 + 3.62578i) q^{93} +(-50.3279 - 87.1704i) q^{94} +(-72.2104 - 41.6907i) q^{95} +(45.2768 - 45.2768i) q^{96} +(28.7767 + 107.396i) q^{97} +(-24.9011 + 6.67223i) q^{98} +(24.7024 + 24.7024i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 12 q^{4} + 4 q^{5} + 6 q^{6} - 32 q^{7} - 24 q^{8} - 18 q^{9} + 30 q^{10} + 22 q^{11} + 2 q^{13} + 92 q^{14} + 52 q^{16} - 6 q^{17} + 12 q^{18} + 4 q^{19} - 208 q^{20} + 54 q^{21} - 98 q^{22}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.06798 0.822062i −1.53399 0.411031i −0.609670 0.792655i \(-0.708698\pi\)
−0.924317 + 0.381624i \(0.875365\pi\)
\(3\) −0.866025 1.50000i −0.288675 0.500000i
\(4\) 5.27259 + 3.04413i 1.31815 + 0.761032i
\(5\) −5.58467 + 5.58467i −1.11693 + 1.11693i −0.124744 + 0.992189i \(0.539811\pi\)
−0.992189 + 0.124744i \(0.960189\pi\)
\(6\) 1.42385 + 5.31389i 0.237309 + 0.885648i
\(7\) −7.30003 + 1.95604i −1.04286 + 0.279434i −0.739299 0.673378i \(-0.764843\pi\)
−0.303562 + 0.952812i \(0.598176\pi\)
\(8\) −4.69005 4.69005i −0.586256 0.586256i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) 21.7246 12.5427i 2.17246 1.25427i
\(11\) 3.01391 11.2481i 0.273992 1.02255i −0.682523 0.730865i \(-0.739117\pi\)
0.956514 0.291686i \(-0.0942162\pi\)
\(12\) 10.5452i 0.878764i
\(13\) −12.4428 + 3.76518i −0.957139 + 0.289629i
\(14\) 24.0043 1.71459
\(15\) 13.2135 + 3.54054i 0.880897 + 0.236036i
\(16\) −1.64307 2.84588i −0.102692 0.177868i
\(17\) −10.4817 6.05163i −0.616573 0.355978i 0.158961 0.987285i \(-0.449186\pi\)
−0.775533 + 0.631307i \(0.782519\pi\)
\(18\) 6.73774 6.73774i 0.374319 0.374319i
\(19\) 2.73246 + 10.1977i 0.143814 + 0.536720i 0.999805 + 0.0197301i \(0.00628070\pi\)
−0.855992 + 0.516989i \(0.827053\pi\)
\(20\) −46.4461 + 12.4452i −2.32230 + 0.622259i
\(21\) 9.25606 + 9.25606i 0.440765 + 0.440765i
\(22\) −18.4932 + 32.0311i −0.840599 + 1.45596i
\(23\) −3.75368 + 2.16719i −0.163204 + 0.0942256i −0.579377 0.815060i \(-0.696704\pi\)
0.416174 + 0.909285i \(0.363371\pi\)
\(24\) −2.97337 + 11.0968i −0.123891 + 0.462366i
\(25\) 37.3770i 1.49508i
\(26\) 41.2694 1.32273i 1.58729 0.0508743i
\(27\) 5.19615 0.192450
\(28\) −44.4444 11.9089i −1.58730 0.425316i
\(29\) 22.1306 + 38.3313i 0.763123 + 1.32177i 0.941233 + 0.337757i \(0.109668\pi\)
−0.178111 + 0.984010i \(0.556998\pi\)
\(30\) −37.6280 21.7246i −1.25427 0.724152i
\(31\) −5.71913 + 5.71913i −0.184488 + 0.184488i −0.793308 0.608820i \(-0.791643\pi\)
0.608820 + 0.793308i \(0.291643\pi\)
\(32\) 9.56812 + 35.7087i 0.299004 + 1.11590i
\(33\) −19.4822 + 5.22024i −0.590370 + 0.158189i
\(34\) 27.1829 + 27.1829i 0.799497 + 0.799497i
\(35\) 29.8444 51.6920i 0.852697 1.47691i
\(36\) −15.8178 + 9.13239i −0.439382 + 0.253677i
\(37\) 8.51041 31.7613i 0.230011 0.858413i −0.750324 0.661071i \(-0.770102\pi\)
0.980335 0.197342i \(-0.0632309\pi\)
\(38\) 33.5325i 0.882433i
\(39\) 16.4236 + 15.4035i 0.421117 + 0.394961i
\(40\) 52.3847 1.30962
\(41\) −58.1365 15.5776i −1.41796 0.379942i −0.533202 0.845988i \(-0.679011\pi\)
−0.884760 + 0.466046i \(0.845678\pi\)
\(42\) −20.7883 36.0064i −0.494960 0.857296i
\(43\) 27.0185 + 15.5991i 0.628336 + 0.362770i 0.780107 0.625646i \(-0.215164\pi\)
−0.151771 + 0.988416i \(0.548498\pi\)
\(44\) 50.1316 50.1316i 1.13936 1.13936i
\(45\) −6.13239 22.8864i −0.136275 0.508586i
\(46\) 13.2978 3.56313i 0.289082 0.0774592i
\(47\) 22.4086 + 22.4086i 0.476779 + 0.476779i 0.904100 0.427321i \(-0.140542\pi\)
−0.427321 + 0.904100i \(0.640542\pi\)
\(48\) −2.84588 + 4.92921i −0.0592892 + 0.102692i
\(49\) 7.02906 4.05823i 0.143450 0.0828210i
\(50\) −30.7262 + 114.672i −0.614524 + 2.29343i
\(51\) 20.9635i 0.411048i
\(52\) −77.0675 18.0253i −1.48207 0.346640i
\(53\) −54.7345 −1.03273 −0.516363 0.856370i \(-0.672714\pi\)
−0.516363 + 0.856370i \(0.672714\pi\)
\(54\) −15.9417 4.27156i −0.295216 0.0791029i
\(55\) 45.9850 + 79.6483i 0.836090 + 1.44815i
\(56\) 43.4114 + 25.0636i 0.775203 + 0.447564i
\(57\) 12.9301 12.9301i 0.226844 0.226844i
\(58\) −36.3854 135.792i −0.627334 2.34124i
\(59\) −13.4735 + 3.61020i −0.228364 + 0.0611899i −0.371186 0.928558i \(-0.621049\pi\)
0.142822 + 0.989748i \(0.454382\pi\)
\(60\) 58.8913 + 58.8913i 0.981521 + 0.981521i
\(61\) −42.0454 + 72.8249i −0.689270 + 1.19385i 0.282805 + 0.959177i \(0.408735\pi\)
−0.972074 + 0.234673i \(0.924598\pi\)
\(62\) 22.2476 12.8447i 0.358832 0.207172i
\(63\) 5.86811 21.9001i 0.0931446 0.347620i
\(64\) 104.274i 1.62929i
\(65\) 48.4616 90.5162i 0.745564 1.39256i
\(66\) 64.0623 0.970641
\(67\) 62.2390 + 16.6769i 0.928940 + 0.248909i 0.691403 0.722470i \(-0.256993\pi\)
0.237537 + 0.971378i \(0.423660\pi\)
\(68\) −36.8439 63.8155i −0.541822 0.938463i
\(69\) 6.50157 + 3.75368i 0.0942256 + 0.0544012i
\(70\) −134.056 + 134.056i −1.91508 + 1.91508i
\(71\) −14.8017 55.2406i −0.208474 0.778036i −0.988362 0.152117i \(-0.951391\pi\)
0.779888 0.625919i \(-0.215276\pi\)
\(72\) 19.2202 5.15003i 0.266947 0.0715282i
\(73\) −54.9623 54.9623i −0.752909 0.752909i 0.222113 0.975021i \(-0.428705\pi\)
−0.975021 + 0.222113i \(0.928705\pi\)
\(74\) −52.2194 + 90.4467i −0.705668 + 1.22225i
\(75\) −56.0655 + 32.3694i −0.747540 + 0.431592i
\(76\) −16.6359 + 62.0861i −0.218894 + 0.816922i
\(77\) 88.0064i 1.14294i
\(78\) −37.7245 60.7586i −0.483647 0.778957i
\(79\) −45.0309 −0.570012 −0.285006 0.958526i \(-0.591996\pi\)
−0.285006 + 0.958526i \(0.591996\pi\)
\(80\) 25.0693 + 6.71729i 0.313366 + 0.0839662i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 165.555 + 95.5835i 2.01897 + 1.16565i
\(83\) −30.8346 + 30.8346i −0.371501 + 0.371501i −0.868024 0.496523i \(-0.834610\pi\)
0.496523 + 0.868024i \(0.334610\pi\)
\(84\) 20.6267 + 76.9800i 0.245556 + 0.916429i
\(85\) 92.3333 24.7406i 1.08627 0.291066i
\(86\) −70.0685 70.0685i −0.814750 0.814750i
\(87\) 38.3313 66.3917i 0.440589 0.763123i
\(88\) −66.8893 + 38.6186i −0.760106 + 0.438847i
\(89\) 5.84679 21.8205i 0.0656942 0.245174i −0.925268 0.379313i \(-0.876160\pi\)
0.990963 + 0.134139i \(0.0428269\pi\)
\(90\) 75.2561i 0.836179i
\(91\) 83.4680 51.8245i 0.917231 0.569500i
\(92\) −26.3888 −0.286835
\(93\) 13.5316 + 3.62578i 0.145501 + 0.0389869i
\(94\) −50.3279 87.1704i −0.535403 0.927345i
\(95\) −72.2104 41.6907i −0.760110 0.438850i
\(96\) 45.2768 45.2768i 0.471634 0.471634i
\(97\) 28.7767 + 107.396i 0.296667 + 1.10718i 0.939884 + 0.341493i \(0.110933\pi\)
−0.643217 + 0.765684i \(0.722401\pi\)
\(98\) −24.9011 + 6.67223i −0.254093 + 0.0680840i
\(99\) 24.7024 + 24.7024i 0.249520 + 0.249520i
\(100\) 113.780 197.073i 1.13780 1.97073i
\(101\) 26.0181 15.0216i 0.257605 0.148728i −0.365637 0.930758i \(-0.619149\pi\)
0.623242 + 0.782029i \(0.285815\pi\)
\(102\) 17.2333 64.3154i 0.168954 0.630543i
\(103\) 122.717i 1.19143i −0.803197 0.595713i \(-0.796869\pi\)
0.803197 0.595713i \(-0.203131\pi\)
\(104\) 76.0163 + 40.6985i 0.730926 + 0.391332i
\(105\) −103.384 −0.984610
\(106\) 167.924 + 44.9951i 1.58419 + 0.424482i
\(107\) 0.253390 + 0.438884i 0.00236813 + 0.00410172i 0.867207 0.497948i \(-0.165913\pi\)
−0.864839 + 0.502049i \(0.832580\pi\)
\(108\) 27.3972 + 15.8178i 0.253677 + 0.146461i
\(109\) −29.9213 + 29.9213i −0.274507 + 0.274507i −0.830912 0.556404i \(-0.812181\pi\)
0.556404 + 0.830912i \(0.312181\pi\)
