Properties

Label 117.3.p.a.107.4
Level $117$
Weight $3$
Character 117.107
Analytic conductor $3.188$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(35,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.35");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 32 x^{18} + 690 x^{16} - 7984 x^{14} + 66147 x^{12} - 315440 x^{10} + 1074610 x^{8} + \cdots + 1327104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.4
Root \(-1.02559 - 0.592124i\) of defining polynomial
Character \(\chi\) \(=\) 117.107
Dual form 117.3.p.a.35.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02559 + 0.592124i) q^{2} +(-1.29878 + 2.24955i) q^{4} -4.21775i q^{5} +(-4.97984 + 8.62533i) q^{7} -7.81314i q^{8} +(2.49743 + 4.32568i) q^{10} +(-16.4265 + 9.48387i) q^{11} +(-4.13369 - 12.3253i) q^{13} -11.7947i q^{14} +(-0.568765 - 0.985130i) q^{16} +(-7.09992 - 4.09914i) q^{17} +(-11.0605 + 19.1573i) q^{19} +(9.48805 + 5.47793i) q^{20} +(11.2313 - 19.4531i) q^{22} +(-17.6145 + 10.1697i) q^{23} +7.21054 q^{25} +(11.5376 + 10.1930i) q^{26} +(-12.9354 - 22.4048i) q^{28} +(9.66183 - 5.57826i) q^{29} +11.3212 q^{31} +(28.2322 + 16.2998i) q^{32} +9.70880 q^{34} +(36.3795 + 21.0037i) q^{35} +(25.2130 + 43.6702i) q^{37} -26.1967i q^{38} -32.9539 q^{40} +(9.23379 - 5.33113i) q^{41} +(30.1139 - 52.1588i) q^{43} -49.2698i q^{44} +(12.0435 - 20.8599i) q^{46} +71.8407i q^{47} +(-25.0975 - 43.4702i) q^{49} +(-7.39505 + 4.26954i) q^{50} +(33.0951 + 6.70886i) q^{52} +12.1630i q^{53} +(40.0006 + 69.2831i) q^{55} +(67.3909 + 38.9082i) q^{56} +(-6.60604 + 11.4420i) q^{58} +(-43.4868 - 25.1071i) q^{59} +(-31.6610 + 54.8384i) q^{61} +(-11.6109 + 6.70355i) q^{62} -34.0560 q^{64} +(-51.9850 + 17.4349i) q^{65} +(-36.7269 - 63.6128i) q^{67} +(18.4425 - 10.6478i) q^{68} -49.7472 q^{70} +(-84.7355 - 48.9220i) q^{71} +9.79592 q^{73} +(-51.7163 - 29.8584i) q^{74} +(-28.7302 - 49.7622i) q^{76} -188.912i q^{77} -17.6643 q^{79} +(-4.15504 + 2.39891i) q^{80} +(-6.31338 + 10.9351i) q^{82} +13.4580i q^{83} +(-17.2892 + 29.9457i) q^{85} +71.3246i q^{86} +(74.0988 + 128.343i) q^{88} +(-143.871 + 83.0642i) q^{89} +(126.895 + 25.7234i) q^{91} -52.8329i q^{92} +(-42.5386 - 73.6790i) q^{94} +(80.8008 + 46.6504i) q^{95} +(-53.9353 + 93.4187i) q^{97} +(51.4795 + 29.7217i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24 q^{4} - 6 q^{7} + 12 q^{10} - 2 q^{13} - 104 q^{16} - 92 q^{19} + 44 q^{22} - 116 q^{25} + 76 q^{28} - 156 q^{31} + 80 q^{34} + 148 q^{37} + 328 q^{40} + 186 q^{43} + 164 q^{46} + 8 q^{49} + 392 q^{52}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02559 + 0.592124i −0.512794 + 0.296062i −0.733982 0.679169i \(-0.762340\pi\)
0.221187 + 0.975231i \(0.429007\pi\)
\(3\) 0 0
\(4\) −1.29878 + 2.24955i −0.324695 + 0.562388i
\(5\) 4.21775i 0.843551i −0.906700 0.421775i \(-0.861407\pi\)
0.906700 0.421775i \(-0.138593\pi\)
\(6\) 0 0
\(7\) −4.97984 + 8.62533i −0.711405 + 1.23219i 0.252925 + 0.967486i \(0.418608\pi\)
−0.964330 + 0.264704i \(0.914726\pi\)
\(8\) 7.81314i 0.976643i
\(9\) 0 0
\(10\) 2.49743 + 4.32568i 0.249743 + 0.432568i
\(11\) −16.4265 + 9.48387i −1.49332 + 0.862170i −0.999971 0.00766011i \(-0.997562\pi\)
−0.493351 + 0.869830i \(0.664228\pi\)
\(12\) 0 0
\(13\) −4.13369 12.3253i −0.317977 0.948099i
\(14\) 11.7947i 0.842480i
\(15\) 0 0
\(16\) −0.568765 0.985130i −0.0355478 0.0615707i
\(17\) −7.09992 4.09914i −0.417643 0.241126i 0.276426 0.961035i \(-0.410850\pi\)
−0.694068 + 0.719909i \(0.744183\pi\)
\(18\) 0 0
\(19\) −11.0605 + 19.1573i −0.582130 + 1.00828i 0.413096 + 0.910687i \(0.364447\pi\)
−0.995227 + 0.0975919i \(0.968886\pi\)
\(20\) 9.48805 + 5.47793i 0.474403 + 0.273896i
\(21\) 0 0
\(22\) 11.2313 19.4531i 0.510511 0.884232i
\(23\) −17.6145 + 10.1697i −0.765847 + 0.442162i −0.831391 0.555688i \(-0.812455\pi\)
0.0655444 + 0.997850i \(0.479122\pi\)
\(24\) 0 0
\(25\) 7.21054 0.288422
\(26\) 11.5376 + 10.1930i 0.443752 + 0.392039i
\(27\) 0 0
\(28\) −12.9354 22.4048i −0.461979 0.800171i
\(29\) 9.66183 5.57826i 0.333166 0.192354i −0.324080 0.946030i \(-0.605055\pi\)
0.657246 + 0.753676i \(0.271721\pi\)
\(30\) 0 0
\(31\) 11.3212 0.365200 0.182600 0.983187i \(-0.441549\pi\)
0.182600 + 0.983187i \(0.441549\pi\)
\(32\) 28.2322 + 16.2998i 0.882255 + 0.509370i
\(33\) 0 0
\(34\) 9.70880 0.285553
\(35\) 36.3795 + 21.0037i 1.03942 + 0.600107i
\(36\) 0 0
\(37\) 25.2130 + 43.6702i 0.681432 + 1.18027i 0.974544 + 0.224196i \(0.0719757\pi\)
−0.293112 + 0.956078i \(0.594691\pi\)
\(38\) 26.1967i 0.689387i
\(39\) 0 0
\(40\) −32.9539 −0.823848
\(41\) 9.23379 5.33113i 0.225214 0.130028i −0.383148 0.923687i \(-0.625160\pi\)
0.608362 + 0.793659i \(0.291827\pi\)
\(42\) 0 0
\(43\) 30.1139 52.1588i 0.700323 1.21300i −0.268030 0.963411i \(-0.586373\pi\)
0.968353 0.249585i \(-0.0802941\pi\)
\(44\) 49.2698i 1.11977i
\(45\) 0 0
\(46\) 12.0435 20.8599i 0.261815 0.453476i
\(47\) 71.8407i 1.52852i 0.644906 + 0.764262i \(0.276897\pi\)
−0.644906 + 0.764262i \(0.723103\pi\)
\(48\) 0 0
\(49\) −25.0975 43.4702i −0.512195 0.887147i
\(50\) −7.39505 + 4.26954i −0.147901 + 0.0853907i
\(51\) 0 0
\(52\) 33.0951 + 6.70886i 0.636444 + 0.129016i
\(53\) 12.1630i 0.229490i 0.993395 + 0.114745i \(0.0366051\pi\)
−0.993395 + 0.114745i \(0.963395\pi\)
\(54\) 0 0
\(55\) 40.0006 + 69.2831i 0.727284 + 1.25969i
\(56\) 67.3909 + 38.9082i 1.20341 + 0.694789i
\(57\) 0 0
\(58\) −6.60604 + 11.4420i −0.113897 + 0.197276i
\(59\) −43.4868 25.1071i −0.737064 0.425544i 0.0839366 0.996471i \(-0.473251\pi\)
−0.821001 + 0.570927i \(0.806584\pi\)
\(60\) 0 0
\(61\) −31.6610 + 54.8384i −0.519032 + 0.898990i 0.480723 + 0.876872i \(0.340374\pi\)
−0.999755 + 0.0221175i \(0.992959\pi\)
\(62\) −11.6109 + 6.70355i −0.187272 + 0.108122i
\(63\) 0 0
\(64\) −34.0560 −0.532125
\(65\) −51.9850 + 17.4349i −0.799769 + 0.268229i
\(66\) 0 0
\(67\) −36.7269 63.6128i −0.548163 0.949445i −0.998401 0.0565367i \(-0.981994\pi\)
