Properties

Label 1170.2.e.g.469.6
Level $1170$
Weight $2$
Character 1170.469
Analytic conductor $9.342$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1170,2,Mod(469,1170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1170.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.6
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 1170.469
Dual form 1170.2.e.g.469.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(1.67513 + 1.48119i) q^{5} -1.19394i q^{7} -1.00000i q^{8} +(-1.48119 + 1.67513i) q^{10} -2.00000 q^{11} +1.00000i q^{13} +1.19394 q^{14} +1.00000 q^{16} +4.54420i q^{17} -4.15633 q^{19} +(-1.67513 - 1.48119i) q^{20} -2.00000i q^{22} +7.11871i q^{23} +(0.612127 + 4.96239i) q^{25} -1.00000 q^{26} +1.19394i q^{28} +10.7308 q^{29} -5.35026 q^{31} +1.00000i q^{32} -4.54420 q^{34} +(1.76845 - 2.00000i) q^{35} +3.92478i q^{37} -4.15633i q^{38} +(1.48119 - 1.67513i) q^{40} -1.03761 q^{41} +10.8872i q^{43} +2.00000 q^{44} -7.11871 q^{46} -1.61213i q^{47} +5.57452 q^{49} +(-4.96239 + 0.612127i) q^{50} -1.00000i q^{52} -4.18664i q^{53} +(-3.35026 - 2.96239i) q^{55} -1.19394 q^{56} +10.7308i q^{58} -2.31265 q^{59} -7.08840 q^{61} -5.35026i q^{62} -1.00000 q^{64} +(-1.48119 + 1.67513i) q^{65} +4.70052i q^{67} -4.54420i q^{68} +(2.00000 + 1.76845i) q^{70} +9.27504 q^{71} -3.58181i q^{73} -3.92478 q^{74} +4.15633 q^{76} +2.38787i q^{77} -15.1998 q^{79} +(1.67513 + 1.48119i) q^{80} -1.03761i q^{82} -1.73813i q^{83} +(-6.73084 + 7.61213i) q^{85} -10.8872 q^{86} +2.00000i q^{88} +14.3127 q^{89} +1.19394 q^{91} -7.11871i q^{92} +1.61213 q^{94} +(-6.96239 - 6.15633i) q^{95} -9.19394i q^{97} +5.57452i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 2 q^{10} - 12 q^{11} + 8 q^{14} + 6 q^{16} - 4 q^{19} + 2 q^{25} - 6 q^{26} + 20 q^{29} - 12 q^{31} - 8 q^{34} - 12 q^{35} - 2 q^{40} - 28 q^{41} + 12 q^{44} + 10 q^{49} - 8 q^{50} - 8 q^{56}+ \cdots - 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.67513 + 1.48119i 0.749141 + 0.662410i
\(6\) 0 0
\(7\) 1.19394i 0.451266i −0.974212 0.225633i \(-0.927555\pi\)
0.974212 0.225633i \(-0.0724450\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.48119 + 1.67513i −0.468395 + 0.529723i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 1.19394 0.319093
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.54420i 1.10213i 0.834462 + 0.551065i \(0.185778\pi\)
−0.834462 + 0.551065i \(0.814222\pi\)
\(18\) 0 0
\(19\) −4.15633 −0.953526 −0.476763 0.879032i \(-0.658190\pi\)
−0.476763 + 0.879032i \(0.658190\pi\)
\(20\) −1.67513 1.48119i −0.374571 0.331205i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 7.11871i 1.48435i 0.670204 + 0.742177i \(0.266207\pi\)
−0.670204 + 0.742177i \(0.733793\pi\)
\(24\) 0 0
\(25\) 0.612127 + 4.96239i 0.122425 + 0.992478i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 1.19394i 0.225633i
\(29\) 10.7308 1.99267 0.996334 0.0855539i \(-0.0272660\pi\)
0.996334 + 0.0855539i \(0.0272660\pi\)
\(30\) 0 0
\(31\) −5.35026 −0.960935 −0.480468 0.877012i \(-0.659533\pi\)
−0.480468 + 0.877012i \(0.659533\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −4.54420 −0.779324
\(35\) 1.76845 2.00000i 0.298923 0.338062i
\(36\) 0 0
\(37\) 3.92478i 0.645229i 0.946530 + 0.322615i \(0.104562\pi\)
−0.946530 + 0.322615i \(0.895438\pi\)
\(38\) 4.15633i 0.674245i
\(39\) 0 0
\(40\) 1.48119 1.67513i 0.234197 0.264861i
\(41\) −1.03761 −0.162048 −0.0810238 0.996712i \(-0.525819\pi\)
−0.0810238 + 0.996712i \(0.525819\pi\)
\(42\) 0 0
\(43\) 10.8872i 1.66028i 0.557557 + 0.830139i \(0.311739\pi\)
−0.557557 + 0.830139i \(0.688261\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −7.11871 −1.04960
\(47\) 1.61213i 0.235153i −0.993064 0.117576i \(-0.962487\pi\)
0.993064 0.117576i \(-0.0375125\pi\)
\(48\) 0 0
\(49\) 5.57452 0.796359
\(50\) −4.96239 + 0.612127i −0.701788 + 0.0865678i
\(51\) 0 0
\(52\) 1.00000i 0.138675i
\(53\) 4.18664i 0.575080i −0.957769 0.287540i \(-0.907163\pi\)
0.957769 0.287540i \(-0.0928374\pi\)
\(54\) 0 0
\(55\) −3.35026 2.96239i −0.451749 0.399448i
\(56\) −1.19394 −0.159546
\(57\) 0 0
\(58\) 10.7308i 1.40903i
\(59\) −2.31265 −0.301081 −0.150541 0.988604i \(-0.548101\pi\)
−0.150541 + 0.988604i \(0.548101\pi\)
\(60\) 0 0
\(61\) −7.08840 −0.907576 −0.453788 0.891110i \(-0.649928\pi\)
−0.453788 + 0.891110i \(0.649928\pi\)
\(62\) 5.35026i 0.679484i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.48119 + 1.67513i −0.183720 + 0.207774i
\(66\) 0 0
\(67\) 4.70052i 0.574260i 0.957892 + 0.287130i \(0.0927012\pi\)
−0.957892 + 0.287130i \(0.907299\pi\)
\(68\) 4.54420i 0.551065i
\(69\) 0 0
\(70\) 2.00000 + 1.76845i 0.239046 + 0.211370i
\(71\) 9.27504 1.10074 0.550372 0.834919i \(-0.314486\pi\)
0.550372 + 0.834919i \(0.314486\pi\)
\(72\) 0 0
\(73\) 3.58181i 0.419219i −0.977785 0.209610i \(-0.932781\pi\)
0.977785 0.209610i \(-0.0672193\pi\)
\(74\) −3.92478 −0.456246
\(75\) 0 0
\(76\) 4.15633 0.476763