\(110\) −75.6049 282.161i −0.687318 2.56510i
\(111\) −55.0121 + 14.7405i −0.495605 + 0.132797i
\(112\) 17.5611 + 17.5611i 0.156796 + 0.156796i
\(113\) −51.7762 + 89.6790i −0.458197 + 0.793620i −0.998866 0.0476155i \(-0.984838\pi\)
0.540669 + 0.841235i \(0.318171\pi\)
\(114\) −50.2987 + 29.0400i −0.441217 + 0.254736i
\(115\) 8.86003 33.0661i 0.0770437 0.287531i
\(116\) 269.473i 2.32304i
\(117\) 8.88198 37.9751i 0.0759144 0.324574i
\(118\) 44.3041 0.375458
\(119\) 88.3541 + 23.6744i 0.742472 + 0.198945i
\(120\) −45.3665 78.5771i −0.378054 0.654809i
\(121\) −12.6460 7.30120i −0.104513 0.0603405i
\(122\) 188.861 188.861i 1.54804 1.54804i
\(123\) 26.9812 + 100.695i 0.219360 + 0.818661i
\(124\) −47.5644 + 12.7448i −0.383583 + 0.102781i
\(125\) 69.1213 + 69.1213i 0.552970 + 0.552970i
\(126\) −36.0064 + 62.3650i −0.285765 + 0.494960i
\(127\) −202.395 + 116.853i −1.59366 + 0.920100i −0.600989 + 0.799257i \(0.705226\pi\)
−0.992672 + 0.120843i \(0.961440\pi\)
\(128\) −47.4475 + 177.077i −0.370684 + 1.38341i
\(129\) 54.0369i 0.418891i
\(130\) −223.089 + 237.863i −1.71607 + 1.82972i
\(131\) −15.9680 −0.121893 −0.0609467 0.998141i \(-0.519412\pi\)
−0.0609467 + 0.998141i \(0.519412\pi\)
\(132\) −118.613 31.7822i −0.898581 0.240774i
\(133\) −39.8940 69.0985i −0.299955 0.519537i
\(134\) −177.238 102.329i −1.32267 0.763646i
\(135\) −29.0188 + 29.0188i −0.214954 + 0.214954i
\(136\) 20.7774 + 77.5423i 0.152775 + 0.570164i
\(137\) 3.25775 0.872910i 0.0237792 0.00637161i −0.246910 0.969038i \(-0.579415\pi\)
0.270689 + 0.962667i \(0.412748\pi\)
\(138\) −16.8609 16.8609i −0.122180 0.122180i
\(139\) −18.1577 + 31.4501i −0.130631 + 0.226260i −0.923920 0.382586i \(-0.875034\pi\)
0.793289 + 0.608845i \(0.208367\pi\)
\(140\) 314.714 181.700i 2.24796 1.29786i
\(141\) 14.2065 53.0194i 0.100755 0.376024i
\(142\) 181.645i 1.27919i
\(143\) 4.84950 + 151.305i 0.0339126 + 1.05808i
\(144\) 9.85842 0.0684612
\(145\) −337.659 90.4755i −2.32868 0.623969i
\(146\) 123.441 + 213.805i 0.845484 + 1.46442i
\(147\) −12.1747 7.02906i −0.0828210 0.0478167i
\(148\) 141.557 141.557i 0.956468 0.956468i
\(149\) 37.2135 + 138.883i 0.249755 + 0.932099i 0.970934 + 0.239349i \(0.0769341\pi\)
−0.721178 + 0.692749i \(0.756399\pi\)
\(150\) 198.617 53.2193i 1.32411 0.354795i
\(151\) −120.042 120.042i −0.794982 0.794982i 0.187318 0.982299i \(-0.440021\pi\)
−0.982299 + 0.187318i \(0.940021\pi\)
\(152\) 35.0122 60.6430i 0.230344 0.398967i
\(153\) 31.4452 18.1549i 0.205524 0.118659i
\(154\) 72.3467 270.002i 0.469784 1.75326i
\(155\) 63.8788i 0.412121i
\(156\) 39.7045 + 131.212i 0.254516 + 0.841100i
\(157\) 15.4414 0.0983529 0.0491764 0.998790i \(-0.484340\pi\)
0.0491764 + 0.998790i \(0.484340\pi\)
\(158\) 138.154 + 37.0182i 0.874391 + 0.234292i
\(159\) 47.4014 + 82.1017i 0.298122 + 0.516363i
\(160\) −252.856 145.986i −1.58035 0.912415i
\(161\) 23.1629 23.1629i 0.143869 0.143869i
\(162\) 7.39855 + 27.6118i 0.0456701 + 0.170443i
\(163\) 266.414 71.3853i 1.63444 0.437947i 0.679242 0.733914i \(-0.262309\pi\)
0.955198 + 0.295967i \(0.0956420\pi\)
\(164\) −259.109 259.109i −1.57993 1.57993i
\(165\) 79.6483 137.955i 0.482717 0.836090i
\(166\) 119.948 69.2518i 0.722576 0.417180i
\(167\) 66.4855 248.127i 0.398116 1.48579i −0.418290 0.908313i \(-0.637370\pi\)
0.816407 0.577477i \(-0.195963\pi\)
\(168\) 86.8228i 0.516802i
\(169\) 140.647 93.6988i 0.832230 0.554431i
\(170\) −303.615 −1.78597
\(171\) −30.5930 8.19737i −0.178907 0.0479379i
\(172\) 94.9714 + 164.495i 0.552160 + 0.956368i
\(173\) 217.286 + 125.450i 1.25599 + 0.725147i 0.972293 0.233767i \(-0.0751052\pi\)
0.283698 + 0.958914i \(0.408439\pi\)
\(174\) −172.177 + 172.177i −0.989525 + 0.989525i
\(175\) 73.1107 + 272.853i 0.417776 + 1.55916i
\(176\) −36.9627 + 9.90412i −0.210015 + 0.0562734i
\(177\) 17.0837 + 17.0837i 0.0965179 + 0.0965179i
\(178\) −35.8756 + 62.1383i −0.201548 + 0.349092i
\(179\) 7.39919 4.27193i 0.0413363 0.0238655i −0.479189 0.877711i \(-0.659069\pi\)
0.520526 + 0.853846i \(0.325736\pi\)
\(180\) 37.3356 139.338i 0.207420 0.774101i
\(181\) 24.6075i 0.135953i 0.997687 + 0.0679764i \(0.0216543\pi\)
−0.997687 + 0.0679764i \(0.978346\pi\)
\(182\) −298.681 + 90.3805i −1.64110 + 0.496596i
\(183\) 145.650 0.795900
\(184\) 27.7692 + 7.44073i 0.150919 + 0.0404387i
\(185\) 129.848 + 224.904i 0.701883 + 1.21570i
\(186\) −38.5340 22.2476i −0.207172 0.119611i
\(187\) −99.6601 + 99.6601i −0.532941 + 0.532941i
\(188\) 49.9367 + 186.366i 0.265621 + 0.991310i
\(189\) −37.9320 + 10.1639i −0.200699 + 0.0537770i
\(190\) 187.268 + 187.268i 0.985619 + 0.985619i
\(191\) 129.028 223.482i 0.675537 1.17006i −0.300775 0.953695i \(-0.597245\pi\)
0.976312 0.216369i \(-0.0694214\pi\)
\(192\) −156.412 + 90.3043i −0.814644 + 0.470335i
\(193\) −9.79118 + 36.5412i −0.0507315 + 0.189333i −0.986641 0.162907i \(-0.947913\pi\)
0.935910 + 0.352239i \(0.114580\pi\)
\(194\) 353.145i 1.82034i
\(195\) −177.743 + 5.69687i −0.911504 + 0.0292147i
\(196\) 49.4151 0.252118
\(197\) −17.6223 4.72189i −0.0894534 0.0239690i 0.213815 0.976874i \(-0.431411\pi\)
−0.303268 + 0.952905i \(0.598078\pi\)
\(198\) −55.4796 96.0934i −0.280200 0.485320i
\(199\) −113.637 65.6084i −0.571040 0.329690i 0.186524 0.982450i \(-0.440278\pi\)
−0.757565 + 0.652760i \(0.773611\pi\)
\(200\) −175.300 + 175.300i −0.876499 + 0.876499i
\(201\) −28.8852 107.801i −0.143707 0.536324i
\(202\) −92.1716 + 24.6973i −0.456295 + 0.122264i
\(203\) −236.531 236.531i −1.16518 1.16518i
\(204\) −63.8155 + 110.532i −0.312821 + 0.541822i
\(205\) 411.668 237.677i 2.00814 1.15940i
\(206\) −100.881 + 376.493i −0.489713 + 1.82763i
\(207\) 13.0031i 0.0628171i
\(208\) 31.1597 + 29.2243i 0.149806 + 0.140501i
\(209\) 122.939 0.588227
\(210\) 317.180 + 84.9880i 1.51038 + 0.404705i
\(211\) −139.029 240.806i −0.658907 1.14126i −0.980899 0.194518i \(-0.937686\pi\)
0.321992 0.946742i \(-0.395648\pi\)
\(212\) −288.592 166.619i −1.36128 0.785938i
\(213\) −70.0422 + 70.0422i −0.328837 + 0.328837i
\(214\) −0.416604 1.55479i −0.00194675 0.00726537i
\(215\) −238.005 + 63.7732i −1.10700 + 0.296620i
\(216\) −24.3702 24.3702i −0.112825 0.112825i
\(217\) 30.5630 52.9366i 0.140843 0.243947i
\(218\) 116.395 67.2006i 0.533921 0.308260i
\(219\) −34.8447 + 130.042i −0.159108 + 0.593800i
\(220\) 559.937i 2.54517i
\(221\) 153.208 + 35.8336i 0.693247 + 0.162143i
\(222\) 180.893 0.814835
\(223\) 209.460 + 56.1247i 0.939283 + 0.251680i 0.695809 0.718227i \(-0.255046\pi\)
0.243474 + 0.969907i \(0.421713\pi\)
\(224\) −139.695 241.959i −0.623639 1.08017i
\(225\) 97.1082 + 56.0655i 0.431592 + 0.249180i
\(226\) 232.570 232.570i 1.02907 1.02907i
\(227\) −42.8998 160.104i −0.188986 0.705305i −0.993742 0.111699i \(-0.964371\pi\)
0.804756 0.593605i \(-0.202296\pi\)
\(228\) 107.536 28.8142i 0.471650 0.126378i
\(229\) 161.998 + 161.998i 0.707415 + 0.707415i 0.965991 0.258576i \(-0.0832533\pi\)
−0.258576 + 0.965991i \(0.583253\pi\)
\(230\) −54.3647 + 94.1624i −0.236368 + 0.409402i
\(231\) 132.010 76.2158i 0.571470 0.329938i
\(232\) 75.9821 283.569i 0.327509 1.22228i
\(233\) 262.925i 1.12843i 0.825626 + 0.564217i \(0.190822\pi\)
−0.825626 + 0.564217i \(0.809178\pi\)
\(234\) −58.4676 + 109.205i −0.249862 + 0.466689i