0.450238 0.892909i \(-0.351339\pi\)
\(68\) 18.4425 10.6478i 0.271213 0.156585i
\(69\) 0 0
\(70\) −49.7472 −0.710675
\(71\) −84.7355 48.9220i −1.19346 0.689043i −0.234368 0.972148i \(-0.575302\pi\)
−0.959089 + 0.283105i \(0.908635\pi\)
\(72\) 0 0
\(73\) 9.79592 0.134191 0.0670953 0.997747i \(-0.478627\pi\)
0.0670953 + 0.997747i \(0.478627\pi\)
\(74\) −51.7163 29.8584i −0.698869 0.403492i
\(75\) 0 0
\(76\) −28.7302 49.7622i −0.378029 0.654766i
\(77\) 188.912i 2.45341i
\(78\) 0 0
\(79\) −17.6643 −0.223599 −0.111799 0.993731i \(-0.535661\pi\)
−0.111799 + 0.993731i \(0.535661\pi\)
\(80\) −4.15504 + 2.39891i −0.0519380 + 0.0299864i
\(81\) 0 0
\(82\) −6.31338 + 10.9351i −0.0769924 + 0.133355i
\(83\) 13.4580i 0.162145i 0.996708 + 0.0810724i \(0.0258345\pi\)
−0.996708 + 0.0810724i \(0.974166\pi\)
\(84\) 0 0
\(85\) −17.2892 + 29.9457i −0.203402 + 0.352303i
\(86\) 71.3246i 0.829356i
\(87\) 0 0
\(88\) 74.0988 + 128.343i 0.842032 + 1.45844i
\(89\) −143.871 + 83.0642i −1.61653 + 0.933305i −0.628724 + 0.777628i \(0.716423\pi\)
−0.987808 + 0.155677i \(0.950244\pi\)
\(90\) 0 0
\(91\) 126.895 + 25.7234i 1.39445 + 0.282675i
\(92\) 52.8329i 0.574270i
\(93\) 0 0
\(94\) −42.5386 73.6790i −0.452538 0.783819i
\(95\) 80.8008 + 46.6504i 0.850535 + 0.491057i
\(96\) 0 0
\(97\) −53.9353 + 93.4187i −0.556034 + 0.963079i 0.441788 + 0.897119i \(0.354344\pi\)
−0.997822 + 0.0659597i \(0.978989\pi\)
\(98\) 51.4795 + 29.7217i 0.525301 + 0.303283i
\(99\) 0 0
\(100\) −9.36490 + 16.2205i −0.0936490 + 0.162205i
\(101\) 74.7414 43.1520i 0.740014 0.427247i −0.0820604 0.996627i \(-0.526150\pi\)
0.822074 + 0.569380i \(0.192817\pi\)
\(102\) 0 0
\(103\) −35.5732 −0.345371 −0.172686 0.984977i \(-0.555244\pi\)
−0.172686 + 0.984977i \(0.555244\pi\)
\(104\) −96.2992 + 32.2971i −0.925954 + 0.310549i
\(105\) 0 0
\(106\) −7.20199 12.4742i −0.0679433 0.117681i
\(107\) 91.0758 52.5826i 0.851176 0.491427i −0.00987169 0.999951i \(-0.503142\pi\)
0.861047 + 0.508525i \(0.169809\pi\)
\(108\) 0 0
\(109\) −52.4151 −0.480872 −0.240436 0.970665i \(-0.577290\pi\)
−0.240436 + 0.970665i \(0.577290\pi\)
\(110\) −82.0484 47.3707i −0.745895 0.430642i
\(111\) 0 0
\(112\) 11.3294 0.101156
\(113\) 131.527 + 75.9374i 1.16396 + 0.672012i 0.952250 0.305320i \(-0.0987635\pi\)
0.211710 + 0.977333i \(0.432097\pi\)
\(114\) 0 0
\(115\) 42.8934 + 74.2935i 0.372986 + 0.646031i
\(116\) 28.9797i 0.249825i
\(117\) 0 0
\(118\) 59.4661 0.503950
\(119\) 70.7129 40.8261i 0.594226 0.343077i
\(120\) 0 0
\(121\) 119.388 206.785i 0.986674 1.70897i
\(122\) 74.9888i 0.614663i
\(123\) 0 0
\(124\) −14.7037 + 25.4676i −0.118578 + 0.205384i
\(125\) 135.856i 1.08685i
\(126\) 0 0
\(127\) 0.0526860 + 0.0912549i 0.000414851 + 0.000718542i 0.866233 0.499641i \(-0.166535\pi\)
−0.865818 + 0.500359i \(0.833201\pi\)
\(128\) −78.0012 + 45.0340i −0.609384 + 0.351828i
\(129\) 0 0
\(130\) 42.9916 48.6626i 0.330705 0.374328i
\(131\) 199.955i 1.52638i 0.646176 + 0.763189i \(0.276367\pi\)
−0.646176 + 0.763189i \(0.723633\pi\)
\(132\) 0 0
\(133\) −110.159 190.801i −0.828261 1.43459i
\(134\) 75.3334 + 43.4937i 0.562189 + 0.324580i
\(135\) 0 0
\(136\) −32.0272 + 55.4727i −0.235494 + 0.407888i
\(137\) 77.1055 + 44.5169i 0.562814 + 0.324941i 0.754274 0.656560i \(-0.227989\pi\)
−0.191460 + 0.981500i \(0.561322\pi\)
\(138\) 0 0
\(139\) 51.4076 89.0405i 0.369839 0.640579i −0.619701 0.784838i \(-0.712746\pi\)
0.989540 + 0.144258i \(0.0460796\pi\)
\(140\) −94.4979 + 54.5584i −0.674985 + 0.389703i
\(141\) 0 0
\(142\) 115.872 0.815997
\(143\) 184.794 + 163.258i 1.29226 + 1.14167i
\(144\) 0 0
\(145\) −23.5277 40.7512i −0.162260 0.281043i
\(146\) −10.0466 + 5.80040i −0.0688122 + 0.0397287i
\(147\) 0 0
\(148\) −130.984 −0.885029
\(149\) −113.193 65.3518i −0.759682 0.438603i 0.0694993 0.997582i \(-0.477860\pi\)
−0.829182 + 0.558979i \(0.811193\pi\)
\(150\) 0 0
\(151\) 43.2696 0.286554 0.143277 0.989683i \(-0.454236\pi\)
0.143277 + 0.989683i \(0.454236\pi\)
\(152\) 149.679 + 86.4171i 0.984729 + 0.568533i
\(153\) 0 0
\(154\) 111.860 + 193.747i 0.726361 + 1.25809i
\(155\) 47.7500i 0.308065i
\(156\) 0 0
\(157\) −187.971 −1.19727 −0.598633 0.801024i \(-0.704289\pi\)
−0.598633 + 0.801024i \(0.704289\pi\)
\(158\) 18.1163 10.4594i 0.114660 0.0661990i
\(159\) 0 0
\(160\) 68.7487 119.076i 0.429680 0.744227i
\(161\) 202.574i 1.25822i
\(162\) 0 0
\(163\) 112.682 195.171i 0.691301 1.19737i −0.280111 0.959968i \(-0.590371\pi\)
0.971412 0.237401i \(-0.0762954\pi\)
\(164\) 27.6958i 0.168877i
\(165\) 0 0
\(166\) −7.96881 13.8024i −0.0480049 0.0831469i
\(167\) −109.448 + 63.1901i −0.655380 + 0.378384i −0.790514 0.612443i \(-0.790187\pi\)
0.135134 + 0.990827i \(0.456853\pi\)
\(168\) 0 0
\(169\) −134.825 + 101.898i −0.797782 + 0.602946i
\(170\) 40.9493i 0.240878i
\(171\) 0 0
\(172\) 78.2226 + 135.485i 0.454782 + 0.787706i
\(173\) 127.224 + 73.4527i 0.735398 + 0.424582i 0.820394 0.571799i \(-0.193754\pi\)
−0.0849956 + 0.996381i \(0.527088\pi\)
\(174\) 0 0
\(175\) −35.9073 + 62.1933i −0.205185 + 0.355390i
\(176\) 18.6857 + 10.7882i 0.106169 + 0.0612965i
\(177\) 0 0
\(178\) 98.3686 170.379i 0.552632 0.957187i
\(179\) −216.513 + 125.004i −1.20957 + 0.698346i −0.962666 0.270693i \(-0.912747\pi\)
−0.246906 + 0.969039i \(0.579414\pi\)
\(180\) 0 0
\(181\) −246.457 −1.36164 −0.680821 0.732450i \(-0.738377\pi\)
−0.680821 + 0.732450i \(0.738377\pi\)
\(182\) −145.373 + 48.7558i −0.798754 + 0.267889i
\(183\) 0 0
\(184\) 79.4575 + 137.624i 0.431834 + 0.747959i
\(185\) 184.190 106.342i 0.995622 0.574822i
\(186\) 0 0
\(187\) 155.503 0.831566
\(188\) −161.609 93.3051i −0.859623 0.496304i
\(189\) 0 0
\(190\) −110.491 −0.581533
\(191\) −116.707 67.3810i −0.611033 0.352780i 0.162337 0.986735i \(-0.448097\pi\)
−0.773370 + 0.633955i \(0.781430\pi\)
\(192\) 0 0
\(193\) 72.8800 + 126.232i 0.377617 + 0.654051i 0.990715 0.135956i \(-0.0434104\pi\)