\(77\) 2.38787i 0.272123i
\(78\) 0 0
\(79\) −15.1998 −1.71011 −0.855056 0.518535i \(-0.826478\pi\)
−0.855056 + 0.518535i \(0.826478\pi\)
\(80\) 1.67513 + 1.48119i 0.187285 + 0.165603i
\(81\) 0 0
\(82\) 1.03761i 0.114585i
\(83\) 1.73813i 0.190785i −0.995440 0.0953925i \(-0.969589\pi\)
0.995440 0.0953925i \(-0.0304106\pi\)
\(84\) 0 0
\(85\) −6.73084 + 7.61213i −0.730062 + 0.825651i
\(86\) −10.8872 −1.17399
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) 14.3127 1.51714 0.758569 0.651593i \(-0.225899\pi\)
0.758569 + 0.651593i \(0.225899\pi\)
\(90\) 0 0
\(91\) 1.19394 0.125159
\(92\) 7.11871i 0.742177i
\(93\) 0 0
\(94\) 1.61213 0.166278
\(95\) −6.96239 6.15633i −0.714326 0.631626i
\(96\) 0 0
\(97\) 9.19394i 0.933503i −0.884389 0.466751i \(-0.845424\pi\)
0.884389 0.466751i \(-0.154576\pi\)
\(98\) 5.57452i 0.563111i
\(99\) 0 0
\(100\) −0.612127 4.96239i −0.0612127 0.496239i
\(101\) −13.8945 −1.38255 −0.691275 0.722592i \(-0.742951\pi\)
−0.691275 + 0.722592i \(0.742951\pi\)
\(102\) 0 0
\(103\) 7.79877i 0.768436i −0.923242 0.384218i \(-0.874471\pi\)
0.923242 0.384218i \(-0.125529\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 4.18664 0.406643
\(107\) 11.5369i 1.11531i 0.830071 + 0.557657i \(0.188300\pi\)
−0.830071 + 0.557657i \(0.811700\pi\)
\(108\) 0 0
\(109\) 1.58181 0.151510 0.0757549 0.997126i \(-0.475863\pi\)
0.0757549 + 0.997126i \(0.475863\pi\)
\(110\) 2.96239 3.35026i 0.282453 0.319435i
\(111\) 0 0
\(112\) 1.19394i 0.112816i
\(113\) 14.4690i 1.36113i 0.732689 + 0.680563i \(0.238265\pi\)
−0.732689 + 0.680563i \(0.761735\pi\)
\(114\) 0 0
\(115\) −10.5442 + 11.9248i −0.983252 + 1.11199i
\(116\) −10.7308 −0.996334
\(117\) 0 0
\(118\) 2.31265i 0.212897i
\(119\) 5.42548 0.497353
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 7.08840i 0.641753i
\(123\) 0 0
\(124\) 5.35026 0.480468
\(125\) −6.32487 + 9.21933i −0.565713 + 0.824602i
\(126\) 0 0
\(127\) 2.18664i 0.194033i −0.995283 0.0970166i \(-0.969070\pi\)
0.995283 0.0970166i \(-0.0309300\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −1.67513 1.48119i −0.146919 0.129909i
\(131\) −5.64244 −0.492983 −0.246491 0.969145i \(-0.579278\pi\)
−0.246491 + 0.969145i \(0.579278\pi\)
\(132\) 0 0
\(133\) 4.96239i 0.430294i
\(134\) −4.70052 −0.406063
\(135\) 0 0
\(136\) 4.54420 0.389662
\(137\) 2.46310i 0.210436i −0.994449 0.105218i \(-0.966446\pi\)
0.994449 0.105218i \(-0.0335541\pi\)
\(138\) 0 0
\(139\) 16.6253 1.41014 0.705070 0.709138i \(-0.250916\pi\)
0.705070 + 0.709138i \(0.250916\pi\)
\(140\) −1.76845 + 2.00000i −0.149461 + 0.169031i
\(141\) 0 0
\(142\) 9.27504i 0.778344i
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 17.9756 + 15.8945i 1.49279 + 1.31996i
\(146\) 3.58181 0.296433
\(147\) 0 0
\(148\) 3.92478i 0.322615i
\(149\) 22.0508 1.80647 0.903235 0.429146i \(-0.141185\pi\)
0.903235 + 0.429146i \(0.141185\pi\)
\(150\) 0 0
\(151\) −2.96239 −0.241076 −0.120538 0.992709i \(-0.538462\pi\)
−0.120538 + 0.992709i \(0.538462\pi\)
\(152\) 4.15633i 0.337122i
\(153\) 0 0
\(154\) −2.38787 −0.192420
\(155\) −8.96239 7.92478i −0.719876 0.636533i
\(156\) 0 0
\(157\) 20.3634i 1.62518i −0.582836 0.812590i \(-0.698057\pi\)
0.582836 0.812590i \(-0.301943\pi\)
\(158\) 15.1998i 1.20923i
\(159\) 0 0
\(160\) −1.48119 + 1.67513i −0.117099 + 0.132431i
\(161\) 8.49929 0.669838
\(162\) 0 0
\(163\) 25.3258i 1.98367i −0.127521 0.991836i \(-0.540702\pi\)
0.127521 0.991836i \(-0.459298\pi\)
\(164\) 1.03761 0.0810238
\(165\) 0 0
\(166\) 1.73813 0.134905
\(167\) 6.70052i 0.518502i −0.965810 0.259251i \(-0.916524\pi\)
0.965810 0.259251i \(-0.0834757\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −7.61213 6.73084i −0.583823 0.516232i
\(171\) 0 0
\(172\) 10.8872i 0.830139i
\(173\) 0.649738i 0.0493987i −0.999695 0.0246993i \(-0.992137\pi\)
0.999695 0.0246993i \(-0.00786284\pi\)
\(174\) 0 0
\(175\) 5.92478 0.730841i 0.447871 0.0552464i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 14.3127i 1.07278i
\(179\) 6.10554 0.456349 0.228175 0.973620i \(-0.426724\pi\)
0.228175 + 0.973620i \(0.426724\pi\)
\(180\) 0 0
\(181\) 22.9380 1.70496 0.852482 0.522756i \(-0.175096\pi\)
0.852482 + 0.522756i \(0.175096\pi\)
\(182\) 1.19394i 0.0885005i
\(183\) 0 0
\(184\) 7.11871 0.524799
\(185\) −5.81336 + 6.57452i −0.427407 + 0.483368i
\(186\) 0 0
\(187\) 9.08840i 0.664609i
\(188\) 1.61213i 0.117576i
\(189\) 0 0
\(190\) 6.15633 6.96239i 0.446627 0.505105i
\(191\) −19.0132 −1.37574 −0.687872 0.725832i \(-0.741455\pi\)
−0.687872 + 0.725832i \(0.741455\pi\)
\(192\) 0 0
\(193\) 4.41819i 0.318028i −0.987276 0.159014i \(-0.949168\pi\)
0.987276 0.159014i \(-0.0508315\pi\)
\(194\) 9.19394 0.660086
\(195\) 0 0
\(196\) −5.57452 −0.398180
\(197\) 5.22425i 0.372213i −0.982530 0.186106i \(-0.940413\pi\)
0.982530 0.186106i \(-0.0595869\pi\)
\(198\) 0 0
\(199\) 19.1998 1.36104 0.680519 0.732730i \(-0.261754\pi\)
0.680519 + 0.732730i \(0.261754\pi\)
