L(s) = 1 | + (−1.02 + 0.592i)2-s + (−1.29 + 2.24i)4-s − 4.21i·5-s + (−4.97 + 8.62i)7-s − 7.81i·8-s + (2.49 + 4.32i)10-s + (−16.4 + 9.48i)11-s + (−4.13 − 12.3i)13-s − 11.7i·14-s + (−0.568 − 0.985i)16-s + (−7.09 − 4.09i)17-s + (−11.0 + 19.1i)19-s + (9.48 + 5.47i)20-s + (11.2 − 19.4i)22-s + (−17.6 + 10.1i)23-s + ⋯ |
L(s) = 1 | + (−0.512 + 0.296i)2-s + (−0.324 + 0.562i)4-s − 0.843i·5-s + (−0.711 + 1.23i)7-s − 0.976i·8-s + (0.249 + 0.432i)10-s + (−1.49 + 0.862i)11-s + (−0.317 − 0.948i)13-s − 0.842i·14-s + (−0.0355 − 0.0615i)16-s + (−0.417 − 0.241i)17-s + (−0.582 + 1.00i)19-s + (0.474 + 0.273i)20-s + (0.510 − 0.884i)22-s + (−0.765 + 0.442i)23-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.999−0.0236i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(−0.999−0.0236i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.999−0.0236i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), −0.999−0.0236i)
|
Particular Values
L(23) |
≈ |
0.00322433+0.272381i |
L(21) |
≈ |
0.00322433+0.272381i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1+(4.13+12.3i)T |
good | 2 | 1+(1.02−0.592i)T+(2−3.46i)T2 |
| 5 | 1+4.21iT−25T2 |
| 7 | 1+(4.97−8.62i)T+(−24.5−42.4i)T2 |
| 11 | 1+(16.4−9.48i)T+(60.5−104.i)T2 |
| 17 | 1+(7.09+4.09i)T+(144.5+250.i)T2 |
| 19 | 1+(11.0−19.1i)T+(−180.5−312.i)T2 |
| 23 | 1+(17.6−10.1i)T+(264.5−458.i)T2 |
| 29 | 1+(−9.66+5.57i)T+(420.5−728.i)T2 |
| 31 | 1−11.3T+961T2 |
| 37 | 1+(−25.2−43.6i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(−9.23+5.33i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−30.1+52.1i)T+(−924.5−1.60e3i)T2 |
| 47 | 1−71.8iT−2.20e3T2 |
| 53 | 1−12.1iT−2.80e3T2 |
| 59 | 1+(43.4+25.1i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(31.6−54.8i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(36.7+63.6i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+(84.7+48.9i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1−9.79T+5.32e3T2 |
| 79 | 1+17.6T+6.24e3T2 |
| 83 | 1−13.4iT−6.88e3T2 |
| 89 | 1+(143.−83.0i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(53.9−93.4i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.43604911743916067964168482849, −12.48209122367487680196326069182, −12.37219072659551869683126469865, −10.27433509618899227676565235623, −9.416609328141303647486785419469, −8.402596863685913262899236293884, −7.63880632841028694239039277822, −5.93416614306719412719490583954, −4.67555486449492630533226253282, −2.76338745102619428089748818268,
0.21646368705124327691493199509, 2.64966639719665695037307089638, 4.45353632572984827610588953786, 6.13560181458890394945539965163, 7.25082428153658241872637847467, 8.605003574319413291860313141310, 9.883044009218133080443989390253, 10.63652151737667072518578390215, 11.16578591122558418034938377567, 13.03680440870399575162926685041