−0.613098 + 0.790007i \(0.710077\pi\)
\(194\) 127.746i 0.658482i
\(195\) 0 0
\(196\) 130.385 0.665228
\(197\) 119.773 69.1510i 0.607985 0.351020i −0.164192 0.986428i \(-0.552502\pi\)
0.772176 + 0.635408i \(0.219168\pi\)
\(198\) 0 0
\(199\) −134.850 + 233.568i −0.677640 + 1.17371i 0.298050 + 0.954550i \(0.403664\pi\)
−0.975690 + 0.219156i \(0.929670\pi\)
\(200\) 56.3370i 0.281685i
\(201\) 0 0
\(202\) −51.1026 + 88.5124i −0.252983 + 0.438180i
\(203\) 111.115i 0.547366i
\(204\) 0 0
\(205\) −22.4854 38.9459i −0.109685 0.189980i
\(206\) 36.4835 21.0638i 0.177104 0.102251i
\(207\) 0 0
\(208\) −9.79091 + 11.0824i −0.0470717 + 0.0532809i
\(209\) 419.584i 2.00758i
\(210\) 0 0
\(211\) −18.7716 32.5133i −0.0889647 0.154091i 0.818109 0.575063i \(-0.195023\pi\)
−0.907074 + 0.420972i \(0.861689\pi\)
\(212\) −27.3612 15.7970i −0.129062 0.0745142i
\(213\) 0 0
\(214\) −62.2709 + 107.856i −0.290985 + 0.504001i
\(215\) −219.993 127.013i −1.02322 0.590758i
\(216\) 0 0
\(217\) −56.3777 + 97.6491i −0.259805 + 0.449996i
\(218\) 53.7563 31.0362i 0.246589 0.142368i
\(219\) 0 0
\(220\) −207.808 −0.944581
\(221\) −21.1742 + 104.453i −0.0958107 + 0.472639i
\(222\) 0 0
\(223\) −59.4033 102.890i −0.266383 0.461388i 0.701542 0.712628i \(-0.252495\pi\)
−0.967925 + 0.251239i \(0.919162\pi\)
\(224\) −281.183 + 162.341i −1.25528 + 0.724737i
\(225\) 0 0
\(226\) −179.857 −0.795829
\(227\) 57.6521 + 33.2855i 0.253974 + 0.146632i 0.621583 0.783349i \(-0.286490\pi\)
−0.367609 + 0.929981i \(0.619823\pi\)
\(228\) 0 0
\(229\) 251.034 1.09622 0.548108 0.836407i \(-0.315348\pi\)
0.548108 + 0.836407i \(0.315348\pi\)
\(230\) −87.9819 50.7964i −0.382530 0.220854i
\(231\) 0 0
\(232\) −43.5837 75.4892i −0.187861 0.325385i
\(233\) 113.740i 0.488152i 0.969756 + 0.244076i \(0.0784847\pi\)
−0.969756 + 0.244076i \(0.921515\pi\)
\(234\) 0 0
\(235\) 303.006 1.28939
\(236\) 112.959 65.2172i 0.478642 0.276344i
\(237\) 0 0
\(238\) −48.3482 + 83.7416i −0.203144 + 0.351855i
\(239\) 41.0252i 0.171653i 0.996310 + 0.0858267i \(0.0273531\pi\)
−0.996310 + 0.0858267i \(0.972647\pi\)
\(240\) 0 0
\(241\) −153.259 + 265.452i −0.635930 + 1.10146i 0.350388 + 0.936605i \(0.386050\pi\)
−0.986317 + 0.164858i \(0.947284\pi\)
\(242\) 282.769i 1.16847i
\(243\) 0 0
\(244\) −82.2411 142.446i −0.337054 0.583794i
\(245\) −183.347 + 105.855i −0.748354 + 0.432062i
\(246\) 0 0
\(247\) 281.840 + 57.1330i 1.14105 + 0.231308i
\(248\) 88.4541i 0.356670i
\(249\) 0 0
\(250\) 80.4437 + 139.333i 0.321775 + 0.557330i
\(251\) 311.446 + 179.814i 1.24082 + 0.716389i 0.969262 0.246032i \(-0.0791269\pi\)
0.271561 + 0.962421i \(0.412460\pi\)
\(252\) 0 0
\(253\) 192.897 334.107i 0.762437 1.32058i
\(254\) −0.108068 0.0623933i −0.000425466 0.000245643i
\(255\) 0 0
\(256\) 121.443 210.346i 0.474388 0.821665i
\(257\) 84.3262 48.6857i 0.328117 0.189439i −0.326888 0.945063i \(-0.606000\pi\)
0.655005 + 0.755625i \(0.272667\pi\)
\(258\) 0 0
\(259\) −502.226 −1.93910
\(260\) 28.2963 139.587i 0.108832 0.536873i
\(261\) 0 0
\(262\) −118.398 205.072i −0.451902 0.782718i
\(263\) −1.56065 + 0.901039i −0.00593401 + 0.00342600i −0.502964 0.864307i \(-0.667757\pi\)
0.497030 + 0.867733i \(0.334424\pi\)
\(264\) 0 0
\(265\) 51.3005 0.193587
\(266\) 225.955 + 130.455i 0.849455 + 0.490433i
\(267\) 0 0
\(268\) 190.800 0.711942
\(269\) −458.960 264.981i −1.70617 0.985059i −0.939195 0.343384i \(-0.888427\pi\)
−0.766977 0.641675i \(-0.778240\pi\)
\(270\) 0 0
\(271\) −45.6359 79.0437i −0.168398 0.291674i 0.769459 0.638697i \(-0.220526\pi\)
−0.937857 + 0.347022i \(0.887193\pi\)
\(272\) 9.32580i 0.0342860i
\(273\) 0 0
\(274\) −105.438 −0.384811
\(275\) −118.444 + 68.3839i −0.430707 + 0.248669i
\(276\) 0 0
\(277\) 134.386 232.763i 0.485147 0.840299i −0.514707 0.857366i \(-0.672099\pi\)
0.999854 + 0.0170668i \(0.00543278\pi\)
\(278\) 121.759i 0.437981i
\(279\) 0 0
\(280\) 164.105 284.238i 0.586090 1.01514i
\(281\) 144.003i 0.512465i −0.966615 0.256233i \(-0.917519\pi\)
0.966615 0.256233i \(-0.0824813\pi\)
\(282\) 0 0
\(283\) 58.3176 + 101.009i 0.206069 + 0.356923i 0.950473 0.310807i \(-0.100599\pi\)
−0.744404 + 0.667730i \(0.767266\pi\)
\(284\) 220.105 127.078i 0.775018 0.447457i
\(285\) 0 0
\(286\) −286.191 58.0152i −1.00067 0.202850i
\(287\) 106.193i 0.370009i
\(288\) 0 0
\(289\) −110.894 192.074i −0.383716 0.664616i
\(290\) 48.2595 + 27.8627i 0.166412 + 0.0960781i
\(291\) 0 0
\(292\) −12.7227 + 22.0364i −0.0435710 + 0.0754672i
\(293\) 134.482 + 77.6432i 0.458983 + 0.264994i 0.711617 0.702568i \(-0.247963\pi\)
−0.252634 + 0.967562i \(0.581297\pi\)
\(294\) 0 0
\(295\) −105.896 + 183.417i −0.358968 + 0.621751i
\(296\) 341.201 196.993i 1.15271 0.665515i
\(297\) 0 0
\(298\) 154.786 0.519414
\(299\) 198.158 + 175.065i 0.662734 + 0.585501i
\(300\) 0 0
\(301\) 299.925 + 519.485i 0.996427 + 1.72586i
\(302\) −44.3768 + 25.6210i −0.146943 + 0.0848376i
\(303\) 0 0
\(304\) 25.1633 0.0827739
\(305\) 231.295 + 133.538i 0.758344 + 0.437830i
\(306\) 0 0
\(307\) 121.197 0.394777 0.197388 0.980325i \(-0.436754\pi\)
0.197388 + 0.980325i \(0.436754\pi\)
\(308\) 424.968 + 245.355i 1.37977 + 0.796609i
\(309\) 0 0
\(310\) 28.2739 + 48.9719i 0.0912063 + 0.157974i
\(311\) 4.80610i 0.0154537i −0.999970 0.00772686i \(-0.997540\pi\)
0.999970 0.00772686i \(-0.00245956\pi\)
\(312\) 0 0
\(313\) −43.5018 −0.138983 −0.0694916 0.997583i \(-0.522138\pi\)
−0.0694916 + 0.997583i \(0.522138\pi\)
\(314\) 192.781 111.302i 0.613951 0.354465i
\(315\) 0 0
\(316\) 22.9420 39.7367i 0.0726013 0.125749i
\(317\) 498.372i 1.57215i 0.618130 + 0.786076i \(0.287891\pi\)
−0.618130 + 0.786076i \(0.712109\pi\)
\(318\) 0 0
\(319\) −105.807 + 183.263i −0.331683 + 0.574492i
\(320\) 143.640i 0.448874i
\(321\) 0 0
\(322\) 119.949 + 207.758i 0.372512 + 0.645210i
\(323\) 157.057 90.6769i 0.486245 0.280734i
\(324\) 0 0
\(325\) −29.8062 88.8720i −0.0917114 0.273452i
