Properties

Label 39.3.l
Level $39$
Weight $3$
Character orbit 39.l
Rep. character $\chi_{39}(7,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $20$
Newform subspaces $2$
Sturm bound $14$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 39.l (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(14\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(39, [\chi])\).

Total New Old
Modular forms 44 20 24
Cusp forms 28 20 8
Eisenstein series 16 0 16

Trace form

\( 20 q - 4 q^{2} + 20 q^{5} - 18 q^{7} - 48 q^{8} - 30 q^{9} - 12 q^{10} + 8 q^{11} + 4 q^{13} + 64 q^{14} + 24 q^{15} + 24 q^{16} + 12 q^{17} + 24 q^{18} - 90 q^{19} - 140 q^{20} + 66 q^{21} - 52 q^{22}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(39, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
39.3.l.a 39.l 13.f $8$ $1.063$ 8.0.\(\cdots\).10 None 39.3.l.a \(-2\) \(0\) \(16\) \(14\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{1}-\beta _{5})q^{2}+(2\beta _{4}-\beta _{5})q^{3}+(1+\cdots)q^{4}+\cdots\)
39.3.l.b 39.l 13.f $12$ $1.063$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 39.3.l.b \(-2\) \(0\) \(4\) \(-32\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{1}-\beta _{2})q^{2}+(\beta _{4}+\beta _{5})q^{3}+(-2+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(39, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(39, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)