\(235\) −250.289 −1.06506
\(236\) −82.0300 21.9799i −0.347585 0.0931350i
\(237\) 38.9979 + 67.5464i 0.164548 + 0.285006i
\(238\) −251.606 145.265i −1.05717 0.610357i
\(239\) −243.702 + 243.702i −1.01967 + 1.01967i −0.0198720 + 0.999803i \(0.506326\pi\)
−0.999803 + 0.0198720i \(0.993674\pi\)
\(240\) −11.6347 43.4213i −0.0484779 0.180922i
\(241\) −292.541 + 78.3860i −1.21386 + 0.325253i −0.808276 0.588804i \(-0.799599\pi\)
−0.405586 + 0.914057i \(0.632932\pi\)
\(242\) 32.7957 + 32.7957i 0.135520 + 0.135520i
\(243\) −7.79423 + 13.5000i −0.0320750 + 0.0555556i
\(244\) −443.377 + 255.984i −1.81712 + 1.04911i
\(245\) −16.5911 + 61.9188i −0.0677188 + 0.252730i
\(246\) 331.111i 1.34598i
\(247\) −72.3955 116.599i −0.293099 0.472063i
\(248\) 53.6460 0.216314
\(249\) 72.9554 + 19.5483i 0.292994 + 0.0785074i
\(250\) −155.240 268.884i −0.620962 1.07554i
\(251\) 178.992 + 103.341i 0.713115 + 0.411717i 0.812213 0.583360i \(-0.198262\pi\)
−0.0990983 + 0.995078i \(0.531596\pi\)
\(252\) 97.6068 97.6068i 0.387329 0.387329i
\(253\) 13.0634 + 48.7533i 0.0516340 + 0.192701i
\(254\) 717.003 192.120i 2.82285 0.756379i
\(255\) −117.074 117.074i −0.459113 0.459113i
\(256\) 82.5869 143.045i 0.322605 0.558768i
\(257\) −149.916 + 86.5538i −0.583329 + 0.336785i −0.762455 0.647041i \(-0.776006\pi\)
0.179126 + 0.983826i \(0.442673\pi\)
\(258\) −44.4217 + 165.784i −0.172177 + 0.642573i
\(259\) 248.505i 0.959478i
\(260\) 531.061 329.731i 2.04254 1.26820i
\(261\) −132.783 −0.508749
\(262\) 48.9896 + 13.1267i 0.186983 + 0.0501020i
\(263\) −72.7354 125.981i −0.276561 0.479017i 0.693967 0.720007i \(-0.255861\pi\)
−0.970528 + 0.240990i \(0.922528\pi\)
\(264\) 115.856 + 66.8893i 0.438847 + 0.253369i
\(265\) 305.674 305.674i 1.15349 1.15349i
\(266\) 65.5907 + 244.788i 0.246582 + 0.920255i
\(267\) −37.7942 + 10.1269i −0.141551 + 0.0379286i
\(268\) 277.394 + 277.394i 1.03505 + 1.03505i
\(269\) 45.7415 79.2267i 0.170043 0.294523i −0.768392 0.639980i \(-0.778943\pi\)
0.938435 + 0.345457i \(0.112276\pi\)
\(270\) 112.884 65.1737i 0.418089 0.241384i
\(271\) −98.2045 + 366.504i −0.362378 + 1.35241i 0.508562 + 0.861025i \(0.330177\pi\)
−0.870940 + 0.491389i \(0.836489\pi\)
\(272\) 39.7730i 0.146224i
\(273\) −150.022 80.3206i −0.549532 0.294215i
\(274\) −10.7123 −0.0390959
\(275\) −420.418 112.651i −1.52879 0.409639i
\(276\) 22.8534 + 39.5832i 0.0828021 + 0.143417i
\(277\) 212.035 + 122.418i 0.765468 + 0.441943i 0.831255 0.555891i \(-0.187623\pi\)
−0.0657877 + 0.997834i \(0.520956\pi\)
\(278\) 81.5614 81.5614i 0.293386 0.293386i
\(279\) −6.28004 23.4374i −0.0225091 0.0840051i
\(280\) −382.410 + 102.466i −1.36575 + 0.365951i
\(281\) −307.450 307.450i −1.09413 1.09413i −0.995083 0.0990449i \(-0.968421\pi\)
−0.0990449 0.995083i \(-0.531579\pi\)
\(282\) −87.1704 + 150.984i −0.309115 + 0.535403i
\(283\) −398.777 + 230.234i −1.40911 + 0.813548i −0.995302 0.0968187i \(-0.969133\pi\)
−0.413804 + 0.910366i \(0.635800\pi\)
\(284\) 90.1164 336.319i 0.317311 1.18422i
\(285\) 144.421i 0.506740i
\(286\) 109.504 468.187i 0.382881 1.63702i
\(287\) 454.868 1.58491
\(288\) −107.126 28.7044i −0.371966 0.0996679i
\(289\) −71.2555 123.418i −0.246559 0.427053i
\(290\) 961.553 + 555.153i 3.31570 + 1.91432i
\(291\) 136.173 136.173i 0.467948 0.467948i
\(292\) −122.481 457.106i −0.419456 1.56543i
\(293\) −146.553 + 39.2688i −0.500181 + 0.134023i −0.500084 0.865977i \(-0.666698\pi\)
−9.70470e−5 1.00000i \(0.500031\pi\)
\(294\) 31.5733 + 31.5733i 0.107392 + 0.107392i
\(295\) 55.0830 95.4066i 0.186722 0.323412i
\(296\) −188.876 + 109.048i −0.638095 + 0.368404i
\(297\) 15.6607 58.4466i 0.0527297 0.196790i
\(298\) 456.680i 1.53248i
\(299\) 38.5465 41.0992i 0.128918 0.137456i
\(300\) −394.147 −1.31382
\(301\) −227.748 61.0249i −0.756637 0.202740i
\(302\) 269.605 + 466.969i 0.892730 + 1.54625i
\(303\) −45.0647 26.0181i −0.148728 0.0858683i
\(304\) 24.5317 24.5317i 0.0806965 0.0806965i
\(305\) −171.893 641.512i −0.563583 2.10332i
\(306\) −111.398 + 29.8489i −0.364044 + 0.0975454i
\(307\) 326.284 + 326.284i 1.06281 + 1.06281i 0.997890 + 0.0649236i \(0.0206804\pi\)
0.0649236 + 0.997890i \(0.479320\pi\)
\(308\) −267.903 + 464.021i −0.869815 + 1.50656i
\(309\) −184.075 + 106.276i −0.595713 + 0.343935i
\(310\) −52.5123 + 195.979i −0.169395 + 0.632189i
\(311\) 0.599099i 0.00192636i 1.00000 0.000963181i \(0.000306590\pi\)
−1.00000 0.000963181i \(0.999693\pi\)
\(312\) −4.78428 149.270i −0.0153342 0.478431i
\(313\) −20.6721 −0.0660452 −0.0330226 0.999455i \(-0.510513\pi\)
−0.0330226 + 0.999455i \(0.510513\pi\)
\(314\) −47.3738 12.6938i −0.150872 0.0404261i
\(315\) 89.5332 + 155.076i 0.284232 + 0.492305i
\(316\) −237.429 137.080i −0.751359 0.433797i
\(317\) −180.500 + 180.500i −0.569402 + 0.569402i −0.931961 0.362559i \(-0.881903\pi\)
0.362559 + 0.931961i \(0.381903\pi\)
\(318\) −77.9338 290.853i −0.245075 0.914632i
\(319\) 497.852 133.399i 1.56066 0.418178i
\(320\) 582.338 + 582.338i 1.81981 + 1.81981i
\(321\) 0.438884 0.760170i 0.00136724 0.00236813i
\(322\) −90.1044 + 52.0218i −0.279827 + 0.161558i
\(323\) 33.0717 123.425i 0.102389 0.382121i
\(324\) 54.7943i 0.169118i
\(325\) 140.731 + 465.074i 0.433019 + 1.43100i
\(326\) −876.034 −2.68722
\(327\) 70.7945 + 18.9693i 0.216497 + 0.0580102i
\(328\) 199.603 + 345.723i 0.608546 + 1.05403i
\(329\) −207.416 119.752i −0.630443 0.363986i
\(330\) −357.766 + 357.766i −1.08414 + 1.08414i
\(331\) 36.2685 + 135.356i 0.109572 + 0.408930i 0.998824 0.0484891i \(-0.0154406\pi\)
−0.889251 + 0.457419i \(0.848774\pi\)
\(332\) −256.442 + 68.7135i −0.772417 + 0.206968i
\(333\) 69.7526 + 69.7526i 0.209467 + 0.209467i
\(334\) −407.951 + 706.593i −1.22141 + 2.11555i
\(335\) −440.719 + 254.449i −1.31558 + 0.759549i
\(336\) 11.1333 41.5500i 0.0331348 0.123661i
\(337\) 294.586i 0.874142i −0.899427 0.437071i \(-0.856016\pi\)
0.899427 0.437071i \(-0.143984\pi\)
\(338\) −508.527 + 171.845i −1.50452 + 0.508418i
\(339\) 179.358 0.529080
\(340\) 562.149 + 150.627i 1.65338 + 0.443022i
\(341\) 47.0921 + 81.5660i 0.138100 + 0.239196i
\(342\) 87.1199 + 50.2987i 0.254736 + 0.147072i
\(343\) 218.481 218.481i 0.636972 0.636972i
\(344\) −53.5573 199.879i −0.155690 0.581042i
\(345\) −57.2721 + 15.3460i −0.166006 + 0.0444812i
\(346\) −563.502 563.502i −1.62862 1.62862i
\(347\) 181.324 314.062i 0.522547 0.905078i −0.477109 0.878844i \(-0.658315\pi\)
0.999656 0.0262339i \(-0.00835146\pi\)
\(348\) 404.210 233.371i 1.16152 0.670605i
\(349\) −109.728 + 409.510i −0.314407 + 1.17338i 0.610134 + 0.792298i \(0.291115\pi\)
−0.924541 + 0.381083i \(0.875551\pi\)
\(350\) 897.208i 2.56345i
\(351\) −64.6547 + 19.5645i −0.184201 + 0.0557392i
\(352\) 430.491 1.22299
\(353\) 203.861 + 54.6243i 0.577509 + 0.154743i 0.535738 0.844384i \(-0.320033\pi\)
0.0417709 + 0.999127i \(0.486700\pi\)
\(354\) −38.3685 66.4561i −0.108385 0.187729i
\(355\) 391.162 + 225.838i 1.10187 + 0.636163i
\(356\) 97.2521 97.2521i 0.273180 0.273180i
\(357\) −41.0053 153.034i −0.114861 0.428666i
\(358\) −26.2123 + 7.02357i −0.0732188 + 0.0196189i
\(359\) 297.929 + 297.929i 0.829885 + 0.829885i 0.987501 0.157615i \(-0.0503806\pi\)
−0.157615 + 0.987501i \(0.550381\pi\)