\(326\) 266.887i 0.818672i
\(327\) 0 0
\(328\) −41.6529 72.1449i −0.126990 0.219954i
\(329\) −619.649 357.755i −1.88343 1.08740i
\(330\) 0 0
\(331\) 282.481 489.272i 0.853418 1.47816i −0.0246877 0.999695i \(-0.507859\pi\)
0.878105 0.478467i \(-0.158808\pi\)
\(332\) −30.2745 17.4790i −0.0911882 0.0526475i
\(333\) 0 0
\(334\) 74.8327 129.614i 0.224050 0.388066i
\(335\) −268.303 + 154.905i −0.800906 + 0.462403i
\(336\) 0 0
\(337\) 593.567 1.76133 0.880663 0.473743i \(-0.157097\pi\)
0.880663 + 0.473743i \(0.157097\pi\)
\(338\) 77.9389 184.339i 0.230589 0.545380i
\(339\) 0 0
\(340\) −44.9096 77.7857i −0.132087 0.228782i
\(341\) −185.968 + 107.369i −0.545361 + 0.314864i
\(342\) 0 0
\(343\) 11.9027 0.0347016
\(344\) −407.524 235.284i −1.18466 0.683966i
\(345\) 0 0
\(346\) −173.972 −0.502811
\(347\) 285.437 + 164.797i 0.822586 + 0.474920i 0.851307 0.524667i \(-0.175810\pi\)
−0.0287216 + 0.999587i \(0.509144\pi\)
\(348\) 0 0
\(349\) 49.6917 + 86.0685i 0.142383 + 0.246615i 0.928394 0.371598i \(-0.121190\pi\)
−0.786010 + 0.618213i \(0.787857\pi\)
\(350\) 85.0464i 0.242990i
\(351\) 0 0
\(352\) −618.342 −1.75665
\(353\) 121.195 69.9722i 0.343330 0.198222i −0.318414 0.947952i \(-0.603150\pi\)
0.661744 + 0.749730i \(0.269817\pi\)
\(354\) 0 0
\(355\) −206.341 + 357.393i −0.581243 + 1.00674i
\(356\) 431.528i 1.21216i
\(357\) 0 0
\(358\) 148.036 256.405i 0.413508 0.716216i
\(359\) 477.480i 1.33003i −0.746831 0.665014i \(-0.768425\pi\)
0.746831 0.665014i \(-0.231575\pi\)
\(360\) 0 0
\(361\) −64.1683 111.143i −0.177751 0.307874i
\(362\) 252.764 145.933i 0.698242 0.403130i
\(363\) 0 0
\(364\) −222.674 + 252.047i −0.611742 + 0.692437i
\(365\) 41.3168i 0.113197i
\(366\) 0 0
\(367\) −85.7664 148.552i −0.233696 0.404773i 0.725197 0.688541i \(-0.241749\pi\)
−0.958893 + 0.283768i \(0.908415\pi\)
\(368\) 20.0370 + 11.5684i 0.0544484 + 0.0314358i
\(369\) 0 0
\(370\) −125.935 + 218.127i −0.340366 + 0.589531i
\(371\) −104.910 60.5696i −0.282775 0.163260i
\(372\) 0 0
\(373\) −236.337 + 409.348i −0.633612 + 1.09745i 0.353195 + 0.935550i \(0.385095\pi\)
−0.986807 + 0.161899i \(0.948238\pi\)
\(374\) −159.482 + 92.0770i −0.426423 + 0.246195i
\(375\) 0 0
\(376\) 561.301 1.49282
\(377\) −108.693 96.0259i −0.288309 0.254711i
\(378\) 0 0
\(379\) 60.5549 + 104.884i 0.159775 + 0.276739i 0.934788 0.355207i \(-0.115590\pi\)
−0.775012 + 0.631946i \(0.782256\pi\)
\(380\) −209.885 + 121.177i −0.552328 + 0.318887i
\(381\) 0 0
\(382\) 159.592 0.417779
\(383\) −42.1280 24.3226i −0.109995 0.0635056i 0.443993 0.896030i \(-0.353561\pi\)
−0.553988 + 0.832525i \(0.686895\pi\)
\(384\) 0 0
\(385\) −796.786 −2.06958
\(386\) −149.490 86.3080i −0.387279 0.223596i
\(387\) 0 0
\(388\) −140.100 242.660i −0.361082 0.625413i
\(389\) 685.925i 1.76330i 0.471900 + 0.881652i \(0.343568\pi\)
−0.471900 + 0.881652i \(0.656432\pi\)
\(390\) 0 0
\(391\) 166.749 0.426467
\(392\) −339.639 + 196.091i −0.866426 + 0.500231i
\(393\) 0 0
\(394\) −81.8919 + 141.841i −0.207847 + 0.360002i
\(395\) 74.5036i 0.188617i
\(396\) 0 0
\(397\) −67.8419 + 117.506i −0.170886 + 0.295984i −0.938730 0.344653i \(-0.887996\pi\)
0.767844 + 0.640637i \(0.221330\pi\)
\(398\) 319.392i 0.802493i
\(399\) 0 0
\(400\) −4.10111 7.10333i −0.0102528 0.0177583i
\(401\) −458.427 + 264.673i −1.14321 + 0.660033i −0.947224 0.320573i \(-0.896124\pi\)
−0.195987 + 0.980606i \(0.562791\pi\)
\(402\) 0 0
\(403\) −46.7984 139.537i −0.116125 0.346246i
\(404\) 224.179i 0.554900i
\(405\) 0 0
\(406\) −65.7940 113.959i −0.162054 0.280686i
\(407\) −828.324 478.233i −2.03519 1.17502i
\(408\) 0 0
\(409\) −95.6888 + 165.738i −0.233958 + 0.405227i −0.958969 0.283510i \(-0.908501\pi\)
0.725011 + 0.688737i \(0.241834\pi\)
\(410\) 46.1215 + 26.6283i 0.112492 + 0.0649470i
\(411\) 0 0
\(412\) 46.2017 80.0237i 0.112140 0.194232i
\(413\) 433.114 250.059i 1.04870 0.605469i
\(414\) 0 0
\(415\) 56.7626 0.136777
\(416\) 84.1970 415.348i 0.202397 0.998432i
\(417\) 0 0
\(418\) 248.446 + 430.321i 0.594368 + 1.02948i
\(419\) 447.490 258.359i 1.06800 0.616608i 0.140363 0.990100i \(-0.455173\pi\)
0.927633 + 0.373492i \(0.121840\pi\)
\(420\) 0 0
\(421\) −197.347 −0.468759 −0.234379 0.972145i \(-0.575306\pi\)
−0.234379 + 0.972145i \(0.575306\pi\)
\(422\) 38.5038 + 22.2302i 0.0912412 + 0.0526781i
\(423\) 0 0
\(424\) 95.0311 0.224130
\(425\) −51.1943 29.5570i −0.120457 0.0695460i
\(426\) 0 0
\(427\) −315.333 546.172i −0.738484 1.27909i
\(428\) 273.173i 0.638254i
\(429\) 0 0
\(430\) 300.830 0.699604
\(431\) −651.926 + 376.390i −1.51259 + 0.873294i −0.512697 + 0.858569i \(0.671354\pi\)
−0.999892 + 0.0147244i \(0.995313\pi\)
\(432\) 0 0
\(433\) −55.5839 + 96.2742i −0.128369 + 0.222342i −0.923045 0.384692i \(-0.874308\pi\)
0.794676 + 0.607034i \(0.207641\pi\)
\(434\) 133.530i 0.307674i
\(435\) 0 0
\(436\) 68.0756 117.910i 0.156137 0.270437i
\(437\) 449.928i 1.02958i
\(438\) 0 0
\(439\) 175.861 + 304.600i 0.400594 + 0.693849i 0.993798 0.111203i \(-0.0354705\pi\)
−0.593204 + 0.805052i \(0.702137\pi\)
\(440\) 541.319 312.531i 1.23027 0.710297i
\(441\) 0 0
\(442\) −40.1332 119.664i −0.0907991 0.270732i
\(443\) 260.221i 0.587407i 0.955897 + 0.293704i \(0.0948878\pi\)
−0.955897 + 0.293704i \(0.905112\pi\)
\(444\) 0 0
\(445\) 350.344 + 606.814i 0.787291 + 1.36363i
\(446\) 121.847 + 70.3483i 0.273199 + 0.157732i
\(447\) 0 0
\(448\) 169.593 293.744i 0.378556 0.655679i
\(449\) −9.46292 5.46342i −0.0210755 0.0121680i 0.489425 0.872045i \(-0.337207\pi\)
−0.510501 + 0.859877i \(0.670540\pi\)
\(450\) 0 0
\(451\) −101.119 + 175.144i −0.224212 + 0.388346i
\(452\) −341.650 + 197.252i −0.755863 + 0.436398i
\(453\) 0 0
\(454\) −78.8365 −0.173649
\(455\) 108.495 535.211i 0.238451 1.17629i
\(456\) 0 0
\(457\) −345.420 598.285i −0.755842 1.30916i −0.944955 0.327202i \(-0.893894\pi\)
0.189112 0.981955i \(-0.439439\pi\)
\(458\) −257.457 + 148.643i −0.562134 + 0.324548i