\(200\) 4.96239 0.612127i 0.350894 0.0432839i
\(201\) 0 0
\(202\) 13.8945i 0.977611i
\(203\) 12.8119i 0.899222i
\(204\) 0 0
\(205\) −1.73813 1.53690i −0.121397 0.107342i
\(206\) 7.79877 0.543366
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) 8.31265 0.574998
\(210\) 0 0
\(211\) 9.86414 0.679076 0.339538 0.940592i \(-0.389729\pi\)
0.339538 + 0.940592i \(0.389729\pi\)
\(212\) 4.18664i 0.287540i
\(213\) 0 0
\(214\) −11.5369 −0.788647
\(215\) −16.1260 + 18.2374i −1.09978 + 1.24378i
\(216\) 0 0
\(217\) 6.38787i 0.433637i
\(218\) 1.58181i 0.107134i
\(219\) 0 0
\(220\) 3.35026 + 2.96239i 0.225875 + 0.199724i
\(221\) −4.54420 −0.305676
\(222\) 0 0
\(223\) 18.9076i 1.26615i 0.774091 + 0.633074i \(0.218207\pi\)
−0.774091 + 0.633074i \(0.781793\pi\)
\(224\) 1.19394 0.0797732
\(225\) 0 0
\(226\) −14.4690 −0.962462
\(227\) 19.3258i 1.28270i −0.767248 0.641350i \(-0.778375\pi\)
0.767248 0.641350i \(-0.221625\pi\)
\(228\) 0 0
\(229\) −11.5672 −0.764383 −0.382192 0.924083i \(-0.624831\pi\)
−0.382192 + 0.924083i \(0.624831\pi\)
\(230\) −11.9248 10.5442i −0.786297 0.695264i
\(231\) 0 0
\(232\) 10.7308i 0.704514i
\(233\) 10.7816i 0.706328i 0.935561 + 0.353164i \(0.114894\pi\)
−0.935561 + 0.353164i \(0.885106\pi\)
\(234\) 0 0
\(235\) 2.38787 2.70052i 0.155768 0.176163i
\(236\) 2.31265 0.150541
\(237\) 0 0
\(238\) 5.42548i 0.351682i
\(239\) 21.9248 1.41820 0.709098 0.705110i \(-0.249102\pi\)
0.709098 + 0.705110i \(0.249102\pi\)
\(240\) 0 0
\(241\) −4.23743 −0.272957 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) 7.08840 0.453788
\(245\) 9.33804 + 8.25694i 0.596586 + 0.527517i
\(246\) 0 0
\(247\) 4.15633i 0.264461i
\(248\) 5.35026i 0.339742i
\(249\) 0 0
\(250\) −9.21933 6.32487i −0.583082 0.400020i
\(251\) −1.95509 −0.123404 −0.0617022 0.998095i \(-0.519653\pi\)
−0.0617022 + 0.998095i \(0.519653\pi\)
\(252\) 0 0
\(253\) 14.2374i 0.895099i
\(254\) 2.18664 0.137202
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.78163i 0.423026i 0.977375 + 0.211513i \(0.0678391\pi\)
−0.977375 + 0.211513i \(0.932161\pi\)
\(258\) 0 0
\(259\) 4.68594 0.291170
\(260\) 1.48119 1.67513i 0.0918598 0.103887i
\(261\) 0 0
\(262\) 5.64244i 0.348591i
\(263\) 9.96968i 0.614757i −0.951587 0.307378i \(-0.900548\pi\)
0.951587 0.307378i \(-0.0994518\pi\)
\(264\) 0 0
\(265\) 6.20123 7.01317i 0.380939 0.430816i
\(266\) −4.96239 −0.304264
\(267\) 0 0
\(268\) 4.70052i 0.287130i
\(269\) 9.64244 0.587910 0.293955 0.955819i \(-0.405028\pi\)
0.293955 + 0.955819i \(0.405028\pi\)
\(270\) 0 0
\(271\) 21.1392 1.28411 0.642057 0.766657i \(-0.278081\pi\)
0.642057 + 0.766657i \(0.278081\pi\)
\(272\) 4.54420i 0.275532i
\(273\) 0 0
\(274\) 2.46310 0.148801
\(275\) −1.22425 9.92478i −0.0738253 0.598487i
\(276\) 0 0
\(277\) 7.48612i 0.449797i −0.974382 0.224899i \(-0.927795\pi\)
0.974382 0.224899i \(-0.0722051\pi\)
\(278\) 16.6253i 0.997119i
\(279\) 0 0
\(280\) −2.00000 1.76845i −0.119523 0.105685i
\(281\) 18.1622 1.08347 0.541733 0.840551i \(-0.317768\pi\)
0.541733 + 0.840551i \(0.317768\pi\)
\(282\) 0 0
\(283\) 11.8134i 0.702231i −0.936332 0.351116i \(-0.885802\pi\)
0.936332 0.351116i \(-0.114198\pi\)
\(284\) −9.27504 −0.550372
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 1.23884i 0.0731265i
\(288\) 0 0
\(289\) −3.64974 −0.214690
\(290\) −15.8945 + 17.9756i −0.933355 + 1.05556i
\(291\) 0 0
\(292\) 3.58181i 0.209610i
\(293\) 12.7005i 0.741973i 0.928638 + 0.370986i \(0.120980\pi\)
−0.928638 + 0.370986i \(0.879020\pi\)
\(294\) 0 0
\(295\) −3.87399 3.42548i −0.225553 0.199439i
\(296\) 3.92478 0.228123
\(297\) 0 0
\(298\) 22.0508i 1.27737i
\(299\) −7.11871 −0.411686
\(300\) 0 0
\(301\) 12.9986 0.749226
\(302\) 2.96239i 0.170466i
\(303\) 0 0
\(304\) −4.15633 −0.238382
\(305\) −11.8740 10.4993i −0.679903 0.601188i
\(306\) 0 0
\(307\) 6.98683i 0.398759i 0.979922 + 0.199380i \(0.0638927\pi\)
−0.979922 + 0.199380i \(0.936107\pi\)
\(308\) 2.38787i 0.136062i
\(309\) 0 0
\(310\) 7.92478 8.96239i 0.450097 0.509029i
\(311\) 7.53690 0.427379 0.213689 0.976902i \(-0.431452\pi\)
0.213689 + 0.976902i \(0.431452\pi\)
\(312\) 0 0
\(313\) 21.7137i 1.22733i −0.789566 0.613665i \(-0.789694\pi\)
0.789566 0.613665i \(-0.210306\pi\)
\(314\) 20.3634 1.14918
\(315\) 0 0
\(316\) 15.1998 0.855056
\(317\) 28.3634i 1.59305i 0.604606 + 0.796525i \(0.293331\pi\)
−0.604606 + 0.796525i \(0.706669\pi\)
\(318\) 0 0
\(319\) −21.4617 −1.20162
\(320\) −1.67513 1.48119i −0.0936427 0.0828013i
\(321\) 0 0
\(322\) 8.49929i 0.473647i
\(323\) 18.8872i 1.05091i
\(324\) 0 0
\(325\) −4.96239 + 0.612127i −0.275264 + 0.0339547i
\(326\) 25.3258 1.40267
\(327\) 0 0
\(328\) 1.03761i 0.0572925i
\(329\) −1.92478 −0.106116
\(330\) 0 0
\(331\) 12.6801 0.696959 0.348479 0.937316i \(-0.386698\pi\)
0.348479 + 0.937316i \(0.386698\pi\)
\(332\) 1.73813i 0.0953925i
\(333\) 0 0
\(334\) 6.70052 0.366636
\(335\) −6.96239 + 7.87399i −0.380396 + 0.430202i
\(336\) 0 0