\(360\) −78.5771 + 136.099i −0.218270 + 0.378054i
\(361\) 216.109 124.771i 0.598640 0.345625i
\(362\) 20.2288 75.4951i 0.0558808 0.208550i
\(363\) 25.2921i 0.0696752i
\(364\) 597.853 19.1619i 1.64245 0.0526424i
\(365\) 613.892 1.68190
\(366\) −446.850 119.733i −1.22090 0.327139i
\(367\) −280.845 486.438i −0.765246 1.32544i −0.940117 0.340853i \(-0.889284\pi\)
0.174871 0.984591i \(-0.444049\pi\)
\(368\) 12.3351 + 7.12169i 0.0335193 + 0.0193524i
\(369\) 127.677 127.677i 0.346007 0.346007i
\(370\) −213.487 796.743i −0.576991 2.15336i
\(371\) 399.563 107.063i 1.07699 0.288578i
\(372\) 60.3092 + 60.3092i 0.162121 + 0.162121i
\(373\) 189.783 328.714i 0.508801 0.881270i −0.491147 0.871077i \(-0.663422\pi\)
0.999948 0.0101929i \(-0.00324457\pi\)
\(374\) 387.681 223.828i 1.03658 0.598470i
\(375\) 43.8211 163.543i 0.116856 0.436114i
\(376\) 210.195i 0.559030i
\(377\) −419.690 393.623i −1.11324 1.04409i
\(378\) 124.730 0.329973
\(379\) −474.306 127.090i −1.25147 0.335330i −0.428564 0.903511i \(-0.640980\pi\)
−0.822903 + 0.568181i \(0.807647\pi\)
\(380\) −253.824 439.636i −0.667958 1.15694i
\(381\) 350.558 + 202.395i 0.920100 + 0.531220i
\(382\) −579.570 + 579.570i −1.51720 + 1.51720i
\(383\) 155.600 + 580.707i 0.406266 + 1.51621i 0.801709 + 0.597715i \(0.203924\pi\)
−0.395443 + 0.918491i \(0.629409\pi\)
\(384\) 306.706 82.1816i 0.798713 0.214014i
\(385\) −491.486 491.486i −1.27659 1.27659i
\(386\) 60.0782 104.058i 0.155643 0.269582i
\(387\) −81.0554 + 46.7973i −0.209445 + 0.120923i
\(388\) −175.200 + 653.856i −0.451547 + 1.68519i
\(389\) 78.5941i 0.202041i 0.994884 + 0.101021i \(0.0322108\pi\)
−0.994884 + 0.101021i \(0.967789\pi\)
\(390\) 549.995 + 128.638i 1.41024 + 0.329841i
\(391\) 52.4601 0.134169
\(392\) −52.0000 13.9333i −0.132653 0.0355442i
\(393\) 13.8287 + 23.9521i 0.0351876 + 0.0609467i
\(394\) 50.1832 + 28.9733i 0.127368 + 0.0735362i
\(395\) 251.483 251.483i 0.636665 0.636665i
\(396\) 55.0483 + 205.443i 0.139011 + 0.518796i
\(397\) −665.065 + 178.204i −1.67523 + 0.448875i −0.966512 0.256621i \(-0.917391\pi\)
−0.708713 + 0.705496i \(0.750724\pi\)
\(398\) 294.701 + 294.701i 0.740456 + 0.740456i
\(399\) −69.0985 + 119.682i −0.173179 + 0.299955i
\(400\) −106.370 + 61.4130i −0.265926 + 0.153532i
\(401\) −137.621 + 513.607i −0.343194 + 1.28082i 0.551514 + 0.834165i \(0.314050\pi\)
−0.894708 + 0.446651i \(0.852616\pi\)
\(402\) 354.476i 0.881782i
\(403\) 49.6284 92.6955i 0.123147 0.230014i
\(404\) 182.910 0.452748
\(405\) 68.6592 + 18.3972i 0.169529 + 0.0454251i
\(406\) 531.228 + 920.114i 1.30844 + 2.26629i
\(407\) −331.603 191.451i −0.814749 0.470396i
\(408\) 98.3197 98.3197i 0.240980 0.240980i
\(409\) 180.997 + 675.491i 0.442536 + 1.65157i 0.722361 + 0.691516i \(0.243057\pi\)
−0.279825 + 0.960051i \(0.590277\pi\)
\(410\) −1458.37 + 390.770i −3.55701 + 0.953098i
\(411\) −4.13066 4.13066i −0.0100503 0.0100503i
\(412\) 373.566 647.036i 0.906714 1.57048i
\(413\) 91.2950 52.7092i 0.221053 0.127625i
\(414\) −10.6894 + 39.8933i −0.0258197 + 0.0963606i
\(415\) 344.402i 0.829883i
\(416\) −253.504 408.291i −0.609385 0.981468i
\(417\) 62.9002 0.150840
\(418\) −377.175 101.064i −0.902332 0.241779i
\(419\) −180.258 312.217i −0.430211 0.745147i 0.566680 0.823938i \(-0.308227\pi\)
−0.996891 + 0.0787906i \(0.974894\pi\)
\(420\) −545.101 314.714i −1.29786 0.749320i
\(421\) −326.554 + 326.554i −0.775663 + 0.775663i −0.979090 0.203427i \(-0.934792\pi\)
0.203427 + 0.979090i \(0.434792\pi\)
\(422\) 228.581 + 853.077i 0.541662 + 2.02151i
\(423\) −91.8323 + 24.6064i −0.217098 + 0.0581711i
\(424\) 256.707 + 256.707i 0.605442 + 0.605442i
\(425\) −226.192 + 391.775i −0.532216 + 0.921825i
\(426\) 272.467 157.309i 0.639594 0.369270i
\(427\) 164.485 613.866i 0.385210 1.43762i
\(428\) 3.08541i 0.00720890i
\(429\) 222.758 138.308i 0.519250 0.322397i
\(430\) 782.619 1.82004
\(431\) 11.1213 + 2.97995i 0.0258035 + 0.00691403i 0.271698 0.962383i \(-0.412415\pi\)
−0.245894 + 0.969297i \(0.579082\pi\)
\(432\) −8.53764 14.7876i −0.0197631 0.0342306i
\(433\) −348.424 201.163i −0.804675 0.464579i 0.0404284 0.999182i \(-0.487128\pi\)
−0.845103 + 0.534603i \(0.820461\pi\)
\(434\) −137.284 + 137.284i −0.316322 + 0.316322i
\(435\) 156.708 + 584.843i 0.360249 + 1.34447i
\(436\) −248.847 + 66.6783i −0.570750 + 0.152932i
\(437\) −32.3571 32.3571i −0.0740436 0.0740436i
\(438\) 213.805 370.322i 0.488140 0.845484i
\(439\) 611.317 352.944i 1.39252 0.803973i 0.398928 0.916982i \(-0.369382\pi\)
0.993594 + 0.113009i \(0.0360490\pi\)
\(440\) 157.883 589.226i 0.358824 1.33915i
\(441\) 24.3494i 0.0552140i
\(442\) −440.580 235.883i −0.996787 0.533672i
\(443\) 47.8296 0.107968 0.0539838 0.998542i \(-0.482808\pi\)
0.0539838 + 0.998542i \(0.482808\pi\)
\(444\) −334.928 89.7437i −0.754342 0.202125i
\(445\) 89.2078 + 154.513i 0.200467 + 0.347219i
\(446\) −596.480 344.378i −1.33740 0.772148i
\(447\) 176.096 176.096i 0.393951 0.393951i
\(448\) 203.965 + 761.206i 0.455278 + 1.69912i
\(449\) 449.516 120.447i 1.00115 0.268257i 0.279222 0.960227i \(-0.409924\pi\)
0.721926 + 0.691970i \(0.243257\pi\)
\(450\) −251.836 251.836i −0.559636 0.559636i
\(451\) −350.436 + 606.973i −0.777020 + 1.34584i
\(452\) −545.989 + 315.227i −1.20794 + 0.697405i
\(453\) −76.1037 + 284.023i −0.167999 + 0.626982i
\(454\) 526.462i 1.15961i
\(455\) −176.718 + 755.563i −0.388392 + 1.66058i
\(456\) −121.286 −0.265978
\(457\) 202.908 + 54.3691i 0.444001 + 0.118970i 0.473891 0.880584i \(-0.342849\pi\)
−0.0298902 + 0.999553i \(0.509516\pi\)
\(458\) −363.833 630.178i −0.794396 1.37593i
\(459\) −54.4647 31.4452i −0.118659 0.0685081i
\(460\) 147.373 147.373i 0.320375 0.320375i
\(461\) −220.190 821.759i −0.477635 1.78256i −0.611154 0.791511i \(-0.709295\pi\)
0.133520 0.991046i \(-0.457372\pi\)
\(462\) −467.656 + 125.308i −1.01224 + 0.271230i
\(463\) 167.655 + 167.655i 0.362107 + 0.362107i 0.864588 0.502481i \(-0.167579\pi\)
−0.502481 + 0.864588i \(0.667579\pi\)
\(464\) 72.7241 125.962i 0.156733 0.271470i
\(465\) −95.8182 + 55.3207i −0.206061 + 0.118969i
\(466\) 216.141 806.648i 0.463821 1.73100i
\(467\) 577.797i 1.23725i 0.785685 + 0.618627i \(0.212311\pi\)
−0.785685 + 0.618627i \(0.787689\pi\)
\(468\) 162.432 173.189i 0.347077 0.370063i
\(469\) −486.967 −1.03831
\(470\) 767.882 + 205.753i 1.63379 + 0.437773i
\(471\) −13.3726 23.1621i −0.0283920 0.0491764i
\(472\) 80.1233 + 46.2592i 0.169753 + 0.0980068i
\(473\) 256.891 256.891i 0.543110 0.543110i
\(474\) −64.1174 239.289i −0.135269 0.504830i
\(475\) 381.158 102.131i 0.802438 0.215013i
\(476\) 393.787 + 393.787i 0.827283 + 0.827283i
\(477\) 82.1017 142.204i 0.172121 0.298122i
\(478\) 948.011 547.334i 1.98329 1.14505i
\(479\) 49.3930 184.337i 0.103117 0.384838i −0.895008 0.446050i \(-0.852830\pi\)
0.998125 + 0.0612129i \(0.0194969\pi\)
\(480\) 505.712i 1.05357i
\(481\) 13.6936 + 427.242i 0.0284690 + 0.888238i
\(482\) 961.946 1.99574
\(483\) −54.8039 14.6847i −0.113466 0.0304030i
\(484\) −44.4516 76.9924i −0.0918421 0.159075i
\(485\) −760.480 439.063i −1.56800 0.905285i
\(486\) 35.0103 35.0103i 0.0720377 0.0720377i
\(487\) −186.160 694.760i −0.382259 1.42661i −0.842442 0.538787i \(-0.818883\pi\)
0.460183 0.887824i \(-0.347784\pi\)