\(459\) 0 0
\(460\) −222.836 −0.484426
\(461\) 537.813 + 310.507i 1.16662 + 0.673550i 0.952882 0.303340i \(-0.0981018\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(462\) 0 0
\(463\) −18.7384 −0.0404716 −0.0202358 0.999795i \(-0.506442\pi\)
−0.0202358 + 0.999795i \(0.506442\pi\)
\(464\) −10.9906 6.34544i −0.0236867 0.0136755i
\(465\) 0 0
\(466\) −67.3479 116.650i −0.144523 0.250322i
\(467\) 75.9065i 0.162541i −0.996692 0.0812704i \(-0.974102\pi\)
0.996692 0.0812704i \(-0.0258977\pi\)
\(468\) 0 0
\(469\) 731.576 1.55986
\(470\) −310.760 + 179.417i −0.661191 + 0.381739i
\(471\) 0 0
\(472\) −196.165 + 339.769i −0.415605 + 0.719849i
\(473\) 1142.39i 2.41519i
\(474\) 0 0
\(475\) −79.7521 + 138.135i −0.167899 + 0.290810i
\(476\) 212.096i 0.445581i
\(477\) 0 0
\(478\) −24.2920 42.0750i −0.0508201 0.0880229i
\(479\) 556.926 321.541i 1.16268 0.671276i 0.210739 0.977542i \(-0.432413\pi\)
0.951946 + 0.306266i \(0.0990797\pi\)
\(480\) 0 0
\(481\) 434.024 491.276i 0.902337 1.02136i
\(482\) 362.993i 0.753098i
\(483\) 0 0
\(484\) 310.116 + 537.137i 0.640736 + 1.10979i
\(485\) 394.017 + 227.486i 0.812406 + 0.469043i
\(486\) 0 0
\(487\) −237.526 + 411.407i −0.487733 + 0.844778i −0.999900 0.0141074i \(-0.995509\pi\)
0.512168 + 0.858886i \(0.328843\pi\)
\(488\) 428.460 + 247.372i 0.877992 + 0.506909i
\(489\) 0 0
\(490\) 125.359 217.128i 0.255834 0.443118i
\(491\) 644.512 372.109i 1.31265 0.757860i 0.330117 0.943940i \(-0.392912\pi\)
0.982535 + 0.186080i \(0.0595785\pi\)
\(492\) 0 0
\(493\) −91.4643 −0.185526
\(494\) −322.882 + 108.289i −0.653606 + 0.219209i
\(495\) 0 0
\(496\) −6.43911 11.1529i −0.0129821 0.0224856i
\(497\) 843.937 487.248i 1.69806 0.980377i
\(498\) 0 0
\(499\) 933.109 1.86996 0.934979 0.354704i \(-0.115418\pi\)
0.934979 + 0.354704i \(0.115418\pi\)
\(500\) 305.615 + 176.447i 0.611231 + 0.352894i
\(501\) 0 0
\(502\) −425.888 −0.848382
\(503\) −796.938 460.112i −1.58437 0.914736i −0.994211 0.107449i \(-0.965732\pi\)
−0.590159 0.807287i \(-0.700935\pi\)
\(504\) 0 0
\(505\) −182.004 315.241i −0.360405 0.624240i
\(506\) 456.875i 0.902915i
\(507\) 0 0
\(508\) −0.273710 −0.000538799
\(509\) 71.9132 41.5191i 0.141283 0.0815700i −0.427692 0.903924i \(-0.640673\pi\)
0.568975 + 0.822354i \(0.307340\pi\)
\(510\) 0 0
\(511\) −48.7821 + 84.4930i −0.0954639 + 0.165348i
\(512\) 72.6339i 0.141863i
\(513\) 0 0
\(514\) −57.6560 + 99.8631i −0.112171 + 0.194286i
\(515\) 150.039i 0.291338i
\(516\) 0 0
\(517\) −681.327 1180.09i −1.31785 2.28258i
\(518\) 515.077 297.380i 0.994358 0.574093i
\(519\) 0 0
\(520\) 136.221 + 406.166i 0.261964 + 0.781089i
\(521\) 455.389i 0.874067i 0.899445 + 0.437033i \(0.143971\pi\)
−0.899445 + 0.437033i \(0.856029\pi\)
\(522\) 0 0
\(523\) −238.853 413.706i −0.456699 0.791025i 0.542086 0.840323i \(-0.317635\pi\)
−0.998784 + 0.0492983i \(0.984302\pi\)
\(524\) −449.810 259.698i −0.858416 0.495607i
\(525\) 0 0
\(526\) 1.06705 1.84819i 0.00202862 0.00351367i
\(527\) −80.3796 46.4072i −0.152523 0.0880592i
\(528\) 0 0
\(529\) −57.6536 + 99.8590i −0.108986 + 0.188769i
\(530\) −52.6132 + 30.3762i −0.0992701 + 0.0573136i
\(531\) 0 0
\(532\) 572.287 1.07573
\(533\) −103.877 91.7718i −0.194892 0.172180i
\(534\) 0 0
\(535\) −221.781 384.135i −0.414543 0.718010i
\(536\) −497.016 + 286.952i −0.927269 + 0.535359i
\(537\) 0 0
\(538\) 627.606 1.16655
\(539\) 824.532 + 476.044i 1.52974 + 0.883198i
\(540\) 0 0
\(541\) 399.422 0.738304 0.369152 0.929369i \(-0.379648\pi\)
0.369152 + 0.929369i \(0.379648\pi\)
\(542\) 93.6074 + 54.0442i 0.172707 + 0.0997126i
\(543\) 0 0
\(544\) −133.631 231.455i −0.245645 0.425469i
\(545\) 221.074i 0.405640i
\(546\) 0 0
\(547\) −348.652 −0.637389 −0.318695 0.947857i \(-0.603244\pi\)
−0.318695 + 0.947857i \(0.603244\pi\)
\(548\) −200.286 + 115.635i −0.365485 + 0.211013i
\(549\) 0 0
\(550\) 80.9834 140.267i 0.147243 0.255032i
\(551\) 246.793i 0.447900i
\(552\) 0 0
\(553\) 87.9653 152.360i 0.159069 0.275516i
\(554\) 318.292i 0.574534i
\(555\) 0 0
\(556\) 133.534 + 231.288i 0.240169 + 0.415985i
\(557\) 209.574 120.998i 0.376255 0.217231i −0.299932 0.953960i \(-0.596964\pi\)
0.676188 + 0.736729i \(0.263631\pi\)
\(558\) 0 0
\(559\) −767.354 155.554i −1.37273 0.278271i
\(560\) 47.7848i 0.0853299i
\(561\) 0 0
\(562\) 85.2675 + 147.688i 0.151721 + 0.262789i
\(563\) −245.890 141.965i −0.436750 0.252158i 0.265468 0.964120i \(-0.414474\pi\)
−0.702218 + 0.711962i \(0.747807\pi\)
\(564\) 0 0
\(565\) 320.285 554.750i 0.566877 0.981859i
\(566\) −119.620 69.0625i −0.211342 0.122019i
\(567\) 0 0
\(568\) −382.235 + 662.050i −0.672949 + 1.16558i
\(569\) 111.778 64.5353i 0.196447 0.113419i −0.398550 0.917147i \(-0.630486\pi\)
0.594997 + 0.803728i \(0.297153\pi\)
\(570\) 0 0
\(571\) 392.417 0.687245 0.343623 0.939108i \(-0.388346\pi\)
0.343623 + 0.939108i \(0.388346\pi\)
\(572\) −607.264 + 203.666i −1.06165 + 0.356060i
\(573\) 0 0
\(574\) −62.8792 108.910i −0.109546 0.189739i
\(575\) −127.010 + 73.3292i −0.220887 + 0.127529i
\(576\) 0 0
\(577\) 929.471 1.61087 0.805434 0.592685i \(-0.201932\pi\)
0.805434 + 0.592685i \(0.201932\pi\)
\(578\) 227.463 + 131.326i 0.393535 + 0.227208i
\(579\) 0 0
\(580\) 122.229 0.210740
\(581\) −116.080 67.0187i −0.199793 0.115351i
\(582\) 0 0
\(583\) −115.352 199.796i −0.197860 0.342703i
\(584\) 76.5369i 0.131056i
\(585\) 0 0
\(586\) −183.898 −0.313819
\(587\) 136.435 78.7705i 0.232427 0.134192i −0.379264 0.925288i \(-0.623823\pi\)
0.611691 + 0.791097i \(0.290490\pi\)
\(588\) 0 0
\(589\) −125.218 + 216.884i −0.212594 + 0.368224i
\(590\) 250.813i 0.425107i
\(591\) 0 0
\(592\) 28.6805 49.6761i 0.0484468 0.0839124i
\(593\) 209.697i 0.353621i 0.984245 + 0.176811i \(0.0565780\pi\)
−0.984245 + 0.176811i \(0.943422\pi\)
\(594\) 0 0
\(595\) −172.195 298.250i −0.289403 0.501260i
\(596\) 294.024 169.755i 0.493330 0.284824i
\(597\) 0 0
\(598\) −306.888 62.2107i −0.513191 0.104031i