\(337\) 18.1768i 0.990153i 0.868849 + 0.495077i \(0.164860\pi\)
−0.868849 + 0.495077i \(0.835140\pi\)
\(338\) 1.00000i 0.0543928i
\(339\) 0 0
\(340\) 6.73084 7.61213i 0.365031 0.412826i
\(341\) 10.7005 0.579466
\(342\) 0 0
\(343\) 15.0132i 0.810635i
\(344\) 10.8872 0.586997
\(345\) 0 0
\(346\) 0.649738 0.0349301
\(347\) 10.7612i 0.577689i 0.957376 + 0.288845i \(0.0932711\pi\)
−0.957376 + 0.288845i \(0.906729\pi\)
\(348\) 0 0
\(349\) 12.8061 0.685493 0.342746 0.939428i \(-0.388643\pi\)
0.342746 + 0.939428i \(0.388643\pi\)
\(350\) 0.730841 + 5.92478i 0.0390651 + 0.316693i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 21.5369i 1.14629i 0.819453 + 0.573147i \(0.194278\pi\)
−0.819453 + 0.573147i \(0.805722\pi\)
\(354\) 0 0
\(355\) 15.5369 + 13.7381i 0.824613 + 0.729144i
\(356\) −14.3127 −0.758569
\(357\) 0 0
\(358\) 6.10554i 0.322688i
\(359\) 14.8265 0.782514 0.391257 0.920281i \(-0.372040\pi\)
0.391257 + 0.920281i \(0.372040\pi\)
\(360\) 0 0
\(361\) −1.72496 −0.0907874
\(362\) 22.9380i 1.20559i
\(363\) 0 0
\(364\) −1.19394 −0.0625793
\(365\) 5.30536 6.00000i 0.277695 0.314054i
\(366\) 0 0
\(367\) 37.5125i 1.95813i 0.203536 + 0.979067i \(0.434757\pi\)
−0.203536 + 0.979067i \(0.565243\pi\)
\(368\) 7.11871i 0.371089i
\(369\) 0 0
\(370\) −6.57452 5.81336i −0.341793 0.302222i
\(371\) −4.99859 −0.259514
\(372\) 0 0
\(373\) 18.1866i 0.941669i −0.882222 0.470834i \(-0.843953\pi\)
0.882222 0.470834i \(-0.156047\pi\)
\(374\) 9.08840 0.469950
\(375\) 0 0
\(376\) −1.61213 −0.0831391
\(377\) 10.7308i 0.552666i
\(378\) 0 0
\(379\) 24.6312 1.26522 0.632609 0.774471i \(-0.281984\pi\)
0.632609 + 0.774471i \(0.281984\pi\)
\(380\) 6.96239 + 6.15633i 0.357163 + 0.315813i
\(381\) 0 0
\(382\) 19.0132i 0.972799i
\(383\) 1.14903i 0.0587127i −0.999569 0.0293564i \(-0.990654\pi\)
0.999569 0.0293564i \(-0.00934577\pi\)
\(384\) 0 0
\(385\) −3.53690 + 4.00000i −0.180257 + 0.203859i
\(386\) 4.41819 0.224880
\(387\) 0 0
\(388\) 9.19394i 0.466751i
\(389\) −3.50659 −0.177791 −0.0888955 0.996041i \(-0.528334\pi\)
−0.0888955 + 0.996041i \(0.528334\pi\)
\(390\) 0 0
\(391\) −32.3488 −1.63595
\(392\) 5.57452i 0.281556i
\(393\) 0 0
\(394\) 5.22425 0.263194
\(395\) −25.4617 22.5139i −1.28112 1.13280i
\(396\) 0 0
\(397\) 28.8627i 1.44858i −0.689496 0.724289i \(-0.742168\pi\)
0.689496 0.724289i \(-0.257832\pi\)
\(398\) 19.1998i 0.962400i
\(399\) 0 0
\(400\) 0.612127 + 4.96239i 0.0306063 + 0.248119i
\(401\) −17.0376 −0.850818 −0.425409 0.905001i \(-0.639870\pi\)
−0.425409 + 0.905001i \(0.639870\pi\)
\(402\) 0 0
\(403\) 5.35026i 0.266516i
\(404\) 13.8945 0.691275
\(405\) 0 0
\(406\) 12.8119 0.635846
\(407\) 7.84955i 0.389088i
\(408\) 0 0
\(409\) −6.77575 −0.335039 −0.167520 0.985869i \(-0.553576\pi\)
−0.167520 + 0.985869i \(0.553576\pi\)
\(410\) 1.53690 1.73813i 0.0759023 0.0858404i
\(411\) 0 0
\(412\) 7.79877i 0.384218i
\(413\) 2.76116i 0.135868i
\(414\) 0 0
\(415\) 2.57452 2.91160i 0.126378 0.142925i
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 8.31265i 0.406585i
\(419\) −20.7572 −1.01406 −0.507028 0.861930i \(-0.669256\pi\)
−0.507028 + 0.861930i \(0.669256\pi\)
\(420\) 0 0
\(421\) −36.9683 −1.80172 −0.900862 0.434106i \(-0.857064\pi\)
−0.900862 + 0.434106i \(0.857064\pi\)
\(422\) 9.86414i 0.480179i
\(423\) 0 0
\(424\) −4.18664 −0.203321
\(425\) −22.5501 + 2.78163i −1.09384 + 0.134929i
\(426\) 0 0
\(427\) 8.46310i 0.409558i
\(428\) 11.5369i 0.557657i
\(429\) 0 0
\(430\) −18.2374 16.1260i −0.879487 0.777665i
\(431\) −16.6253 −0.800813 −0.400406 0.916338i \(-0.631131\pi\)
−0.400406 + 0.916338i \(0.631131\pi\)
\(432\) 0 0
\(433\) 4.89701i 0.235336i −0.993053 0.117668i \(-0.962458\pi\)
0.993053 0.117668i \(-0.0375418\pi\)
\(434\) −6.38787 −0.306628
\(435\) 0 0
\(436\) −1.58181 −0.0757549
\(437\) 29.5877i 1.41537i
\(438\) 0 0
\(439\) −4.62530 −0.220754 −0.110377 0.993890i \(-0.535206\pi\)
−0.110377 + 0.993890i \(0.535206\pi\)
\(440\) −2.96239 + 3.35026i −0.141226 + 0.159717i
\(441\) 0 0
\(442\) 4.54420i 0.216145i
\(443\) 33.1900i 1.57690i −0.615097 0.788451i \(-0.710883\pi\)
0.615097 0.788451i \(-0.289117\pi\)
\(444\) 0 0
\(445\) 23.9756 + 21.1998i 1.13655 + 1.00497i
\(446\) −18.9076 −0.895302
\(447\) 0 0
\(448\) 1.19394i 0.0564082i
\(449\) 6.06063 0.286019 0.143010 0.989721i \(-0.454322\pi\)
0.143010 + 0.989721i \(0.454322\pi\)
\(450\) 0 0
\(451\) 2.07522 0.0977184
\(452\) 14.4690i 0.680563i
\(453\) 0 0
\(454\) 19.3258 0.907006
\(455\) 2.00000 + 1.76845i 0.0937614 + 0.0829063i
\(456\) 0 0
\(457\) 36.6820i 1.71591i 0.513725 + 0.857955i \(0.328265\pi\)
−0.513725 + 0.857955i \(0.671735\pi\)
\(458\) 11.5672i 0.540501i
\(459\) 0 0
\(460\) 10.5442 11.9248i 0.491626 0.555996i
\(461\) 7.28963 0.339512 0.169756 0.985486i \(-0.445702\pi\)
0.169756 + 0.985486i \(0.445702\pi\)
\(462\) 0 0
\(463\) 30.5950i 1.42187i −0.703258 0.710935i \(-0.748272\pi\)
0.703258 0.710935i \(-0.251728\pi\)
\(464\) 10.7308 0.498167
\(465\) 0 0
\(466\) −10.7816 −0.499449