\(488\) 538.747 144.357i 1.10399 0.295813i
\(489\) −337.799 337.799i −0.690796 0.690796i
\(490\) 101.802 176.327i 0.207760 0.359850i
\(491\) 840.518 485.273i 1.71185 0.988336i 0.779781 0.626053i \(-0.215331\pi\)
0.932068 0.362283i \(-0.118003\pi\)
\(492\) −164.269 + 613.059i −0.333879 + 1.24605i
\(493\) 535.704i 1.08662i
\(494\) 126.256 + 417.238i 0.255578 + 0.844611i
\(495\) −275.910 −0.557394
\(496\) 25.6729 + 6.87903i 0.0517598 + 0.0138690i
\(497\) 216.105 + 374.305i 0.434819 + 0.753129i
\(498\) −207.755 119.948i −0.417180 0.240859i
\(499\) −394.571 + 394.571i −0.790723 + 0.790723i −0.981612 0.190889i \(-0.938863\pi\)
0.190889 + 0.981612i \(0.438863\pi\)
\(500\) 154.034 + 574.862i 0.308068 + 1.14972i
\(501\) −429.769 + 115.156i −0.857822 + 0.229853i
\(502\) −464.190 464.190i −0.924681 0.924681i
\(503\) −464.382 + 804.333i −0.923225 + 1.59907i −0.128833 + 0.991666i \(0.541123\pi\)
−0.794392 + 0.607406i \(0.792210\pi\)
\(504\) −130.234 + 75.1907i −0.258401 + 0.149188i
\(505\) −61.4120 + 229.193i −0.121608 + 0.453847i
\(506\) 160.313i 0.316824i
\(507\) −262.352 129.825i −0.517460 0.256064i
\(508\) −1422.86 −2.80090
\(509\) −423.307 113.425i −0.831645 0.222839i −0.182214 0.983259i \(-0.558326\pi\)
−0.649431 + 0.760420i \(0.724993\pi\)
\(510\) 262.938 + 455.422i 0.515565 + 0.892984i
\(511\) 508.735 + 293.718i 0.995567 + 0.574791i
\(512\) 147.550 147.550i 0.288184 0.288184i
\(513\) 14.1983 + 52.9887i 0.0276769 + 0.103292i
\(514\) 531.090 142.305i 1.03325 0.276858i
\(515\) 685.333 + 685.333i 1.33074 + 1.33074i
\(516\) 164.495 284.914i 0.318789 0.552160i
\(517\) 319.591 184.516i 0.618165 0.356898i
\(518\) 204.286 762.406i 0.394375 1.47183i
\(519\) 434.573i 0.837327i
\(520\) −651.813 + 197.238i −1.25349 + 0.379304i
\(521\) 100.115 0.192160 0.0960801 0.995374i \(-0.469370\pi\)
0.0960801 + 0.995374i \(0.469370\pi\)
\(522\) 407.376 + 109.156i 0.780414 + 0.209111i
\(523\) 29.0666 + 50.3449i 0.0555767 + 0.0962617i 0.892475 0.451096i \(-0.148967\pi\)
−0.836899 + 0.547358i \(0.815634\pi\)
\(524\) −84.1929 48.6088i −0.160673 0.0927649i
\(525\) 345.964 345.964i 0.658978 0.658978i
\(526\) 119.586 + 446.301i 0.227350 + 0.848481i
\(527\) 94.5564 25.3363i 0.179424 0.0480765i
\(528\) 46.8668 + 46.8668i 0.0887629 + 0.0887629i
\(529\) −255.107 + 441.858i −0.482243 + 0.835269i
\(530\) −1189.08 + 686.517i −2.24355 + 1.29531i
\(531\) 10.8306 40.4204i 0.0203966 0.0761213i
\(532\) 485.770i 0.913102i
\(533\) 782.033 25.0650i 1.46723 0.0470264i
\(534\) 124.277 0.232728
\(535\) −3.86612 1.03592i −0.00722640 0.00193631i
\(536\) −213.688 370.119i −0.398672 0.690521i
\(537\) −12.8158 7.39919i −0.0238655 0.0137788i
\(538\) −205.463 + 205.463i −0.381902 + 0.381902i
\(539\) −24.4623 91.2944i −0.0453845 0.169377i
\(540\) −241.341 + 64.6671i −0.446928 + 0.119754i
\(541\) −164.770 164.770i −0.304566 0.304566i 0.538231 0.842797i \(-0.319093\pi\)
−0.842797 + 0.538231i \(0.819093\pi\)
\(542\) 602.578 1043.70i 1.11177 1.92564i
\(543\) 36.9112 21.3107i 0.0679764 0.0392462i
\(544\) 115.805 432.192i 0.212878 0.794470i
\(545\) 334.201i 0.613212i
\(546\) 394.236 + 369.749i 0.722043 + 0.677196i
\(547\) −503.473 −0.920426 −0.460213 0.887809i \(-0.652227\pi\)
−0.460213 + 0.887809i \(0.652227\pi\)
\(548\) 19.8340 + 5.31451i 0.0361934 + 0.00969800i
\(549\) −126.136 218.475i −0.229757 0.397950i
\(550\) 1197.23 + 691.219i 2.17678 + 1.25676i
\(551\) −330.419 + 330.419i −0.599671 + 0.599671i
\(552\) −12.8877 48.0976i −0.0233473 0.0871334i
\(553\) 328.727 88.0821i 0.594443 0.159280i
\(554\) −549.881 549.881i −0.992566 0.992566i
\(555\) 224.904 389.545i 0.405232 0.701883i
\(556\) −191.476 + 110.549i −0.344382 + 0.198829i
\(557\) −36.2263 + 135.199i −0.0650383 + 0.242726i −0.990790 0.135405i \(-0.956766\pi\)
0.925752 + 0.378131i \(0.123433\pi\)
\(558\) 77.0680i 0.138115i
\(559\) −394.919 92.3673i −0.706474 0.165237i
\(560\) −196.146 −0.350260
\(561\) 235.798 + 63.1819i 0.420318 + 0.112624i
\(562\) 690.506 + 1195.99i 1.22866 + 2.12810i
\(563\) 135.385 + 78.1645i 0.240471 + 0.138836i 0.615393 0.788220i \(-0.288997\pi\)
−0.374922 + 0.927056i \(0.622331\pi\)
\(564\) 236.303 236.303i 0.418977 0.418977i
\(565\) −211.675 789.980i −0.374645 1.39820i
\(566\) 1412.70 378.533i 2.49594 0.668786i
\(567\) 48.0959 + 48.0959i 0.0848252 + 0.0848252i
\(568\) −189.660 + 328.502i −0.333909 + 0.578348i
\(569\) −584.405 + 337.406i −1.02707 + 0.592981i −0.916145 0.400847i \(-0.868716\pi\)
−0.110929 + 0.993828i \(0.535383\pi\)
\(570\) 118.723 443.080i 0.208286 0.777333i
\(571\) 54.2917i 0.0950817i 0.998869 + 0.0475409i \(0.0151384\pi\)
−0.998869 + 0.0475409i \(0.984862\pi\)
\(572\) −435.023 + 812.533i −0.760530 + 1.42051i
\(573\) −446.965 −0.780043
\(574\) −1395.52 373.930i −2.43123 0.651445i
\(575\) 81.0030 + 140.301i 0.140875 + 0.244002i
\(576\) 270.913 + 156.412i 0.470335 + 0.271548i
\(577\) 323.049 323.049i 0.559877 0.559877i −0.369395 0.929272i \(-0.620435\pi\)
0.929272 + 0.369395i \(0.120435\pi\)
\(578\) 117.153 + 437.220i 0.202687 + 0.756437i
\(579\) 63.2912 16.9588i 0.109311 0.0292898i
\(580\) −1504.92 1504.92i −2.59469 2.59469i
\(581\) 164.780 285.407i 0.283614 0.491234i
\(582\) −529.718 + 305.833i −0.910168 + 0.525486i
\(583\) −164.965 + 615.656i −0.282958 + 1.05601i
\(584\) 515.552i 0.882795i
\(585\) 162.476 + 261.681i 0.277736 + 0.447318i
\(586\) 481.903 0.822359
\(587\) 250.071 + 67.0064i 0.426016 + 0.114151i 0.465455 0.885071i \(-0.345891\pi\)
−0.0394395 + 0.999222i \(0.512557\pi\)
\(588\) −42.7947 74.1227i −0.0727802 0.126059i
\(589\) −73.9490 42.6945i −0.125550 0.0724864i
\(590\) −247.423 + 247.423i −0.419362 + 0.419362i
\(591\) 8.17855 + 30.5228i 0.0138385 + 0.0516459i
\(592\) −104.372 + 27.9664i −0.176304 + 0.0472405i
\(593\) −487.207 487.207i −0.821597 0.821597i 0.164740 0.986337i \(-0.447322\pi\)
−0.986337 + 0.164740i \(0.947322\pi\)
\(594\) −96.0934 + 166.439i −0.161773 + 0.280200i
\(595\) −625.642 + 361.215i −1.05150 + 0.607083i
\(596\) −226.565 + 845.554i −0.380143 + 1.41871i
\(597\) 227.274i 0.380694i
\(598\) −152.046 + 94.4038i −0.254257 + 0.157866i
\(599\) −133.236 −0.222431 −0.111215 0.993796i \(-0.535474\pi\)
−0.111215 + 0.993796i \(0.535474\pi\)
\(600\) 414.764 + 111.136i 0.691273 + 0.185226i
\(601\) 441.546 + 764.780i 0.734685 + 1.27251i 0.954861 + 0.297052i \(0.0960034\pi\)
−0.220176 + 0.975460i \(0.570663\pi\)
\(602\) 648.559 + 374.446i 1.07734 + 0.622003i
\(603\) −136.686 + 136.686i −0.226677 + 0.226677i
\(604\) −267.509 998.357i −0.442896 1.65291i
\(605\) 111.399 29.8492i 0.184130 0.0493375i
\(606\) 116.869 + 116.869i 0.192853 + 0.192853i
\(607\) 263.803 456.920i 0.434601 0.752750i −0.562662 0.826687i \(-0.690223\pi\)
0.997263 + 0.0739364i \(0.0235562\pi\)
\(608\) −338.001 + 195.145i −0.555923 + 0.320962i
\(609\) −149.955 + 559.638i −0.246231 + 0.918946i
\(610\) 2109.45i 3.45811i
\(611\) −363.199 194.454i −0.594433 0.318255i
\(612\) 221.063 0.361215
\(613\) 1083.07 + 290.208i 1.76684 + 0.473423i 0.988085 0.153909i \(-0.0491862\pi\)
0.778752 + 0.627331i \(0.215853\pi\)
\(614\) −732.805 1269.26i −1.19349 2.06719i
\(615\) −713.031 411.668i −1.15940 0.669380i
\(616\) 412.754 412.754i 0.670056 0.670056i