\(599\) 210.660i 0.351687i 0.984418 + 0.175843i \(0.0562653\pi\)
−0.984418 + 0.175843i \(0.943735\pi\)
\(600\) 0 0
\(601\) 397.607 + 688.675i 0.661576 + 1.14588i 0.980202 + 0.198002i \(0.0634453\pi\)
−0.318626 + 0.947881i \(0.603221\pi\)
\(602\) −615.199 355.185i −1.02192 0.590008i
\(603\) 0 0
\(604\) −56.1976 + 97.3372i −0.0930424 + 0.161154i
\(605\) −872.170 503.547i −1.44160 0.832310i
\(606\) 0 0
\(607\) −83.2043 + 144.114i −0.137075 + 0.237420i −0.926388 0.376570i \(-0.877103\pi\)
0.789313 + 0.613990i \(0.210437\pi\)
\(608\) −624.522 + 360.568i −1.02717 + 0.593040i
\(609\) 0 0
\(610\) −316.285 −0.518499
\(611\) 885.456 296.967i 1.44919 0.486035i
\(612\) 0 0
\(613\) 345.888 + 599.096i 0.564255 + 0.977318i 0.997119 + 0.0758585i \(0.0241697\pi\)
−0.432864 + 0.901459i \(0.642497\pi\)
\(614\) −124.298 + 71.7634i −0.202439 + 0.116878i
\(615\) 0 0
\(616\) −1476.00 −2.39610
\(617\) 40.2231 + 23.2228i 0.0651914 + 0.0376383i 0.532241 0.846593i \(-0.321350\pi\)
−0.467050 + 0.884231i \(0.654683\pi\)
\(618\) 0 0
\(619\) −603.722 −0.975319 −0.487659 0.873034i \(-0.662149\pi\)
−0.487659 + 0.873034i \(0.662149\pi\)
\(620\) 107.416 + 62.0167i 0.173252 + 0.100027i
\(621\) 0 0
\(622\) 2.84581 + 4.92909i 0.00457526 + 0.00792458i
\(623\) 1654.58i 2.65583i
\(624\) 0 0
\(625\) −392.744 −0.628391
\(626\) 44.6149 25.7584i 0.0712698 0.0411477i
\(627\) 0 0
\(628\) 244.132 422.850i 0.388746 0.673327i
\(629\) 413.406i 0.657244i
\(630\) 0 0
\(631\) −454.672 + 787.515i −0.720558 + 1.24804i 0.240219 + 0.970719i \(0.422781\pi\)
−0.960776 + 0.277324i \(0.910552\pi\)
\(632\) 138.014i 0.218376i
\(633\) 0 0
\(634\) −295.098 511.125i −0.465454 0.806191i
\(635\) 0.384891 0.222217i 0.000606127 0.000349948i
\(636\) 0 0
\(637\) −432.037 + 489.027i −0.678237 + 0.767703i
\(638\) 250.603i 0.392795i
\(639\) 0 0
\(640\) 189.942 + 328.990i 0.296785 + 0.514047i
\(641\) −506.403 292.372i −0.790021 0.456119i 0.0499491 0.998752i \(-0.484094\pi\)
−0.839970 + 0.542633i \(0.817427\pi\)
\(642\) 0 0
\(643\) −313.719 + 543.377i −0.487898 + 0.845065i −0.999903 0.0139178i \(-0.995570\pi\)
0.512005 + 0.858983i \(0.328903\pi\)
\(644\) 455.701 + 263.099i 0.707610 + 0.408539i
\(645\) 0 0
\(646\) −107.384 + 185.994i −0.166229 + 0.287917i
\(647\) 232.943 134.490i 0.360035 0.207866i −0.309061 0.951042i \(-0.600015\pi\)
0.669096 + 0.743176i \(0.266681\pi\)
\(648\) 0 0
\(649\) 952.450 1.46757
\(650\) 83.1921 + 73.4972i 0.127988 + 0.113073i
\(651\) 0 0
\(652\) 292.698 + 506.968i 0.448923 + 0.777558i
\(653\) −496.584 + 286.703i −0.760465 + 0.439055i −0.829463 0.558562i \(-0.811353\pi\)
0.0689977 + 0.997617i \(0.478020\pi\)
\(654\) 0 0
\(655\) 843.363 1.28758
\(656\) −10.5037 6.06432i −0.0160118 0.00924440i
\(657\) 0 0
\(658\) 847.340 1.28775
\(659\) −95.2083 54.9685i −0.144474 0.0834120i 0.426021 0.904713i \(-0.359915\pi\)
−0.570495 + 0.821301i \(0.693248\pi\)
\(660\) 0 0
\(661\) 246.116 + 426.285i 0.372338 + 0.644909i 0.989925 0.141594i \(-0.0452228\pi\)
−0.617586 + 0.786503i \(0.711889\pi\)
\(662\) 669.056i 1.01066i
\(663\) 0 0
\(664\) 105.149 0.158358
\(665\) −804.750 + 464.622i −1.21015 + 0.698680i
\(666\) 0 0
\(667\) −113.459 + 196.516i −0.170103 + 0.294627i
\(668\) 328.280i 0.491437i
\(669\) 0 0
\(670\) 183.446 317.738i 0.273800 0.474235i
\(671\) 1201.07i 1.78998i
\(672\) 0 0
\(673\) 474.953 + 822.642i 0.705725 + 1.22235i 0.966429 + 0.256932i \(0.0827118\pi\)
−0.260705 + 0.965419i \(0.583955\pi\)
\(674\) −608.756 + 351.465i −0.903198 + 0.521462i
\(675\) 0 0
\(676\) −54.1165 435.639i −0.0800540 0.644436i
\(677\) 93.7981i 0.138550i 0.997598 + 0.0692748i \(0.0220685\pi\)
−0.997598 + 0.0692748i \(0.977931\pi\)
\(678\) 0 0
\(679\) −537.178 930.419i −0.791131 1.37028i
\(680\) 233.970 + 135.083i 0.344074 + 0.198651i
\(681\) 0 0
\(682\) 127.151 220.232i 0.186439 0.322921i
\(683\) 384.711 + 222.113i 0.563266 + 0.325202i 0.754455 0.656351i \(-0.227901\pi\)
−0.191189 + 0.981553i \(0.561234\pi\)
\(684\) 0 0
\(685\) 187.761 325.212i 0.274104 0.474762i
\(686\) −12.2072 + 7.04785i −0.0177948 + 0.0102738i
\(687\) 0 0
\(688\) −68.5110 −0.0995799
\(689\) 149.912 50.2780i 0.217579 0.0729725i
\(690\) 0 0
\(691\) −230.253 398.810i −0.333217 0.577148i 0.649924 0.759999i \(-0.274801\pi\)
−0.983141 + 0.182851i \(0.941467\pi\)
\(692\) −330.471 + 190.798i −0.477560 + 0.275719i
\(693\) 0 0
\(694\) −390.322 −0.562423
\(695\) −375.551 216.825i −0.540361 0.311978i
\(696\) 0 0
\(697\) −87.4122 −0.125412
\(698\) −101.926 58.8473i −0.146026 0.0843084i
\(699\) 0 0
\(700\) −93.2714 161.551i −0.133245 0.230787i
\(701\) 817.244i 1.16583i 0.812535 + 0.582913i \(0.198087\pi\)
−0.812535 + 0.582913i \(0.801913\pi\)
\(702\) 0 0
\(703\) −1115.47 −1.58673
\(704\) 559.422 322.983i 0.794634 0.458782i
\(705\) 0 0
\(706\) −82.8645 + 143.525i −0.117372 + 0.203294i
\(707\) 859.559i 1.21578i
\(708\) 0 0
\(709\) 0.0790417 0.136904i 0.000111483 0.000193095i −0.865970 0.500097i \(-0.833298\pi\)
0.866081 + 0.499903i \(0.166631\pi\)
\(710\) 488.718i 0.688335i
\(711\) 0 0
\(712\) 648.992 + 1124.09i 0.911506 + 1.57877i
\(713\) −199.417 + 115.133i −0.279687 + 0.161477i
\(714\) 0 0
\(715\) 688.584 779.414i 0.963054 1.09009i
\(716\) 649.410i 0.906997i
\(717\) 0 0
\(718\) 282.727 + 489.698i 0.393771 + 0.682031i
\(719\) 68.0663 + 39.2981i 0.0946681 + 0.0546566i 0.546587 0.837403i \(-0.315927\pi\)
−0.451919 + 0.892059i \(0.649260\pi\)
\(720\) 0 0
\(721\) 177.149 306.831i 0.245699 0.425563i
\(722\) 131.620 + 75.9911i 0.182300 + 0.105251i
\(723\) 0 0
\(724\) 320.093 554.418i 0.442118 0.765771i
\(725\) 69.6670 40.2223i 0.0960925 0.0554790i
\(726\) 0 0
\(727\) −655.351 −0.901445 −0.450723 0.892664i \(-0.648834\pi\)
−0.450723 + 0.892664i \(0.648834\pi\)
\(728\) 200.981 991.447i 0.276072 1.36188i
\(729\) 0 0
\(730\) 24.4647 + 42.3740i 0.0335132 + 0.0580466i
\(731\) −427.613 + 246.882i −0.584970 + 0.337732i
