Properties

Label 39.3.l
Level 3939
Weight 33
Character orbit 39.l
Rep. character χ39(7,)\chi_{39}(7,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 2020
Newform subspaces 22
Sturm bound 1414
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 39=313 39 = 3 \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 39.l (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 2 2
Sturm bound: 1414
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M3(39,[χ])M_{3}(39, [\chi]).

Total New Old
Modular forms 44 20 24
Cusp forms 28 20 8
Eisenstein series 16 0 16

Trace form

20q4q2+20q518q748q830q912q10+8q11+4q13+64q14+24q15+24q16+12q17+24q1890q19140q20+66q2152q22++60q99+O(q100) 20 q - 4 q^{2} + 20 q^{5} - 18 q^{7} - 48 q^{8} - 30 q^{9} - 12 q^{10} + 8 q^{11} + 4 q^{13} + 64 q^{14} + 24 q^{15} + 24 q^{16} + 12 q^{17} + 24 q^{18} - 90 q^{19} - 140 q^{20} + 66 q^{21} - 52 q^{22}+ \cdots + 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(39,[χ])S_{3}^{\mathrm{new}}(39, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
39.3.l.a 39.l 13.f 88 1.0631.063 8.0.\cdots.10 None 39.3.l.a 2-2 00 1616 1414 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(β1β5)q2+(2β4β5)q3+(1+)q4+q+(-\beta _{1}-\beta _{5})q^{2}+(2\beta _{4}-\beta _{5})q^{3}+(1+\cdots)q^{4}+\cdots
39.3.l.b 39.l 13.f 1212 1.0631.063 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 39.3.l.b 2-2 00 44 32-32 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(β1β2)q2+(β4+β5)q3+(2+)q4+q+(-\beta _{1}-\beta _{2})q^{2}+(\beta _{4}+\beta _{5})q^{3}+(-2+\cdots)q^{4}+\cdots

Decomposition of S3old(39,[χ])S_{3}^{\mathrm{old}}(39, [\chi]) into lower level spaces

S3old(39,[χ]) S_{3}^{\mathrm{old}}(39, [\chi]) \simeq S3new(13,[χ])S_{3}^{\mathrm{new}}(13, [\chi])2^{\oplus 2}