\(467\) 10.1359i 0.469032i 0.972112 + 0.234516i \(0.0753504\pi\)
−0.972112 + 0.234516i \(0.924650\pi\)
\(468\) 0 0
\(469\) 5.61213 0.259144
\(470\) 2.70052 + 2.38787i 0.124566 + 0.110144i
\(471\) 0 0
\(472\) 2.31265i 0.106448i
\(473\) 21.7743i 1.00118i
\(474\) 0 0
\(475\) −2.54420 20.6253i −0.116736 0.946354i
\(476\) −5.42548 −0.248677
\(477\) 0 0
\(478\) 21.9248i 1.00282i
\(479\) 10.3272 0.471864 0.235932 0.971770i \(-0.424186\pi\)
0.235932 + 0.971770i \(0.424186\pi\)
\(480\) 0 0
\(481\) −3.92478 −0.178954
\(482\) 4.23743i 0.193010i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 13.6180 15.4010i 0.618362 0.699326i
\(486\) 0 0
\(487\) 12.5198i 0.567325i −0.958924 0.283662i \(-0.908451\pi\)
0.958924 0.283662i \(-0.0915495\pi\)
\(488\) 7.08840i 0.320877i
\(489\) 0 0
\(490\) −8.25694 + 9.33804i −0.373011 + 0.421850i
\(491\) −26.1465 −1.17997 −0.589987 0.807413i \(-0.700867\pi\)
−0.589987 + 0.807413i \(0.700867\pi\)
\(492\) 0 0
\(493\) 48.7631i 2.19618i
\(494\) 4.15633 0.187002
\(495\) 0 0
\(496\) −5.35026 −0.240234
\(497\) 11.0738i 0.496728i
\(498\) 0 0
\(499\) −24.9438 −1.11664 −0.558320 0.829626i \(-0.688554\pi\)
−0.558320 + 0.829626i \(0.688554\pi\)
\(500\) 6.32487 9.21933i 0.282857 0.412301i
\(501\) 0 0
\(502\) 1.95509i 0.0872601i
\(503\) 10.0303i 0.447230i 0.974678 + 0.223615i \(0.0717858\pi\)
−0.974678 + 0.223615i \(0.928214\pi\)
\(504\) 0 0
\(505\) −23.2750 20.5804i −1.03573 0.915816i
\(506\) 14.2374 0.632931
\(507\) 0 0
\(508\) 2.18664i 0.0970166i
\(509\) 16.8119 0.745176 0.372588 0.927997i \(-0.378470\pi\)
0.372588 + 0.927997i \(0.378470\pi\)
\(510\) 0 0
\(511\) −4.27645 −0.189179
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −6.78163 −0.299125
\(515\) 11.5515 13.0640i 0.509020 0.575667i
\(516\) 0 0
\(517\) 3.22425i 0.141803i
\(518\) 4.68594i 0.205888i
\(519\) 0 0
\(520\) 1.67513 + 1.48119i 0.0734593 + 0.0649547i
\(521\) 14.8510 0.650633 0.325316 0.945605i \(-0.394529\pi\)
0.325316 + 0.945605i \(0.394529\pi\)
\(522\) 0 0
\(523\) 10.5990i 0.463460i −0.972780 0.231730i \(-0.925561\pi\)
0.972780 0.231730i \(-0.0744386\pi\)
\(524\) 5.64244 0.246491
\(525\) 0 0
\(526\) 9.96968 0.434699
\(527\) 24.3127i 1.05908i
\(528\) 0 0
\(529\) −27.6761 −1.20331
\(530\) 7.01317 + 6.20123i 0.304633 + 0.269364i
\(531\) 0 0
\(532\) 4.96239i 0.215147i
\(533\) 1.03761i 0.0449439i
\(534\) 0 0
\(535\) −17.0884 + 19.3258i −0.738796 + 0.835528i
\(536\) 4.70052 0.203032
\(537\) 0 0
\(538\) 9.64244i 0.415715i
\(539\) −11.1490 −0.480223
\(540\) 0 0
\(541\) −12.1925 −0.524197 −0.262099 0.965041i \(-0.584415\pi\)
−0.262099 + 0.965041i \(0.584415\pi\)
\(542\) 21.1392i 0.908006i
\(543\) 0 0
\(544\) −4.54420 −0.194831
\(545\) 2.64974 + 2.34297i 0.113502 + 0.100362i
\(546\) 0 0
\(547\) 4.12127i 0.176213i 0.996111 + 0.0881064i \(0.0280815\pi\)
−0.996111 + 0.0881064i \(0.971918\pi\)
\(548\) 2.46310i 0.105218i
\(549\) 0 0
\(550\) 9.92478 1.22425i 0.423194 0.0522024i
\(551\) −44.6009 −1.90006
\(552\) 0 0
\(553\) 18.1476i 0.771715i
\(554\) 7.48612 0.318055
\(555\) 0 0
\(556\) −16.6253 −0.705070
\(557\) 0.111420i 0.00472100i −0.999997 0.00236050i \(-0.999249\pi\)
0.999997 0.00236050i \(-0.000751371\pi\)
\(558\) 0 0
\(559\) −10.8872 −0.460478
\(560\) 1.76845 2.00000i 0.0747307 0.0845154i
\(561\) 0 0
\(562\) 18.1622i 0.766126i
\(563\) 11.7889i 0.496844i −0.968652 0.248422i \(-0.920088\pi\)
0.968652 0.248422i \(-0.0799119\pi\)
\(564\) 0 0
\(565\) −21.4314 + 24.2374i −0.901624 + 1.01968i
\(566\) 11.8134 0.496552
\(567\) 0 0
\(568\) 9.27504i 0.389172i
\(569\) −27.6991 −1.16121 −0.580604 0.814186i \(-0.697183\pi\)
−0.580604 + 0.814186i \(0.697183\pi\)
\(570\) 0 0
\(571\) 27.4471 1.14863 0.574313 0.818636i \(-0.305269\pi\)
0.574313 + 0.818636i \(0.305269\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 0 0
\(574\) −1.23884 −0.0517083
\(575\) −35.3258 + 4.35756i −1.47319 + 0.181723i
\(576\) 0 0
\(577\) 8.98286i 0.373961i −0.982364 0.186981i \(-0.940130\pi\)
0.982364 0.186981i \(-0.0598702\pi\)
\(578\) 3.64974i 0.151809i
\(579\) 0 0
\(580\) −17.9756 15.8945i −0.746395 0.659982i
\(581\) −2.07522 −0.0860947
\(582\) 0 0
\(583\) 8.37328i 0.346786i
\(584\) −3.58181 −0.148216
\(585\) 0 0
\(586\) −12.7005 −0.524654
\(587\) 41.6531i 1.71921i −0.510963 0.859603i \(-0.670711\pi\)
0.510963 0.859603i \(-0.329289\pi\)
\(588\) 0 0
\(589\) 22.2374 0.916277
\(590\) 3.42548 3.87399i 0.141025 0.159490i
\(591\) 0 0
\(592\) 3.92478i 0.161307i
\(593\) 15.6121i 0.641113i 0.947229 + 0.320557i \(0.103870\pi\)
−0.947229 + 0.320557i \(0.896130\pi\)
\(594\) 0 0
\(595\) 9.08840 + 8.03620i 0.372588 + 0.329452i
\(596\) −22.0508 −0.903235
\(597\) 0 0
\(598\) 7.11871i 0.291106i
\(599\) 9.92478 0.405515 0.202758 0.979229i \(-0.435010\pi\)
0.202758 + 0.979229i \(0.435010\pi\)
\(600\) 0 0
\(601\) −15.6775 −0.639499 −0.319749 0.947502i \(-0.603599\pi\)
−0.319749 + 0.947502i \(0.603599\pi\)
\(602\) 12.9986i 0.529783i