\(732\) 0 0
\(733\) −790.442 −1.07837 −0.539183 0.842189i \(-0.681267\pi\)
−0.539183 + 0.842189i \(0.681267\pi\)
\(734\) 175.922 + 101.569i 0.239676 + 0.138377i
\(735\) 0 0
\(736\) −663.059 −0.900896
\(737\) 1206.59 + 696.626i 1.63717 + 0.945218i
\(738\) 0 0
\(739\) 288.669 + 499.989i 0.390621 + 0.676575i 0.992532 0.121988i \(-0.0389270\pi\)
−0.601911 + 0.798564i \(0.705594\pi\)
\(740\) 552.460i 0.746567i
\(741\) 0 0
\(742\) 143.459 0.193341
\(743\) 558.106 322.223i 0.751152 0.433678i −0.0749578 0.997187i \(-0.523882\pi\)
0.826110 + 0.563509i \(0.190549\pi\)
\(744\) 0 0
\(745\) −275.638 + 477.419i −0.369984 + 0.640831i
\(746\) 559.764i 0.750354i
\(747\) 0 0
\(748\) −201.964 + 349.812i −0.270005 + 0.467663i
\(749\) 1047.41i 1.39841i
\(750\) 0 0
\(751\) 151.686 + 262.728i 0.201979 + 0.349837i 0.949166 0.314776i \(-0.101929\pi\)
−0.747187 + 0.664614i \(0.768596\pi\)
\(752\) 70.7724 40.8605i 0.0941123 0.0543357i
\(753\) 0 0
\(754\) 168.333 + 34.1236i 0.223254 + 0.0452567i
\(755\) 182.501i 0.241723i
\(756\) 0 0
\(757\) −571.558 989.968i −0.755030 1.30775i −0.945359 0.326031i \(-0.894289\pi\)
0.190329 0.981720i \(-0.439045\pi\)
\(758\) −124.209 71.7120i −0.163864 0.0946068i
\(759\) 0 0
\(760\) 364.486 631.308i 0.479587 0.830669i
\(761\) −442.623 255.549i −0.581634 0.335806i 0.180149 0.983639i \(-0.442342\pi\)
−0.761782 + 0.647833i \(0.775675\pi\)
\(762\) 0 0
\(763\) 261.018 452.097i 0.342095 0.592526i
\(764\) 303.154 175.026i 0.396798 0.229092i
\(765\) 0 0
\(766\) 57.6080 0.0752063
\(767\) −129.691 + 639.772i −0.169089 + 0.834123i
\(768\) 0 0
\(769\) −373.414 646.772i −0.485584 0.841056i 0.514279 0.857623i \(-0.328060\pi\)
−0.999863 + 0.0165667i \(0.994726\pi\)
\(770\) 817.175 471.796i 1.06127 0.612723i
\(771\) 0 0
\(772\) −378.620 −0.490440
\(773\) −219.390 126.665i −0.283816 0.163861i 0.351334 0.936250i \(-0.385728\pi\)
−0.635150 + 0.772389i \(0.719062\pi\)
\(774\) 0 0
\(775\) 81.6320 0.105332
\(776\) 729.893 + 421.404i 0.940584 + 0.543047i
\(777\) 0 0
\(778\) −406.153 703.477i −0.522047 0.904213i
\(779\) 235.859i 0.302772i
\(780\) 0 0
\(781\) 1855.88 2.37629
\(782\) −171.015 + 98.7358i −0.218690 + 0.126261i
\(783\) 0 0
\(784\) −28.5492 + 49.4487i −0.0364148 + 0.0630723i
\(785\) 792.814i 1.00995i
\(786\) 0 0
\(787\) 586.543 1015.92i 0.745290 1.29088i −0.204770 0.978810i \(-0.565645\pi\)
0.950059 0.312069i \(-0.101022\pi\)
\(788\) 359.247i 0.455897i
\(789\) 0 0
\(790\) −44.1154 76.4101i −0.0558423 0.0967216i
\(791\) −1309.97 + 756.312i −1.65609 + 0.956146i
\(792\) 0 0
\(793\) 806.775 + 163.545i 1.01737 + 0.206236i
\(794\) 160.683i 0.202372i
\(795\) 0 0
\(796\) −350.281 606.705i −0.440052 0.762192i
\(797\) 389.097 + 224.645i 0.488203 + 0.281864i 0.723828 0.689980i \(-0.242381\pi\)
−0.235626 + 0.971844i \(0.575714\pi\)
\(798\) 0 0
\(799\) 294.485 510.063i 0.368567 0.638377i
\(800\) 203.569 + 117.531i 0.254462 + 0.146913i
\(801\) 0 0
\(802\) 313.439 542.892i 0.390821 0.676922i
\(803\) −160.913 + 92.9032i −0.200390 + 0.115695i
\(804\) 0 0
\(805\) −854.408 −1.06138
\(806\) 130.619 + 115.397i 0.162058 + 0.143173i
\(807\) 0 0
\(808\) −337.153 583.965i −0.417268 0.722729i
\(809\) 1003.93 579.621i 1.24096 0.716466i 0.271667 0.962391i \(-0.412425\pi\)
0.969289 + 0.245925i \(0.0790918\pi\)
\(810\) 0 0
\(811\) −278.983 −0.343999 −0.171999 0.985097i \(-0.555023\pi\)
−0.171999 + 0.985097i \(0.555023\pi\)
\(812\) −249.959 144.314i −0.307832 0.177727i
\(813\) 0 0
\(814\) 1132.69 1.39151
\(815\) −823.183 475.265i −1.01004 0.583147i
\(816\) 0 0
\(817\) 666.148 + 1153.80i 0.815359 + 1.41224i
\(818\) 226.638i 0.277064i
\(819\) 0 0
\(820\) 116.814 0.142456
\(821\) 429.565 248.010i 0.523222 0.302082i −0.215030 0.976607i \(-0.568985\pi\)
0.738252 + 0.674525i \(0.235652\pi\)
\(822\) 0 0
\(823\) 7.30758 12.6571i 0.00887920 0.0153792i −0.861552 0.507670i \(-0.830507\pi\)
0.870431 + 0.492291i \(0.163840\pi\)
\(824\) 277.939i 0.337304i
\(825\) 0 0
\(826\) −296.131 + 512.915i −0.358513 + 0.620962i
\(827\) 531.778i 0.643021i −0.946906 0.321510i \(-0.895810\pi\)
0.946906 0.321510i \(-0.104190\pi\)
\(828\) 0 0
\(829\) −185.562 321.403i −0.223839 0.387700i 0.732132 0.681163i \(-0.238526\pi\)
−0.955970 + 0.293463i \(0.905192\pi\)
\(830\) −58.2151 + 33.6105i −0.0701387 + 0.0404946i
\(831\) 0 0
\(832\) 140.777 + 419.750i 0.169203 + 0.504507i
\(833\) 411.514i 0.494014i
\(834\) 0 0
\(835\) 266.520 + 461.627i 0.319186 + 0.552846i
\(836\) 943.876 + 544.947i 1.12904 + 0.651851i
\(837\) 0 0
\(838\) −305.961 + 529.940i −0.365108 + 0.632386i
\(839\) 567.195 + 327.470i 0.676037 + 0.390310i 0.798360 0.602180i \(-0.205701\pi\)
−0.122323 + 0.992490i \(0.539034\pi\)
\(840\) 0 0
\(841\) −358.266 + 620.535i −0.426000 + 0.737854i
\(842\) 202.397 116.854i 0.240377 0.138782i
\(843\) 0 0
\(844\) 97.5204 0.115545
\(845\) 429.780 + 568.659i 0.508616 + 0.672970i
\(846\) 0 0
\(847\) 1189.06 + 2059.51i 1.40385 + 2.43154i
\(848\) 11.9821 6.91788i 0.0141299 0.00815788i
\(849\) 0 0
\(850\) 70.0057 0.0823597
\(851\) −888.226 512.818i −1.04374 0.602606i
\(852\) 0 0
\(853\) −1463.35 −1.71553 −0.857766 0.514040i \(-0.828148\pi\)
−0.857766 + 0.514040i \(0.828148\pi\)
\(854\) 646.803 + 373.432i 0.757381 + 0.437274i
\(855\) 0 0
\(856\) −410.836 711.588i −0.479948 0.831295i
\(857\) 535.499i 0.624853i −0.949942 0.312427i \(-0.898858\pi\)
0.949942 0.312427i \(-0.101142\pi\)
\(858\) 0 0
\(859\) −724.656 −0.843604 −0.421802 0.906688i \(-0.638602\pi\)
−0.421802 + 0.906688i \(0.638602\pi\)
\(860\) 571.444 329.924i 0.664470 0.383632i
\(861\) 0 0
\(862\) 445.739 772.042i 0.517098 0.895640i
\(863\) 479.621i 0.555760i −0.960616 0.277880i \(-0.910368\pi\)
0.960616 0.277880i \(-0.0896318\pi\)
\(864\) 0 0
\(865\) 309.806 536.599i 0.358157 0.620346i
\(866\) 131.650i 0.152021i
\(867\) 0 0
\(868\) −146.444 253.649i −0.168715 0.292222i
\(869\) 290.163 167.526i 0.333905 0.192780i
