L(s) = 1 | + i·2-s − 4-s + (1.67 + 1.48i)5-s − 1.19i·7-s − i·8-s + (−1.48 + 1.67i)10-s − 2·11-s + i·13-s + 1.19·14-s + 16-s + 4.54i·17-s − 4.15·19-s + (−1.67 − 1.48i)20-s − 2i·22-s + 7.11i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.749 + 0.662i)5-s − 0.451i·7-s − 0.353i·8-s + (−0.468 + 0.529i)10-s − 0.603·11-s + 0.277i·13-s + 0.319·14-s + 0.250·16-s + 1.10i·17-s − 0.953·19-s + (−0.374 − 0.331i)20-s − 0.426i·22-s + 1.48i·23-s + ⋯ |
Λ(s)=(=(1170s/2ΓC(s)L(s)(−0.749−0.662i)Λ(2−s)
Λ(s)=(=(1170s/2ΓC(s+1/2)L(s)(−0.749−0.662i)Λ(1−s)
Degree: |
2 |
Conductor: |
1170
= 2⋅32⋅5⋅13
|
Sign: |
−0.749−0.662i
|
Analytic conductor: |
9.34249 |
Root analytic conductor: |
3.05654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1170(469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1170, ( :1/2), −0.749−0.662i)
|
Particular Values
L(1) |
≈ |
1.385165832 |
L(21) |
≈ |
1.385165832 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1+(−1.67−1.48i)T |
| 13 | 1−iT |
good | 7 | 1+1.19iT−7T2 |
| 11 | 1+2T+11T2 |
| 17 | 1−4.54iT−17T2 |
| 19 | 1+4.15T+19T2 |
| 23 | 1−7.11iT−23T2 |
| 29 | 1−10.7T+29T2 |
| 31 | 1+5.35T+31T2 |
| 37 | 1−3.92iT−37T2 |
| 41 | 1+1.03T+41T2 |
| 43 | 1−10.8iT−43T2 |
| 47 | 1+1.61iT−47T2 |
| 53 | 1+4.18iT−53T2 |
| 59 | 1+2.31T+59T2 |
| 61 | 1+7.08T+61T2 |
| 67 | 1−4.70iT−67T2 |
| 71 | 1−9.27T+71T2 |
| 73 | 1+3.58iT−73T2 |
| 79 | 1+15.1T+79T2 |
| 83 | 1+1.73iT−83T2 |
| 89 | 1−14.3T+89T2 |
| 97 | 1+9.19iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15331073648043388827079556744, −9.253465142121131553566013293366, −8.329761195402655914272559429820, −7.55835588383092890203189883191, −6.65740643911797505735500673879, −6.09020036123218662411855144244, −5.15516370501241418437467989610, −4.10164632192913681471296729668, −2.98523700247761674794036627095, −1.61846595725382923159618177305,
0.59569675783565761835236191891, 2.14131810951456483567287302779, 2.81781449182612074086500396360, 4.33768758611873188842958745859, 5.06835332678259619329547873917, 5.87161091555660559148178774033, 6.90431656660370579667247754443, 8.199298993207656235020206543649, 8.782518858080373928462867965156, 9.460903939366425349065129410599