\(603\) 0 0
\(604\) 2.96239 0.120538
\(605\) −11.7259 10.3684i −0.476726 0.421534i
\(606\) 0 0
\(607\) 32.5139i 1.31970i 0.751398 + 0.659849i \(0.229380\pi\)
−0.751398 + 0.659849i \(0.770620\pi\)
\(608\) 4.15633i 0.168561i
\(609\) 0 0
\(610\) 10.4993 11.8740i 0.425104 0.480764i
\(611\) 1.61213 0.0652197
\(612\) 0 0
\(613\) 29.9511i 1.20971i 0.796334 + 0.604857i \(0.206770\pi\)
−0.796334 + 0.604857i \(0.793230\pi\)
\(614\) −6.98683 −0.281965
\(615\) 0 0
\(616\) 2.38787 0.0962102
\(617\) 15.1490i 0.609877i −0.952372 0.304939i \(-0.901364\pi\)
0.952372 0.304939i \(-0.0986359\pi\)
\(618\) 0 0
\(619\) −2.79621 −0.112389 −0.0561947 0.998420i \(-0.517897\pi\)
−0.0561947 + 0.998420i \(0.517897\pi\)
\(620\) 8.96239 + 7.92478i 0.359938 + 0.318267i
\(621\) 0 0
\(622\) 7.53690i 0.302202i
\(623\) 17.0884i 0.684632i
\(624\) 0 0
\(625\) −24.2506 + 6.07522i −0.970024 + 0.243009i
\(626\) 21.7137 0.867854
\(627\) 0 0
\(628\) 20.3634i 0.812590i
\(629\) −17.8350 −0.711127
\(630\) 0 0
\(631\) 13.8134 0.549901 0.274951 0.961458i \(-0.411339\pi\)
0.274951 + 0.961458i \(0.411339\pi\)
\(632\) 15.1998i 0.604616i
\(633\) 0 0
\(634\) −28.3634 −1.12646
\(635\) 3.23884 3.66291i 0.128530 0.145358i
\(636\) 0 0
\(637\) 5.57452i 0.220870i
\(638\) 21.4617i 0.849676i
\(639\) 0 0
\(640\) 1.48119 1.67513i 0.0585493 0.0662154i
\(641\) 26.8627 1.06101 0.530507 0.847681i \(-0.322002\pi\)
0.530507 + 0.847681i \(0.322002\pi\)
\(642\) 0 0
\(643\) 25.2243i 0.994747i −0.867536 0.497374i \(-0.834298\pi\)
0.867536 0.497374i \(-0.165702\pi\)
\(644\) −8.49929 −0.334919
\(645\) 0 0
\(646\) 18.8872 0.743106
\(647\) 11.7323i 0.461243i −0.973044 0.230621i \(-0.925924\pi\)
0.973044 0.230621i \(-0.0740758\pi\)
\(648\) 0 0
\(649\) 4.62530 0.181559
\(650\) −0.612127 4.96239i −0.0240096 0.194641i
\(651\) 0 0
\(652\) 25.3258i 0.991836i
\(653\) 23.7645i 0.929976i 0.885317 + 0.464988i \(0.153941\pi\)
−0.885317 + 0.464988i \(0.846059\pi\)
\(654\) 0 0
\(655\) −9.45183 8.35756i −0.369314 0.326557i
\(656\) −1.03761 −0.0405119
\(657\) 0 0
\(658\) 1.92478i 0.0750356i
\(659\) −33.2809 −1.29644 −0.648220 0.761453i \(-0.724486\pi\)
−0.648220 + 0.761453i \(0.724486\pi\)
\(660\) 0 0
\(661\) −12.0713 −0.469517 −0.234759 0.972054i \(-0.575430\pi\)
−0.234759 + 0.972054i \(0.575430\pi\)
\(662\) 12.6801i 0.492824i
\(663\) 0 0
\(664\) −1.73813 −0.0674527
\(665\) −7.35026 + 8.31265i −0.285031 + 0.322351i
\(666\) 0 0
\(667\) 76.3898i 2.95782i
\(668\) 6.70052i 0.259251i
\(669\) 0 0
\(670\) −7.87399 6.96239i −0.304199 0.268981i
\(671\) 14.1768 0.547289
\(672\) 0 0
\(673\) 38.8627i 1.49805i −0.662543 0.749024i \(-0.730523\pi\)
0.662543 0.749024i \(-0.269477\pi\)
\(674\) −18.1768 −0.700144
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 45.1852i 1.73661i 0.496031 + 0.868305i \(0.334790\pi\)
−0.496031 + 0.868305i \(0.665210\pi\)
\(678\) 0 0
\(679\) −10.9770 −0.421258
\(680\) 7.61213 + 6.73084i 0.291912 + 0.258116i
\(681\) 0 0
\(682\) 10.7005i 0.409744i
\(683\) 7.93463i 0.303610i 0.988410 + 0.151805i \(0.0485086\pi\)
−0.988410 + 0.151805i \(0.951491\pi\)
\(684\) 0 0
\(685\) 3.64832 4.12601i 0.139395 0.157647i
\(686\) 15.0132 0.573206
\(687\) 0 0
\(688\) 10.8872i 0.415069i
\(689\) 4.18664 0.159498
\(690\) 0 0
\(691\) 37.4069 1.42303 0.711513 0.702673i \(-0.248010\pi\)
0.711513 + 0.702673i \(0.248010\pi\)
\(692\) 0.649738i 0.0246993i
\(693\) 0 0
\(694\) −10.7612 −0.408488
\(695\) 27.8496 + 24.6253i 1.05639 + 0.934091i
\(696\) 0 0
\(697\) 4.71511i 0.178598i
\(698\) 12.8061i 0.484717i
\(699\) 0 0
\(700\) −5.92478 + 0.730841i −0.223936 + 0.0276232i
\(701\) −11.0435 −0.417107 −0.208553 0.978011i \(-0.566876\pi\)
−0.208553 + 0.978011i \(0.566876\pi\)
\(702\) 0 0
\(703\) 16.3127i 0.615243i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −21.5369 −0.810552
\(707\) 16.5891i 0.623897i
\(708\) 0 0
\(709\) −37.7440 −1.41751 −0.708753 0.705457i \(-0.750742\pi\)
−0.708753 + 0.705457i \(0.750742\pi\)
\(710\) −13.7381 + 15.5369i −0.515583 + 0.583090i
\(711\) 0 0
\(712\) 14.3127i 0.536389i
\(713\) 38.0870i 1.42637i
\(714\) 0 0
\(715\) 2.96239 3.35026i 0.110787 0.125293i
\(716\) −6.10554 −0.228175
\(717\) 0 0
\(718\) 14.8265i 0.553321i
\(719\) 47.8007 1.78266 0.891332 0.453351i \(-0.149771\pi\)
0.891332 + 0.453351i \(0.149771\pi\)
\(720\) 0 0
\(721\) −9.31124 −0.346769
\(722\) 1.72496i 0.0641964i
\(723\) 0 0
\(724\) −22.9380 −0.852482
\(725\) 6.56864 + 53.2506i 0.243953 + 1.97768i
\(726\) 0 0
\(727\) 33.7645i 1.25226i 0.779721 + 0.626128i \(0.215361\pi\)
−0.779721 + 0.626128i \(0.784639\pi\)
\(728\) 1.19394i 0.0442502i
\(729\) 0 0
\(730\) 6.00000 + 5.30536i 0.222070 + 0.196360i
\(731\) −49.4734 −1.82984
\(732\) 0 0
\(733\) 41.8905i 1.54726i −0.633637 0.773630i \(-0.718439\pi\)
0.633637 0.773630i \(-0.281561\pi\)
\(734\) −37.5125 −1.38461
\(735\) 0 0
\(736\) −7.11871 −0.262399
\(737\) 9.40105i 0.346292i
\(738\) 0 0
\(739\) −6.14174 −0.225927 −0.112964 0.993599i \(-0.536034\pi\)