\(870\) 0 0
\(871\) −632.228 + 715.625i −0.725865 + 0.821613i
\(872\) 409.526i 0.469640i
\(873\) 0 0
\(874\) 266.413 + 461.441i 0.304820 + 0.527964i
\(875\) 1171.80 + 676.542i 1.33920 + 0.773190i
\(876\) 0 0
\(877\) 222.767 385.844i 0.254011 0.439959i −0.710616 0.703580i \(-0.751583\pi\)
0.964626 + 0.263621i \(0.0849168\pi\)
\(878\) −360.722 208.263i −0.410845 0.237201i
\(879\) 0 0
\(880\) 45.5019 78.8117i 0.0517068 0.0895587i
\(881\) −625.341 + 361.041i −0.709808 + 0.409808i −0.810990 0.585060i \(-0.801071\pi\)
0.101182 + 0.994868i \(0.467738\pi\)
\(882\) 0 0
\(883\) −611.701 −0.692754 −0.346377 0.938095i \(-0.612588\pi\)
−0.346377 + 0.938095i \(0.612588\pi\)
\(884\) −207.472 183.294i −0.234697 0.207346i
\(885\) 0 0
\(886\) −154.083 266.880i −0.173909 0.301219i
\(887\) −826.163 + 476.986i −0.931413 + 0.537751i −0.887258 0.461273i \(-0.847393\pi\)
−0.0441547 + 0.999025i \(0.514059\pi\)
\(888\) 0 0
\(889\) −1.04947 −0.00118051
\(890\) −718.618 414.894i −0.807436 0.466174i
\(891\) 0 0
\(892\) 308.607 0.345972
\(893\) −1376.27 794.592i −1.54118 0.889800i
\(894\) 0 0
\(895\) 527.236 + 913.200i 0.589091 + 1.02034i
\(896\) 897.048i 1.00117i
\(897\) 0 0
\(898\) 12.9401 0.0144099
\(899\) 109.383 63.1526i 0.121672 0.0702476i
\(900\) 0 0
\(901\) 49.8578 86.3562i 0.0553360 0.0958448i
\(902\) 239.501i 0.265522i
\(903\) 0 0
\(904\) 593.310 1027.64i 0.656316 1.13677i
\(905\) 1039.50i 1.14861i
\(906\) 0 0
\(907\) 196.565 + 340.460i 0.216720 + 0.375369i 0.953803 0.300432i \(-0.0971309\pi\)
−0.737084 + 0.675802i \(0.763798\pi\)
\(908\) −149.755 + 86.4609i −0.164928 + 0.0952212i
\(909\) 0 0
\(910\) 205.640 + 613.149i 0.225978 + 0.673790i
\(911\) 578.215i 0.634704i −0.948308 0.317352i \(-0.897206\pi\)
0.948308 0.317352i \(-0.102794\pi\)
\(912\) 0 0
\(913\) −127.634 221.069i −0.139796 0.242134i
\(914\) 708.517 + 409.063i 0.775183 + 0.447552i
\(915\) 0 0
\(916\) −326.037 + 564.713i −0.355936 + 0.616499i
\(917\) −1724.68 995.746i −1.88079 1.08587i
\(918\) 0 0
\(919\) −538.208 + 932.204i −0.585645 + 1.01437i 0.409149 + 0.912467i \(0.365826\pi\)
−0.994795 + 0.101900i \(0.967508\pi\)
\(920\) 580.466 335.132i 0.630941 0.364274i
\(921\) 0 0
\(922\) −735.434 −0.797651
\(923\) −252.707 + 1246.62i −0.273789 + 1.35061i
\(924\) 0 0
\(925\) 181.799 + 314.886i 0.196540 + 0.340417i
\(926\) 19.2179 11.0954i 0.0207536 0.0119821i
\(927\) 0 0
\(928\) 363.699 0.391917
\(929\) 6.97990 + 4.02985i 0.00751335 + 0.00433783i 0.503752 0.863848i \(-0.331953\pi\)
−0.496239 + 0.868186i \(0.665286\pi\)
\(930\) 0 0
\(931\) 1110.36 1.19266
\(932\) −255.863 147.722i −0.274531 0.158500i
\(933\) 0 0
\(934\) 44.9461 + 77.8489i 0.0481221 + 0.0833500i
\(935\) 655.873i 0.701469i
\(936\) 0 0
\(937\) −307.794 −0.328489 −0.164245 0.986420i \(-0.552519\pi\)
−0.164245 + 0.986420i \(0.552519\pi\)
\(938\) −750.296 + 433.183i −0.799889 + 0.461816i
\(939\) 0 0
\(940\) −393.538 + 681.628i −0.418657 + 0.725136i
\(941\) 1630.11i 1.73232i −0.499767 0.866160i \(-0.666581\pi\)
0.499767 0.866160i \(-0.333419\pi\)
\(942\) 0 0
\(943\) −108.432 + 187.810i −0.114986 + 0.199162i
\(944\) 57.1202i 0.0605087i
\(945\) 0 0
\(946\) −676.434 1171.62i −0.715046 1.23850i
\(947\) 676.707 390.697i 0.714580 0.412563i −0.0981744 0.995169i \(-0.531300\pi\)
0.812755 + 0.582606i \(0.197967\pi\)
\(948\) 0 0
\(949\) −40.4933 120.737i −0.0426695 0.127226i
\(950\) 188.892i 0.198834i
\(951\) 0 0
\(952\) −318.980 552.490i −0.335063 0.580347i
\(953\) −500.074 288.718i −0.524737 0.302957i 0.214134 0.976804i \(-0.431307\pi\)
−0.738871 + 0.673847i \(0.764641\pi\)
\(954\) 0 0
\(955\) −284.197 + 492.243i −0.297588 + 0.515438i
\(956\) −92.2882 53.2826i −0.0965358 0.0557350i
\(957\) 0 0
\(958\) −380.785 + 659.538i −0.397479 + 0.688453i
\(959\) −767.946 + 443.374i −0.800778 + 0.462329i
\(960\) 0 0
\(961\) −832.830 −0.866629
\(962\) −154.234 + 760.843i −0.160326 + 0.790897i
\(963\) 0 0
\(964\) −398.099 689.528i −0.412966 0.715278i
\(965\) 532.415 307.390i 0.551725 0.318539i
\(966\) 0 0
\(967\) −773.361 −0.799753 −0.399876 0.916569i \(-0.630947\pi\)
−0.399876 + 0.916569i \(0.630947\pi\)
\(968\) −1615.64 932.792i −1.66905 0.963628i
\(969\) 0 0
\(970\) −538.799 −0.555463
\(971\) −808.128 466.573i −0.832263 0.480507i 0.0223637 0.999750i \(-0.492881\pi\)
−0.854627 + 0.519243i \(0.826214\pi\)
\(972\) 0 0
\(973\) 512.003 + 886.814i 0.526210 + 0.911423i
\(974\) 562.579i 0.577597i
\(975\) 0 0
\(976\) 72.0306 0.0738019
\(977\) 1595.54 921.184i 1.63310 0.942870i 0.649969 0.759961i \(-0.274782\pi\)
0.983130 0.182909i \(-0.0585513\pi\)
\(978\) 0 0
\(979\) 1575.54 2728.91i 1.60934 2.78745i
\(980\) 549.930i 0.561153i
\(981\) 0 0
\(982\) −440.669 + 763.262i −0.448747 + 0.777252i
\(983\) 759.313i 0.772445i 0.922406 + 0.386222i \(0.126220\pi\)
−0.922406 + 0.386222i \(0.873780\pi\)
\(984\) 0 0
\(985\) −291.662 505.173i −0.296103 0.512866i
\(986\) 93.8048 54.1582i 0.0951367 0.0549272i
\(987\) 0 0
\(988\) −494.571 + 559.810i −0.500578 + 0.566609i
\(989\) 1225.00i 1.23862i
\(990\) 0 0
\(991\) −308.172 533.770i −0.310971 0.538617i 0.667602 0.744518i \(-0.267321\pi\)
−0.978573 + 0.205901i \(0.933988\pi\)
\(992\) 319.622 + 184.534i 0.322199 + 0.186022i
\(993\) 0 0
\(994\) −577.022 + 999.431i −0.580505 + 1.00546i
\(995\) 985.131 + 568.765i 0.990081 + 0.571624i
\(996\) 0 0
\(997\) 892.908 1546.56i 0.895595 1.55122i 0.0625282 0.998043i \(-0.480084\pi\)
0.833067 0.553173i \(-0.186583\pi\)
\(998\) −956.986 + 552.516i −0.958904 + 0.553623i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.p.a.107.4 yes 20
3.2 odd 2 inner 117.3.p.a.107.7 yes 20
13.9 even 3 inner 117.3.p.a.35.7 yes 20
39.35 odd 6 inner 117.3.p.a.35.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.p.a.35.4 20 39.35 odd 6 inner
117.3.p.a.35.7 yes 20 13.9 even 3 inner
117.3.p.a.107.4 yes 20 1.1 even 1 trivial
117.3.p.a.107.7 yes 20 3.2 odd 2 inner