Defining parameters
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.l (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(39, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 20 | 24 |
Cusp forms | 28 | 20 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(39, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
39.3.l.a | $8$ | $1.063$ | 8.0.\(\cdots\).10 | None | \(-2\) | \(0\) | \(16\) | \(14\) | \(q+(-\beta _{1}-\beta _{5})q^{2}+(2\beta _{4}-\beta _{5})q^{3}+(1+\cdots)q^{4}+\cdots\) |
39.3.l.b | $12$ | $1.063$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-2\) | \(0\) | \(4\) | \(-32\) | \(q+(-\beta _{1}-\beta _{2})q^{2}+(\beta _{4}+\beta _{5})q^{3}+(-2+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(39, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(39, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)