Properties

Label 2-1170-5.4-c1-0-8
Degree $2$
Conductor $1170$
Sign $-0.749 - 0.662i$
Analytic cond. $9.34249$
Root an. cond. $3.05654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + (1.67 + 1.48i)5-s − 1.19i·7-s i·8-s + (−1.48 + 1.67i)10-s − 2·11-s + i·13-s + 1.19·14-s + 16-s + 4.54i·17-s − 4.15·19-s + (−1.67 − 1.48i)20-s − 2i·22-s + 7.11i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + (0.749 + 0.662i)5-s − 0.451i·7-s − 0.353i·8-s + (−0.468 + 0.529i)10-s − 0.603·11-s + 0.277i·13-s + 0.319·14-s + 0.250·16-s + 1.10i·17-s − 0.953·19-s + (−0.374 − 0.331i)20-s − 0.426i·22-s + 1.48i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.749 - 0.662i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.749 - 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1170\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-0.749 - 0.662i$
Analytic conductor: \(9.34249\)
Root analytic conductor: \(3.05654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1170} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1170,\ (\ :1/2),\ -0.749 - 0.662i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.385165832\)
\(L(\frac12)\) \(\approx\) \(1.385165832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 + (-1.67 - 1.48i)T \)
13 \( 1 - iT \)
good7 \( 1 + 1.19iT - 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 - 4.54iT - 17T^{2} \)
19 \( 1 + 4.15T + 19T^{2} \)
23 \( 1 - 7.11iT - 23T^{2} \)
29 \( 1 - 10.7T + 29T^{2} \)
31 \( 1 + 5.35T + 31T^{2} \)
37 \( 1 - 3.92iT - 37T^{2} \)
41 \( 1 + 1.03T + 41T^{2} \)
43 \( 1 - 10.8iT - 43T^{2} \)
47 \( 1 + 1.61iT - 47T^{2} \)
53 \( 1 + 4.18iT - 53T^{2} \)
59 \( 1 + 2.31T + 59T^{2} \)
61 \( 1 + 7.08T + 61T^{2} \)
67 \( 1 - 4.70iT - 67T^{2} \)
71 \( 1 - 9.27T + 71T^{2} \)
73 \( 1 + 3.58iT - 73T^{2} \)
79 \( 1 + 15.1T + 79T^{2} \)
83 \( 1 + 1.73iT - 83T^{2} \)
89 \( 1 - 14.3T + 89T^{2} \)
97 \( 1 + 9.19iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15331073648043388827079556744, −9.253465142121131553566013293366, −8.329761195402655914272559429820, −7.55835588383092890203189883191, −6.65740643911797505735500673879, −6.09020036123218662411855144244, −5.15516370501241418437467989610, −4.10164632192913681471296729668, −2.98523700247761674794036627095, −1.61846595725382923159618177305, 0.59569675783565761835236191891, 2.14131810951456483567287302779, 2.81781449182612074086500396360, 4.33768758611873188842958745859, 5.06835332678259619329547873917, 5.87161091555660559148178774033, 6.90431656660370579667247754443, 8.199298993207656235020206543649, 8.782518858080373928462867965156, 9.460903939366425349065129410599

Graph of the $Z$-function along the critical line