\(617\) 82.7504 + 308.829i 0.134117 + 0.500533i 1.00000 0.000285474i \(9.08691e-5\pi\)
−0.865883 + 0.500247i \(0.833242\pi\)
\(618\) 652.104 174.731i 1.05518 0.282736i
\(619\) 133.111 + 133.111i 0.215042 + 0.215042i 0.806405 0.591363i \(-0.201410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(620\) 194.455 336.807i 0.313638 0.543236i
\(621\) −19.5047 + 11.2610i −0.0314085 + 0.0181337i
\(622\) 0.492496 1.83802i 0.000791794 0.00295502i
\(623\) 170.727i 0.274040i
\(624\) 16.8514 72.0484i 0.0270054 0.115462i
\(625\) 162.386 0.259818
\(626\) 63.4216 + 16.9938i 0.101313 + 0.0271466i
\(627\) −106.469 184.409i −0.169806 0.294113i
\(628\) 81.4161 + 47.0056i 0.129643 + 0.0748497i
\(629\) −281.411 + 281.411i −0.447395 + 0.447395i
\(630\) −147.204 549.371i −0.233656 0.872018i
\(631\) 235.685 63.1517i 0.373511 0.100082i −0.0671801 0.997741i \(-0.521400\pi\)
0.440691 + 0.897659i \(0.354734\pi\)
\(632\) 211.197 + 211.197i 0.334173 + 0.334173i
\(633\) −240.806 + 417.088i −0.380420 + 0.658907i
\(634\) 702.153 405.388i 1.10750 0.639414i
\(635\) 477.724 1782.89i 0.752322 2.80770i
\(636\) 577.184i 0.907523i
\(637\) −72.1813 + 76.9615i −0.113314 + 0.120819i
\(638\) −1637.06 −2.56592
\(639\) 165.722 + 44.4050i 0.259345 + 0.0694914i
\(640\) −723.935 1253.89i −1.13115 1.95921i
\(641\) 394.159 + 227.568i 0.614913 + 0.355020i 0.774886 0.632101i \(-0.217807\pi\)
−0.159973 + 0.987121i \(0.551141\pi\)
\(642\) −1.97139 + 1.97139i −0.00307071 + 0.00307071i
\(643\) −54.7147 204.198i −0.0850928 0.317571i 0.910239 0.414083i \(-0.135898\pi\)
−0.995332 + 0.0965128i \(0.969231\pi\)
\(644\) 192.639 51.6175i 0.299129 0.0801514i
\(645\) 301.778 + 301.778i 0.467873 + 0.467873i
\(646\) −202.926 + 351.478i −0.314127 + 0.544084i
\(647\) −725.468 + 418.849i −1.12128 + 0.647371i −0.941727 0.336378i \(-0.890798\pi\)
−0.179552 + 0.983748i \(0.557465\pi\)
\(648\) −15.4501 + 57.6605i −0.0238427 + 0.0889823i
\(649\) 162.431i 0.250279i
\(650\) −49.4397 1542.53i −0.0760611 2.37312i
\(651\) −105.873 −0.162632
\(652\) 1622.00 + 434.612i 2.48772 + 0.666584i
\(653\) −250.703 434.229i −0.383924 0.664976i 0.607695 0.794170i \(-0.292094\pi\)
−0.991619 + 0.129194i \(0.958761\pi\)
\(654\) −201.602 116.395i −0.308260 0.177974i
\(655\) 89.1762 89.1762i 0.136147 0.136147i
\(656\) 51.1902 + 191.045i 0.0780339 + 0.291226i
\(657\) 225.240 60.3528i 0.342831 0.0918612i
\(658\) 537.903 + 537.903i 0.817482 + 0.817482i
\(659\) −305.919 + 529.868i −0.464217 + 0.804048i −0.999166 0.0408366i \(-0.986998\pi\)
0.534948 + 0.844885i \(0.320331\pi\)
\(660\) 839.905 484.919i 1.27258 0.734726i
\(661\) 161.747 603.648i 0.244700 0.913235i −0.728833 0.684691i \(-0.759937\pi\)
0.973534 0.228543i \(-0.0733963\pi\)
\(662\) 445.083i 0.672331i
\(663\) −78.9312 260.844i −0.119052 0.393430i
\(664\) 289.231 0.435589
\(665\) 608.687 + 163.097i 0.915318 + 0.245259i
\(666\) −156.658 271.340i −0.235223 0.407418i
\(667\) −166.142 95.9222i −0.249089 0.143811i
\(668\) 1105.88 1105.88i 1.65551 1.65551i
\(669\) −97.2108 362.796i −0.145308 0.542295i
\(670\) 1561.29 418.346i 2.33028 0.624396i
\(671\) 692.417 + 692.417i 1.03192 + 1.03192i
\(672\) −241.959 + 419.085i −0.360058 + 0.623639i
\(673\) 160.099 92.4331i 0.237888 0.137345i −0.376317 0.926491i \(-0.622810\pi\)
0.614206 + 0.789146i \(0.289476\pi\)
\(674\) −242.168 + 903.782i −0.359299 + 1.34092i
\(675\) 194.216i 0.287728i
\(676\) 1026.80 65.8881i 1.51894 0.0974677i
\(677\) −984.771 −1.45461 −0.727305 0.686315i \(-0.759227\pi\)
−0.727305 + 0.686315i \(0.759227\pi\)
\(678\) −550.266 147.443i −0.811602 0.217468i
\(679\) −420.142 727.707i −0.618765 1.07173i
\(680\) −549.083 317.013i −0.807474 0.466196i
\(681\) −203.004 + 203.004i −0.298097 + 0.298097i
\(682\) −77.4253 288.955i −0.113527 0.423688i
\(683\) −1103.55 + 295.696i −1.61574 + 0.432937i −0.949746 0.313020i \(-0.898659\pi\)
−0.665995 + 0.745957i \(0.731993\pi\)
\(684\) −136.350 136.350i −0.199343 0.199343i
\(685\) −13.3185 + 23.0683i −0.0194431 + 0.0336764i
\(686\) −849.900 + 490.690i −1.23892 + 0.715292i
\(687\) 102.703 383.291i 0.149494 0.557920i
\(688\) 102.522i 0.149014i
\(689\) 681.050 206.085i 0.988462 0.299108i
\(690\) 188.325 0.272935
\(691\) 703.381 + 188.470i 1.01792 + 0.272750i 0.728934 0.684584i \(-0.240016\pi\)
0.288984 + 0.957334i \(0.406683\pi\)
\(692\) 763.774 + 1322.90i 1.10372 + 1.91170i
\(693\) −228.647 132.010i −0.329938 0.190490i
\(694\) −814.476 + 814.476i −1.17360 + 1.17360i
\(695\) −74.2335 277.043i −0.106811 0.398623i
\(696\) −491.156 + 131.605i −0.705684 + 0.189087i
\(697\) 515.101 + 515.101i 0.739026 + 0.739026i
\(698\) 673.285 1166.16i 0.964592 1.67072i
\(699\) 394.388 227.700i 0.564217 0.325751i
\(700\) −445.117 + 1661.20i −0.635881 + 2.37314i
\(701\) 973.569i 1.38883i 0.719575 + 0.694415i \(0.244337\pi\)
−0.719575 + 0.694415i \(0.755663\pi\)
\(702\) 214.442 6.87312i 0.305473 0.00979076i
\(703\) 347.145 0.493806
\(704\) −1172.88 314.274i −1.66603 0.446411i
\(705\) 216.757 + 375.434i 0.307457 + 0.532531i
\(706\) −580.535 335.172i −0.822288 0.474748i
\(707\) −160.550 + 160.550i −0.227087 + 0.227087i
\(708\) 38.0702 + 142.080i 0.0537715 + 0.200678i
\(709\) −161.771 + 43.3463i −0.228167 + 0.0611372i −0.371091 0.928596i \(-0.621016\pi\)
0.142924 + 0.989734i \(0.454350\pi\)
\(710\) −1014.42 1014.42i −1.42877 1.42877i
\(711\) 67.5464 116.994i 0.0950019 0.164548i
\(712\) −129.761 + 74.9175i −0.182249 + 0.105221i
\(713\) 9.07335 33.8622i 0.0127256 0.0474926i
\(714\) 503.213i 0.704780i
\(715\) −872.072 817.907i −1.21968 1.14393i
\(716\) 52.0172 0.0726497
\(717\) 576.606 + 154.501i 0.804192 + 0.215483i
\(718\) −669.122 1158.95i −0.931925 1.61414i
\(719\) 536.036 + 309.481i 0.745530 + 0.430432i 0.824077 0.566478i \(-0.191694\pi\)
−0.0785462 + 0.996910i \(0.525028\pi\)
\(720\) −55.0560 + 55.0560i −0.0764666 + 0.0764666i
\(721\) 240.039 + 895.837i 0.332925 + 1.24249i
\(722\) −765.586 + 205.138i −1.06037 + 0.284125i
\(723\) 370.927 + 370.927i 0.513038 + 0.513038i
\(724\) −74.9083 + 129.745i −0.103465 + 0.179206i
\(725\) 1432.71 827.173i 1.97615 1.14093i
\(726\) 20.7917 77.5955i 0.0286387 0.106881i
\(727\) 58.7377i 0.0807946i 0.999184 + 0.0403973i \(0.0128624\pi\)
−0.999184 + 0.0403973i \(0.987138\pi\)
\(728\) −634.528 148.409i −0.871605 0.203859i
\(729\) 27.0000 0.0370370
\(730\) −1883.41 504.657i −2.58001 0.691311i
\(731\) −188.800 327.011i −0.258277 0.447348i
\(732\) 767.951 + 443.377i 1.04911 + 0.605706i
\(733\) −114.680 + 114.680i −0.156453 + 0.156453i −0.780993 0.624540i \(-0.785287\pi\)
0.624540 + 0.780993i \(0.285287\pi\)
\(734\) 461.744 + 1723.25i 0.629079 + 2.34775i
\(735\) 107.247 28.7366i 0.145914 0.0390974i
\(736\) −113.303 113.303i −0.153945 0.153945i
\(737\) 375.165 649.805i 0.509043 0.881689i
\(738\) −496.666 + 286.750i −0.672990 + 0.388551i
\(739\) 49.4982 184.730i 0.0669800 0.249973i −0.924315 0.381629i \(-0.875363\pi\)
0.991295 + 0.131657i \(0.0420297\pi\)
\(740\) 1581.10i 2.13662i
\(741\) −112.203 + 209.571i −0.151421 + 0.282822i
\(742\) −1313.86 −1.77070
\(743\) 268.179 + 71.8585i 0.360941 + 0.0967139i 0.434732 0.900560i \(-0.356843\pi\)
−0.0737908 + 0.997274i \(0.523510\pi\)
\(744\) −46.4588 80.4690i −0.0624446 0.108157i
\(745\) −983.438 567.788i −1.32005 0.762132i