−0.112964 + 0.993599i \(0.536034\pi\)
\(740\) 5.81336 6.57452i 0.213703 0.241684i
\(741\) 0 0
\(742\) 4.99859i 0.183504i
\(743\) 38.4894i 1.41204i 0.708192 + 0.706020i \(0.249511\pi\)
−0.708192 + 0.706020i \(0.750489\pi\)
\(744\) 0 0
\(745\) 36.9380 + 32.6615i 1.35330 + 1.19662i
\(746\) 18.1866 0.665860
\(747\) 0 0
\(748\) 9.08840i 0.332305i
\(749\) 13.7743 0.503303
\(750\) 0 0
\(751\) −53.2506 −1.94314 −0.971571 0.236748i \(-0.923918\pi\)
−0.971571 + 0.236748i \(0.923918\pi\)
\(752\) 1.61213i 0.0587882i
\(753\) 0 0
\(754\) −10.7308 −0.390794
\(755\) −4.96239 4.38787i −0.180600 0.159691i
\(756\) 0 0
\(757\) 1.59754i 0.0580635i −0.999578 0.0290318i \(-0.990758\pi\)
0.999578 0.0290318i \(-0.00924240\pi\)
\(758\) 24.6312i 0.894645i
\(759\) 0 0
\(760\) −6.15633 + 6.96239i −0.223313 + 0.252552i
\(761\) −1.56134 −0.0565986 −0.0282993 0.999599i \(-0.509009\pi\)
−0.0282993 + 0.999599i \(0.509009\pi\)
\(762\) 0 0
\(763\) 1.88858i 0.0683712i
\(764\) 19.0132 0.687872
\(765\) 0 0
\(766\) 1.14903 0.0415162
\(767\) 2.31265i 0.0835050i
\(768\) 0 0
\(769\) 32.9234 1.18725 0.593623 0.804743i \(-0.297697\pi\)
0.593623 + 0.804743i \(0.297697\pi\)
\(770\) −4.00000 3.53690i −0.144150 0.127461i
\(771\) 0 0
\(772\) 4.41819i 0.159014i
\(773\) 42.8481i 1.54114i −0.637355 0.770570i \(-0.719972\pi\)
0.637355 0.770570i \(-0.280028\pi\)
\(774\) 0 0
\(775\) −3.27504 26.5501i −0.117643 0.953707i
\(776\) −9.19394 −0.330043
\(777\) 0 0
\(778\) 3.50659i 0.125717i
\(779\) 4.31265 0.154517
\(780\) 0 0
\(781\) −18.5501 −0.663774
\(782\) 32.3488i 1.15679i
\(783\) 0 0
\(784\) 5.57452 0.199090
\(785\) 30.1622 34.1114i 1.07654 1.21749i
\(786\) 0 0
\(787\) 38.6253i 1.37684i 0.725311 + 0.688422i \(0.241696\pi\)
−0.725311 + 0.688422i \(0.758304\pi\)
\(788\) 5.22425i 0.186106i
\(789\) 0 0
\(790\) 22.5139 25.4617i 0.801008 0.905886i
\(791\) 17.2750 0.614230
\(792\) 0 0
\(793\) 7.08840i 0.251716i
\(794\) 28.8627 1.02430
\(795\) 0 0
\(796\) −19.1998 −0.680519
\(797\) 18.0508i 0.639392i 0.947520 + 0.319696i \(0.103581\pi\)
−0.947520 + 0.319696i \(0.896419\pi\)
\(798\) 0 0
\(799\) 7.32582 0.259169
\(800\) −4.96239 + 0.612127i −0.175447 + 0.0216420i
\(801\) 0 0
\(802\) 17.0376i 0.601619i
\(803\) 7.16362i 0.252799i
\(804\) 0 0
\(805\) 14.2374 + 12.5891i 0.501803 + 0.443708i
\(806\) 5.35026 0.188455
\(807\) 0 0
\(808\) 13.8945i 0.488805i
\(809\) −1.76257 −0.0619687 −0.0309844 0.999520i \(-0.509864\pi\)
−0.0309844 + 0.999520i \(0.509864\pi\)
\(810\) 0 0
\(811\) −44.0665 −1.54738 −0.773692 0.633562i \(-0.781592\pi\)
−0.773692 + 0.633562i \(0.781592\pi\)
\(812\) 12.8119i 0.449611i
\(813\) 0 0
\(814\) 7.84955 0.275127
\(815\) 37.5125 42.4241i 1.31400 1.48605i
\(816\) 0 0
\(817\) 45.2506i 1.58312i
\(818\) 6.77575i 0.236908i
\(819\) 0 0
\(820\) 1.73813 + 1.53690i 0.0606983 + 0.0536710i
\(821\) 1.54675 0.0539821 0.0269910 0.999636i \(-0.491407\pi\)
0.0269910 + 0.999636i \(0.491407\pi\)
\(822\) 0 0
\(823\) 20.7250i 0.722427i −0.932483 0.361213i \(-0.882363\pi\)
0.932483 0.361213i \(-0.117637\pi\)
\(824\) −7.79877 −0.271683
\(825\) 0 0
\(826\) −2.76116 −0.0960730
\(827\) 41.7381i 1.45138i −0.688023 0.725689i \(-0.741521\pi\)
0.688023 0.725689i \(-0.258479\pi\)
\(828\) 0 0
\(829\) 26.7757 0.929960 0.464980 0.885321i \(-0.346061\pi\)
0.464980 + 0.885321i \(0.346061\pi\)
\(830\) 2.91160 + 2.57452i 0.101063 + 0.0893627i
\(831\) 0 0
\(832\) 1.00000i 0.0346688i
\(833\) 25.3317i 0.877692i
\(834\) 0 0
\(835\) 9.92478 11.2243i 0.343461 0.388431i
\(836\) −8.31265 −0.287499
\(837\) 0 0
\(838\) 20.7572i 0.717045i
\(839\) −48.6253 −1.67873 −0.839366 0.543567i \(-0.817073\pi\)
−0.839366 + 0.543567i \(0.817073\pi\)
\(840\) 0 0
\(841\) 86.1509 2.97072
\(842\) 36.9683i 1.27401i
\(843\) 0 0
\(844\) −9.86414 −0.339538
\(845\) −1.67513 1.48119i −0.0576263 0.0509546i
\(846\) 0 0
\(847\) 8.35756i 0.287169i
\(848\) 4.18664i 0.143770i
\(849\) 0 0
\(850\) −2.78163 22.5501i −0.0954090 0.773461i
\(851\) −27.9394 −0.957749
\(852\) 0 0
\(853\) 4.53832i 0.155389i 0.996977 + 0.0776945i \(0.0247559\pi\)
−0.996977 + 0.0776945i \(0.975244\pi\)
\(854\) −8.46310 −0.289601
\(855\) 0 0
\(856\) 11.5369 0.394323
\(857\) 28.2315i 0.964371i 0.876069 + 0.482186i \(0.160157\pi\)
−0.876069 + 0.482186i \(0.839843\pi\)
\(858\) 0 0
\(859\) 18.1162 0.618115 0.309058 0.951043i \(-0.399986\pi\)
0.309058 + 0.951043i \(0.399986\pi\)
\(860\) 16.1260 18.2374i 0.549892 0.621891i
\(861\) 0 0
\(862\) 16.6253i 0.566260i
\(863\) 30.0263i 1.02211i 0.859548 + 0.511054i \(0.170745\pi\)
−0.859548 + 0.511054i \(0.829255\pi\)
\(864\) 0 0
\(865\) 0.962389 1.08840i 0.0327222 0.0370066i
\(866\) 4.89701 0.166407
\(867\) 0 0
\(868\) 6.38787i 0.216819i
\(869\) 30.3996 1.03124
\(870\) 0 0
\(871\) −4.70052 −0.159271
\(872\) 1.58181i 0.0535668i
\(873\) 0 0
\(874\) 29.5877 1.00082
\(875\) 11.0073 + 7.55149i 0.372114 + 0.255287i
\(876\) 0 0
\(877\) 22.5355i 0.760969i 0.924787 + 0.380485i \(0.124243\pi\)
