Properties

Label 2-117-9.5-c2-0-0
Degree 22
Conductor 117117
Sign 0.391+0.920i-0.391 + 0.920i
Analytic cond. 3.188013.18801
Root an. cond. 1.785501.78550
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.30 + 0.750i)2-s + (−0.0792 + 2.99i)3-s + (−0.873 + 1.51i)4-s + (−6.06 − 3.50i)5-s + (−2.14 − 3.95i)6-s + (0.489 + 0.847i)7-s − 8.62i·8-s + (−8.98 − 0.475i)9-s + 10.5·10-s + (12.1 − 7.00i)11-s + (−4.46 − 2.73i)12-s + (−1.80 + 3.12i)13-s + (−1.27 − 0.734i)14-s + (10.9 − 17.9i)15-s + (2.98 + 5.16i)16-s + 4.79i·17-s + ⋯
L(s)  = 1  + (−0.650 + 0.375i)2-s + (−0.0264 + 0.999i)3-s + (−0.218 + 0.378i)4-s + (−1.21 − 0.700i)5-s + (−0.357 − 0.659i)6-s + (0.0699 + 0.121i)7-s − 1.07i·8-s + (−0.998 − 0.0528i)9-s + 1.05·10-s + (1.10 − 0.637i)11-s + (−0.372 − 0.228i)12-s + (−0.138 + 0.240i)13-s + (−0.0909 − 0.0524i)14-s + (0.732 − 1.19i)15-s + (0.186 + 0.322i)16-s + 0.282i·17-s + ⋯

Functional equation

Λ(s)=(117s/2ΓC(s)L(s)=((0.391+0.920i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.391 + 0.920i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(117s/2ΓC(s+1)L(s)=((0.391+0.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.391 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 117117    =    32133^{2} \cdot 13
Sign: 0.391+0.920i-0.391 + 0.920i
Analytic conductor: 3.188013.18801
Root analytic conductor: 1.785501.78550
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ117(14,)\chi_{117} (14, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 117, ( :1), 0.391+0.920i)(2,\ 117,\ (\ :1),\ -0.391 + 0.920i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.009268760.0140111i0.00926876 - 0.0140111i
L(12)L(\frac12) \approx 0.009268760.0140111i0.00926876 - 0.0140111i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.07922.99i)T 1 + (0.0792 - 2.99i)T
13 1+(1.803.12i)T 1 + (1.80 - 3.12i)T
good2 1+(1.300.750i)T+(23.46i)T2 1 + (1.30 - 0.750i)T + (2 - 3.46i)T^{2}
5 1+(6.06+3.50i)T+(12.5+21.6i)T2 1 + (6.06 + 3.50i)T + (12.5 + 21.6i)T^{2}
7 1+(0.4890.847i)T+(24.5+42.4i)T2 1 + (-0.489 - 0.847i)T + (-24.5 + 42.4i)T^{2}
11 1+(12.1+7.00i)T+(60.5104.i)T2 1 + (-12.1 + 7.00i)T + (60.5 - 104. i)T^{2}
17 14.79iT289T2 1 - 4.79iT - 289T^{2}
19 1+29.6T+361T2 1 + 29.6T + 361T^{2}
23 1+(38.6+22.3i)T+(264.5+458.i)T2 1 + (38.6 + 22.3i)T + (264.5 + 458. i)T^{2}
29 1+(40.223.2i)T+(420.5728.i)T2 1 + (40.2 - 23.2i)T + (420.5 - 728. i)T^{2}
31 1+(1.402.43i)T+(480.5832.i)T2 1 + (1.40 - 2.43i)T + (-480.5 - 832. i)T^{2}
37 19.83T+1.36e3T2 1 - 9.83T + 1.36e3T^{2}
41 1+(11.8+6.85i)T+(840.5+1.45e3i)T2 1 + (11.8 + 6.85i)T + (840.5 + 1.45e3i)T^{2}
43 1+(38.867.2i)T+(924.5+1.60e3i)T2 1 + (-38.8 - 67.2i)T + (-924.5 + 1.60e3i)T^{2}
47 1+(19.611.3i)T+(1.10e31.91e3i)T2 1 + (19.6 - 11.3i)T + (1.10e3 - 1.91e3i)T^{2}
53 135.0iT2.80e3T2 1 - 35.0iT - 2.80e3T^{2}
59 1+(57.8+33.4i)T+(1.74e3+3.01e3i)T2 1 + (57.8 + 33.4i)T + (1.74e3 + 3.01e3i)T^{2}
61 1+(20.1+34.8i)T+(1.86e3+3.22e3i)T2 1 + (20.1 + 34.8i)T + (-1.86e3 + 3.22e3i)T^{2}
67 1+(9.77+16.9i)T+(2.24e33.88e3i)T2 1 + (-9.77 + 16.9i)T + (-2.24e3 - 3.88e3i)T^{2}
71 184.0iT5.04e3T2 1 - 84.0iT - 5.04e3T^{2}
73 1+6.25T+5.32e3T2 1 + 6.25T + 5.32e3T^{2}
79 1+(1.652.86i)T+(3.12e3+5.40e3i)T2 1 + (-1.65 - 2.86i)T + (-3.12e3 + 5.40e3i)T^{2}
83 1+(73.3+42.3i)T+(3.44e35.96e3i)T2 1 + (-73.3 + 42.3i)T + (3.44e3 - 5.96e3i)T^{2}
89 160.2iT7.92e3T2 1 - 60.2iT - 7.92e3T^{2}
97 1+(9.35+16.2i)T+(4.70e3+8.14e3i)T2 1 + (9.35 + 16.2i)T + (-4.70e3 + 8.14e3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.31409713682285939523113109913, −12.70008400796109159959655549475, −11.88081260738779772339232106912, −10.81662788905081735905231952386, −9.407958258485156983807701159453, −8.631847722706881886820542279386, −7.995813698062716928610363685937, −6.31742888650884184846775252236, −4.37611914280329290387979176551, −3.79071844123557238769233111201, 0.01460482790123195742642921086, 1.99524284511032688292320699900, 4.02312055163835756605612756502, 6.01985434686661234776880117903, 7.29653622621147570933216040449, 8.120204946515953368099227601078, 9.320662560797103146487722483282, 10.66160639357385425528614936090, 11.55806562911771442427510790826, 12.20143824536747833742867533875

Graph of the ZZ-function along the critical line