\(746\) −852.472 + 852.472i −1.14272 + 1.14272i
\(747\) −33.8587 126.362i −0.0453263 0.169160i
\(748\) −828.844 + 222.088i −1.10808 + 0.296909i
\(749\) −2.70823 2.70823i −0.00361579 0.00361579i
\(750\) −268.884 + 465.721i −0.358512 + 0.620962i
\(751\) −1074.14 + 620.156i −1.43028 + 0.825774i −0.997142 0.0755521i \(-0.975928\pi\)
−0.433141 + 0.901326i \(0.642595\pi\)
\(752\) 26.9533 100.591i 0.0358422 0.133765i
\(753\) 357.984i 0.475410i
\(754\) 964.018 + 1552.64i 1.27854 + 2.05920i
\(755\) 1340.79 1.77588
\(756\) −230.940 61.8802i −0.305476 0.0818521i
\(757\) 243.743 + 422.175i 0.321986 + 0.557695i 0.980898 0.194525i \(-0.0623164\pi\)
−0.658912 + 0.752220i \(0.728983\pi\)
\(758\) 1350.68 + 779.818i 1.78191 + 1.02878i
\(759\) 61.8167 61.8167i 0.0814450 0.0814450i
\(760\) 143.139 + 534.202i 0.188341 + 0.702898i
\(761\) 409.294 109.670i 0.537837 0.144113i 0.0203324 0.999793i \(-0.493528\pi\)
0.517505 + 0.855680i \(0.326861\pi\)
\(762\) −909.123 909.123i −1.19307 1.19307i
\(763\) 159.899 276.953i 0.209566 0.362979i
\(764\) 1360.62 785.553i 1.78091 1.02821i
\(765\) −74.2219 + 277.000i −0.0970221 + 0.362091i
\(766\) 1909.51i 2.49283i
\(767\) 154.055 95.6511i 0.200854 0.124708i
\(768\) −286.089 −0.372512
\(769\) 1110.65 + 297.599i 1.44428 + 0.386995i 0.894032 0.448003i \(-0.147865\pi\)
0.550253 + 0.834998i \(0.314531\pi\)
\(770\) 1103.84 + 1911.90i 1.43355 + 2.48299i
\(771\) 259.662 + 149.916i 0.336785 + 0.194443i
\(772\) −162.861 + 162.861i −0.210960 + 0.210960i
\(773\) −242.244 904.069i −0.313382 1.16956i −0.925486 0.378781i \(-0.876343\pi\)
0.612104 0.790777i \(-0.290323\pi\)
\(774\) 287.146 76.9406i 0.370990 0.0994064i
\(775\) 213.764 + 213.764i 0.275824 + 0.275824i
\(776\) 368.729 638.658i 0.475166 0.823012i
\(777\) 372.757 215.211i 0.479739 0.276977i
\(778\) 64.6092 241.125i 0.0830452 0.309929i
\(779\) 635.422i 0.815689i
\(780\) −954.509 511.036i −1.22373 0.655175i
\(781\) −665.960 −0.852701
\(782\) −160.946 43.1254i −0.205814 0.0551476i
\(783\) 114.994 + 199.175i 0.146863 + 0.254374i
\(784\) −23.0985 13.3359i −0.0294623 0.0170101i
\(785\) −86.2350 + 86.2350i −0.109854 + 0.109854i
\(786\) −22.7361 84.8524i −0.0289264 0.107955i
\(787\) −1030.19 + 276.039i −1.30901 + 0.350748i −0.844850 0.535003i \(-0.820311\pi\)
−0.464161 + 0.885751i \(0.653644\pi\)
\(788\) −78.5412 78.5412i −0.0996715 0.0996715i
\(789\) −125.981 + 218.206i −0.159672 + 0.276561i
\(790\) −978.277 + 564.808i −1.23833 + 0.714947i
\(791\) 202.552 755.936i 0.256071 0.955671i
\(792\) 231.711i 0.292565i
\(793\) 248.965 1064.45i 0.313953 1.34231i
\(794\) 2186.90 2.75428
\(795\) −723.232 193.789i −0.909725 0.243760i
\(796\) −399.441 691.852i −0.501810 0.869160i
\(797\) −1258.35 726.507i −1.57885 0.911552i −0.995020 0.0996795i \(-0.968218\pi\)
−0.583835 0.811872i \(-0.698448\pi\)
\(798\) 310.379 310.379i 0.388945 0.388945i
\(799\) −99.2725 370.490i −0.124246 0.463692i
\(800\) 1334.68 357.627i 1.66835 0.447034i
\(801\) 47.9211 + 47.9211i 0.0598266 + 0.0598266i
\(802\) 844.434 1462.60i 1.05291 1.82369i
\(803\) −783.871 + 452.568i −0.976178 + 0.563596i
\(804\) 175.861 656.321i 0.218732 0.816319i
\(805\) 258.714i 0.321384i
\(806\) −228.460 + 243.590i −0.283449 + 0.302221i
\(807\) −158.453 −0.196349
\(808\) −192.478 51.5744i −0.238215 0.0638296i
\(809\) 35.5191 + 61.5210i 0.0439050 + 0.0760457i 0.887143 0.461495i \(-0.152687\pi\)
−0.843238 + 0.537541i \(0.819353\pi\)
\(810\) −195.521 112.884i −0.241384 0.139363i
\(811\) 688.757 688.757i 0.849269 0.849269i −0.140773 0.990042i \(-0.544959\pi\)
0.990042 + 0.140773i \(0.0449587\pi\)
\(812\) −527.099 1967.16i −0.649137 2.42261i
\(813\) 634.804 170.095i 0.780817 0.209219i
\(814\) 859.965 + 859.965i 1.05647 + 1.05647i
\(815\) −1089.17 + 1886.49i −1.33640 + 2.31472i
\(816\) 59.6595 34.4444i 0.0731121 0.0422113i
\(817\) −85.2478 + 318.149i −0.104343 + 0.389412i
\(818\) 2221.18i 2.71538i
\(819\) 9.44203 + 294.593i 0.0115287 + 0.359698i
\(820\) 2894.08 3.52936
\(821\) −507.818 136.069i −0.618536 0.165736i −0.0640739 0.997945i \(-0.520409\pi\)
−0.554462 + 0.832209i \(0.687076\pi\)
\(822\) 9.27710 + 16.0684i 0.0112860 + 0.0195479i
\(823\) −1054.57 608.856i −1.28137 0.739801i −0.304273 0.952585i \(-0.598414\pi\)
−0.977099 + 0.212784i \(0.931747\pi\)
\(824\) −575.549 + 575.549i −0.698481 + 0.698481i
\(825\) 195.117 + 728.186i 0.236505 + 0.882650i
\(826\) −323.421 + 86.6604i −0.391551 + 0.104916i
\(827\) −644.293 644.293i −0.779072 0.779072i 0.200601 0.979673i \(-0.435711\pi\)
−0.979673 + 0.200601i \(0.935711\pi\)
\(828\) 39.5832 68.5602i 0.0478058 0.0828021i
\(829\) 681.917 393.705i 0.822578 0.474916i −0.0287265 0.999587i \(-0.509145\pi\)
0.851305 + 0.524672i \(0.175812\pi\)
\(830\) −283.119 + 1056.62i −0.341108 + 1.27303i
\(831\) 424.069i 0.510312i
\(832\) 392.612 + 1297.47i 0.471890 + 1.55946i
\(833\) −98.2357 −0.117930
\(834\) −192.976 51.7078i −0.231386 0.0619998i
\(835\) 1014.41 + 1757.01i 1.21486 + 2.10420i
\(836\) 648.208 + 374.243i 0.775369 + 0.447659i
\(837\) −29.7175 + 29.7175i −0.0355047 + 0.0355047i
\(838\) 296.367 + 1106.06i 0.353660 + 1.31988i
\(839\) 98.0991 26.2856i 0.116924 0.0313296i −0.199883 0.979820i \(-0.564056\pi\)
0.316806 + 0.948490i \(0.397389\pi\)
\(840\) 484.876 + 484.876i 0.577234 + 0.577234i
\(841\) −559.023 + 968.257i −0.664713 + 1.15132i
\(842\) 1270.31 733.412i 1.50868 0.871036i
\(843\) −194.915 + 727.434i −0.231216 + 0.862911i
\(844\) 1692.89i 2.00580i
\(845\) −262.189 + 1308.74i −0.310283 + 1.54881i
\(846\) 301.967 0.356935
\(847\) 106.598 + 28.5628i 0.125853 + 0.0337223i
\(848\) 89.9325 + 155.768i 0.106053 + 0.183688i
\(849\) 690.702 + 398.777i 0.813548 + 0.469702i
\(850\) 1016.01 1016.01i 1.19531 1.19531i
\(851\) 36.8873 + 137.665i 0.0433458 + 0.161769i
\(852\) −582.521 + 156.086i −0.683711 + 0.183200i
\(853\) −618.373 618.373i −0.724939 0.724939i 0.244668 0.969607i \(-0.421321\pi\)
−0.969607 + 0.244668i \(0.921321\pi\)
\(854\) −1009.27 + 1748.11i −1.18182 + 2.04697i
\(855\) 216.631 125.072i 0.253370 0.146283i
\(856\) 0.869978 3.24680i 0.00101633 0.00379299i
\(857\) 194.182i 0.226584i 0.993562 + 0.113292i \(0.0361395\pi\)
−0.993562 + 0.113292i \(0.963861\pi\)
\(858\) −797.115 + 241.206i −0.929038 + 0.281126i
\(859\) 330.896 0.385211 0.192605 0.981276i \(-0.438306\pi\)
0.192605 + 0.981276i \(0.438306\pi\)
\(860\) −1449.04 388.268i −1.68492 0.451474i
\(861\) −393.927 682.302i −0.457523 0.792453i
\(862\) −31.6702 18.2848i −0.0367404 0.0212121i
\(863\) 1.75897 1.75897i 0.00203820 0.00203820i −0.706087 0.708125i \(-0.749541\pi\)
0.708125 + 0.706087i \(0.249541\pi\)
\(864\) 49.7174 + 185.548i 0.0575433 + 0.214754i
\(865\) −1914.07 + 512.874i −2.21280 + 0.592918i
\(866\) 903.589 + 903.589i 1.04340 + 1.04340i
\(867\) −123.418 + 213.767i −0.142351 + 0.246559i
\(868\) 322.292 186.075i 0.371304 0.214372i
\(869\) −135.719 + 506.510i −0.156178 + 0.582866i
\(870\) 1923.11i 2.21047i
\(871\) −837.219 + 26.8338i −0.961216 + 0.0308080i
\(872\) 280.665 0.321863
\(873\) −322.188 86.3301i −0.369059 0.0988891i
\(874\) 72.6712 + 125.870i 0.0831478 + 0.144016i
\(875\) −639.791 369.383i −0.731190 0.422152i
\(876\) −579.587 + 579.587i −0.661629 + 0.661629i