−0.924787 + 0.380485i \(0.875757\pi\)
\(878\) 4.62530i 0.156096i
\(879\) 0 0
\(880\) −3.35026 2.96239i −0.112937 0.0998621i
\(881\) 8.21108 0.276638 0.138319 0.990388i \(-0.455830\pi\)
0.138319 + 0.990388i \(0.455830\pi\)
\(882\) 0 0
\(883\) 6.44851i 0.217010i −0.994096 0.108505i \(-0.965394\pi\)
0.994096 0.108505i \(-0.0346063\pi\)
\(884\) 4.54420 0.152838
\(885\) 0 0
\(886\) 33.1900 1.11504
\(887\) 34.6067i 1.16198i 0.813910 + 0.580990i \(0.197335\pi\)
−0.813910 + 0.580990i \(0.802665\pi\)
\(888\) 0 0
\(889\) −2.61071 −0.0875605
\(890\) −21.1998 + 23.9756i −0.710619 + 0.803663i
\(891\) 0 0
\(892\) 18.9076i 0.633074i
\(893\) 6.70052i 0.224224i
\(894\) 0 0
\(895\) 10.2276 + 9.04349i 0.341870 + 0.302291i
\(896\) −1.19394 −0.0398866
\(897\) 0 0
\(898\) 6.06063i 0.202246i
\(899\) −57.4128 −1.91482
\(900\) 0 0
\(901\) 19.0249 0.633812
\(902\) 2.07522i 0.0690974i
\(903\) 0 0
\(904\) 14.4690 0.481231
\(905\) 38.4241 + 33.9756i 1.27726 + 1.12939i
\(906\) 0 0
\(907\) 20.3371i 0.675282i 0.941275 + 0.337641i \(0.109629\pi\)
−0.941275 + 0.337641i \(0.890371\pi\)
\(908\) 19.3258i 0.641350i
\(909\) 0 0
\(910\) −1.76845 + 2.00000i −0.0586236 + 0.0662994i
\(911\) 38.9234 1.28959 0.644794 0.764356i \(-0.276943\pi\)
0.644794 + 0.764356i \(0.276943\pi\)
\(912\) 0 0
\(913\) 3.47627i 0.115048i
\(914\) −36.6820 −1.21333
\(915\) 0 0
\(916\) 11.5672 0.382192
\(917\) 6.73672i 0.222466i
\(918\) 0 0
\(919\) −7.22425 −0.238306 −0.119153 0.992876i \(-0.538018\pi\)
−0.119153 + 0.992876i \(0.538018\pi\)
\(920\) 11.9248 + 10.5442i 0.393148 + 0.347632i
\(921\) 0 0
\(922\) 7.28963i 0.240071i
\(923\) 9.27504i 0.305292i
\(924\) 0 0
\(925\) −19.4763 + 2.40246i −0.640376 + 0.0789925i
\(926\) 30.5950 1.00541
\(927\) 0 0
\(928\) 10.7308i 0.352257i
\(929\) 24.0870 0.790268 0.395134 0.918623i \(-0.370698\pi\)
0.395134 + 0.918623i \(0.370698\pi\)
\(930\) 0 0
\(931\) −23.1695 −0.759350
\(932\) 10.7816i 0.353164i
\(933\) 0 0
\(934\) −10.1359 −0.331655
\(935\) 13.4617 15.2243i 0.440244 0.497886i
\(936\) 0 0
\(937\) 46.0870i 1.50560i −0.658252 0.752798i \(-0.728704\pi\)
0.658252 0.752798i \(-0.271296\pi\)
\(938\) 5.61213i 0.183242i
\(939\) 0 0
\(940\) −2.38787 + 2.70052i −0.0778838 + 0.0880814i
\(941\) 10.9887 0.358223 0.179111 0.983829i \(-0.442678\pi\)
0.179111 + 0.983829i \(0.442678\pi\)
\(942\) 0 0
\(943\) 7.38646i 0.240536i
\(944\) −2.31265 −0.0752704
\(945\) 0 0
\(946\) 21.7743 0.707945
\(947\) 32.1378i 1.04434i −0.852842 0.522169i \(-0.825123\pi\)
0.852842 0.522169i \(-0.174877\pi\)
\(948\) 0 0
\(949\) 3.58181 0.116270
\(950\) 20.6253 2.54420i 0.669173 0.0825447i
\(951\) 0 0
\(952\) 5.42548i 0.175841i
\(953\) 3.61801i 0.117199i −0.998282 0.0585994i \(-0.981337\pi\)
0.998282 0.0585994i \(-0.0186634\pi\)
\(954\) 0 0
\(955\) −31.8496 28.1622i −1.03063 0.911308i
\(956\) −21.9248 −0.709098
\(957\) 0 0
\(958\) 10.3272i 0.333658i
\(959\) −2.94078 −0.0949627
\(960\) 0 0
\(961\) −2.37470 −0.0766032
\(962\) 3.92478i 0.126540i
\(963\) 0 0
\(964\) 4.23743 0.136478
\(965\) 6.54420 7.40105i 0.210665 0.238248i
\(966\) 0 0
\(967\) 26.9194i 0.865669i −0.901473 0.432835i \(-0.857513\pi\)
0.901473 0.432835i \(-0.142487\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 0 0
\(970\) 15.4010 + 13.6180i 0.494498 + 0.437248i
\(971\) 47.8192 1.53459 0.767296 0.641293i \(-0.221602\pi\)
0.767296 + 0.641293i \(0.221602\pi\)
\(972\) 0 0
\(973\) 19.8496i 0.636348i
\(974\) 12.5198 0.401159
\(975\) 0 0
\(976\) −7.08840 −0.226894
\(977\) 40.1886i 1.28575i 0.765973 + 0.642873i \(0.222258\pi\)
−0.765973 + 0.642873i \(0.777742\pi\)
\(978\) 0 0
\(979\) −28.6253 −0.914869
\(980\) −9.33804 8.25694i −0.298293 0.263758i
\(981\) 0 0
\(982\) 26.1465i 0.834368i
\(983\) 6.23743i 0.198943i −0.995040 0.0994715i \(-0.968285\pi\)
0.995040 0.0994715i \(-0.0317152\pi\)
\(984\) 0 0
\(985\) 7.73813 8.75131i 0.246557 0.278840i
\(986\) −48.7631 −1.55293
\(987\) 0 0
\(988\) 4.15633i 0.132230i
\(989\) −77.5026 −2.46444
\(990\) 0 0
\(991\) 40.7221 1.29358 0.646791 0.762668i \(-0.276111\pi\)
0.646791 + 0.762668i \(0.276111\pi\)
\(992\) 5.35026i 0.169871i
\(993\) 0 0
\(994\) 11.0738 0.351240
\(995\) 32.1622 + 28.4387i 1.01961 + 0.901566i
\(996\) 0 0
\(997\) 30.1866i 0.956021i −0.878354 0.478010i \(-0.841358\pi\)
0.878354 0.478010i \(-0.158642\pi\)
\(998\) 24.9438i 0.789583i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.e.g.469.6 yes 6
3.2 odd 2 1170.2.e.h.469.1 yes 6
5.2 odd 4 5850.2.a.cq.1.2 3
5.3 odd 4 5850.2.a.cr.1.2 3
5.4 even 2 inner 1170.2.e.g.469.3 6
15.2 even 4 5850.2.a.ct.1.2 3
15.8 even 4 5850.2.a.co.1.2 3
15.14 odd 2 1170.2.e.h.469.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.e.g.469.3 6 5.4 even 2 inner
1170.2.e.g.469.6 yes 6 1.1 even 1 trivial
1170.2.e.h.469.1 yes 6 3.2 odd 2
1170.2.e.h.469.4 yes 6 15.14 odd 2
5850.2.a.co.1.2 3 15.8 even 4
5850.2.a.cq.1.2 3 5.2 odd 4
5850.2.a.cr.1.2 3 5.3 odd 4
5850.2.a.ct.1.2 3 15.2 even 4