\(877\) −91.5191 341.554i −0.104355 0.389457i 0.893916 0.448234i \(-0.147947\pi\)
−0.998271 + 0.0587764i \(0.981280\pi\)
\(878\) −2165.65 + 580.284i −2.46657 + 0.660915i
\(879\) 185.822 + 185.822i 0.211401 + 0.211401i
\(880\) 151.113 261.735i 0.171719 0.297427i
\(881\) 1056.30 609.854i 1.19898 0.692229i 0.238649 0.971106i \(-0.423295\pi\)
0.960327 + 0.278877i \(0.0899621\pi\)
\(882\) 20.0167 74.7033i 0.0226947 0.0846976i
\(883\) 161.934i 0.183390i −0.995787 0.0916952i \(-0.970771\pi\)
0.995787 0.0916952i \(-0.0292286\pi\)
\(884\) 698.718 + 655.320i 0.790405 + 0.741312i
\(885\) −190.813 −0.215608
\(886\) −146.740 39.3189i −0.165621 0.0443780i
\(887\) 57.8301 + 100.165i 0.0651974 + 0.112925i 0.896782 0.442474i \(-0.145899\pi\)
−0.831584 + 0.555399i \(0.812566\pi\)
\(888\) 327.143 + 188.876i 0.368404 + 0.212698i
\(889\) 1248.92 1248.92i 1.40486 1.40486i
\(890\) −146.669 547.375i −0.164796 0.615028i
\(891\) −101.233 + 27.1252i −0.113617 + 0.0304435i
\(892\) 933.546 + 933.546i 1.04658 + 1.04658i
\(893\) −167.285 + 289.747i −0.187330 + 0.324464i
\(894\) −685.021 + 395.497i −0.766242 + 0.442390i
\(895\) −17.4647 + 65.1793i −0.0195137 + 0.0728260i
\(896\) 1385.47i 1.54629i
\(897\) −95.0310 22.2267i −0.105943 0.0247790i
\(898\) −1478.12 −1.64601
\(899\) −345.789 92.6538i −0.384637 0.103063i
\(900\) 341.341 + 591.220i 0.379268 + 0.656911i
\(901\) 573.712 + 331.233i 0.636750 + 0.367628i
\(902\) 1574.10 1574.10i 1.74512 1.74512i
\(903\) 105.698 + 394.471i 0.117052 + 0.436845i
\(904\) 663.432 177.766i 0.733885 0.196644i
\(905\) −137.424 137.424i −0.151850 0.151850i
\(906\) 466.969 808.814i 0.515418 0.892730i
\(907\) −86.2343 + 49.7874i −0.0950765 + 0.0548924i −0.546784 0.837273i \(-0.684148\pi\)
0.451708 + 0.892166i \(0.350815\pi\)
\(908\) 261.185 974.756i 0.287649 1.07352i
\(909\) 90.1294i 0.0991522i
\(910\) 1163.29 2172.78i 1.27834 2.38767i
\(911\) −902.996 −0.991214 −0.495607 0.868547i \(-0.665054\pi\)
−0.495607 + 0.868547i \(0.665054\pi\)
\(912\) −58.0427 15.5525i −0.0636433 0.0170532i
\(913\) 253.896 + 439.762i 0.278090 + 0.481667i
\(914\) −577.823 333.606i −0.632191 0.364996i
\(915\) −813.405 + 813.405i −0.888967 + 0.888967i
\(916\) 361.005 + 1347.29i 0.394111 + 1.47084i
\(917\) 116.567 31.2341i 0.127118 0.0340611i
\(918\) 141.246 + 141.246i 0.153863 + 0.153863i
\(919\) 481.991 834.834i 0.524474 0.908415i −0.475120 0.879921i \(-0.657595\pi\)
0.999594 0.0284943i \(-0.00907124\pi\)
\(920\) −196.636 + 113.528i −0.213734 + 0.123400i
\(921\) 206.856 771.996i 0.224599 0.838215i
\(922\) 2702.15i 2.93074i
\(923\) 392.165 + 631.617i 0.424881 + 0.684308i
\(924\) 928.043 1.00438
\(925\) −1187.14 318.093i −1.28339 0.343885i
\(926\) −376.540 652.186i −0.406630 0.704304i
\(927\) 318.828 + 184.075i 0.343935 + 0.198571i
\(928\) −1157.01 + 1157.01i −1.24678 + 1.24678i
\(929\) −123.886 462.347i −0.133354 0.497683i 0.866646 0.498924i \(-0.166271\pi\)
−0.999999 + 0.00124161i \(0.999605\pi\)
\(930\) 339.445 90.9540i 0.364995 0.0978000i
\(931\) 60.5911 + 60.5911i 0.0650818 + 0.0650818i
\(932\) −800.378 + 1386.30i −0.858775 + 1.48744i
\(933\) 0.898648 0.518835i 0.000963181 0.000556093i
\(934\) 474.985 1772.67i 0.508549 1.89793i
\(935\) 1113.14i 1.19052i
\(936\) −219.762 + 136.448i −0.234789 + 0.145778i
\(937\) 405.888 0.433178 0.216589 0.976263i \(-0.430507\pi\)
0.216589 + 0.976263i \(0.430507\pi\)
\(938\) 1494.00 + 400.317i 1.59275 + 0.426777i
\(939\) 17.9026 + 31.0082i 0.0190656 + 0.0330226i
\(940\) −1319.67 761.913i −1.40391 0.810546i
\(941\) −507.937 + 507.937i −0.539784 + 0.539784i −0.923465 0.383682i \(-0.874656\pi\)
0.383682 + 0.923465i \(0.374656\pi\)
\(942\) 21.9863 + 82.0539i 0.0233400 + 0.0871060i
\(943\) 251.985 67.5193i 0.267217 0.0716005i
\(944\) 32.4121 + 32.4121i 0.0343348 + 0.0343348i
\(945\) 155.076 268.600i 0.164102 0.284232i
\(946\) −999.315 + 576.955i −1.05636 + 0.609889i
\(947\) −158.360 + 591.006i −0.167222 + 0.624083i 0.830524 + 0.556983i \(0.188041\pi\)
−0.997746 + 0.0670995i \(0.978626\pi\)
\(948\) 474.859i 0.500906i
\(949\) 890.829 + 476.942i 0.938702 + 0.502574i
\(950\) −1253.34 −1.31931
\(951\) 427.068 + 114.433i 0.449073 + 0.120329i
\(952\) −303.351 525.419i −0.318646 0.551911i
\(953\) 884.041 + 510.401i 0.927640 + 0.535573i 0.886064 0.463562i \(-0.153429\pi\)
0.0415756 + 0.999135i \(0.486762\pi\)
\(954\) −368.787 + 368.787i −0.386569 + 0.386569i
\(955\) 527.498 + 1968.65i 0.552354 + 2.06141i
\(956\) −2026.80 + 543.080i −2.12009 + 0.568075i
\(957\) −631.251 631.251i −0.659614 0.659614i
\(958\) −303.073 + 524.938i −0.316360 + 0.547952i
\(959\) −22.0742 + 12.7445i −0.0230179 + 0.0132894i
\(960\) 369.187 1377.83i 0.384570 1.43524i
\(961\) 895.583i 0.931928i
\(962\) 309.208 1322.03i 0.321422 1.37425i
\(963\) −1.52034 −0.00157875
\(964\) −1781.06 477.234i −1.84758 0.495057i
\(965\) −149.390 258.751i −0.154808 0.268135i
\(966\) 156.065 + 90.1044i 0.161558 + 0.0932758i
\(967\) −100.629 + 100.629i −0.104063 + 0.104063i −0.757221 0.653158i \(-0.773444\pi\)
0.653158 + 0.757221i \(0.273444\pi\)
\(968\) 25.0676 + 93.5536i 0.0258963 + 0.0966463i
\(969\) −213.779 + 57.2818i −0.220618 + 0.0591143i
\(970\) 1972.20 + 1972.20i 2.03319 + 2.03319i
\(971\) 746.211 1292.47i 0.768497 1.33108i −0.169881 0.985465i \(-0.554338\pi\)
0.938378 0.345611i \(-0.112328\pi\)
\(972\) −82.1915 + 47.4533i −0.0845592 + 0.0488202i
\(973\) 71.0343 265.104i 0.0730055 0.272460i
\(974\) 2284.54i 2.34552i
\(975\) 575.735 613.863i 0.590497 0.629603i
\(976\) 276.334 0.283130
\(977\) −474.362 127.105i −0.485529 0.130097i 0.00774697 0.999970i \(-0.497534\pi\)
−0.493276 + 0.869873i \(0.664201\pi\)
\(978\) 758.668 + 1314.05i 0.775734 + 1.34361i
\(979\) −227.817 131.530i −0.232703 0.134351i
\(980\) −275.967 + 275.967i −0.281599 + 0.281599i
\(981\) −32.8558 122.620i −0.0334922 0.124995i
\(982\) −2977.61 + 797.849i −3.03219 + 0.812473i
\(983\) −315.927 315.927i −0.321391 0.321391i 0.527909 0.849301i \(-0.322976\pi\)
−0.849301 + 0.527909i \(0.822976\pi\)
\(984\) 345.723 598.809i 0.351344 0.608546i
\(985\) 124.785 72.0446i 0.126685 0.0731417i
\(986\) −440.382 + 1643.53i −0.446635 + 1.66686i
\(987\) 414.831i 0.420295i
\(988\) −26.7679 835.162i −0.0270930 0.845306i
\(989\) −135.225 −0.136729
\(990\) 846.484 + 226.815i 0.855035 + 0.229106i
\(991\) −840.227 1455.32i −0.847857 1.46853i −0.883117 0.469154i \(-0.844559\pi\)
0.0352592 0.999378i \(-0.488774\pi\)
\(992\) −258.944 149.501i −0.261032 0.150707i
\(993\) 171.624 171.624i 0.172834 0.172834i
\(994\) −355.303 1326.01i −0.357448 1.33401i
\(995\) 1001.03 268.224i 1.00606 0.269572i
\(996\) 325.156 + 325.156i 0.326462 + 0.326462i
\(997\) −186.953 + 323.812i −0.187516 + 0.324787i −0.944421 0.328737i \(-0.893377\pi\)
0.756906 + 0.653524i \(0.226710\pi\)
\(998\) 1534.90 886.172i 1.53797 0.887948i
\(999\) 44.2214 165.036i 0.0442656 0.165202i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.3.l.b.28.1 yes 12
3.2 odd 2 117.3.bd.d.28.3 12
13.7 odd 12 inner 39.3.l.b.7.1 12
39.20 even 12 117.3.bd.d.46.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.3.l.b.7.1 12 13.7 odd 12 inner
39.3.l.b.28.1 yes 12 1.1 even 1 trivial
117.3.bd.d.28.3 12 3.2 odd 2
117.3.bd.d.46.3 12 39.20 even 12