L(s) = 1 | + (−1.02 − 1.39i)3-s + (−0.244 − 0.423i)5-s + (−0.904 + 2.86i)9-s + (1.31 + 0.761i)11-s − 0.652i·13-s + (−0.341 + 0.775i)15-s + (3.77 − 6.54i)17-s + (0.364 − 0.210i)19-s + (−5.11 + 2.95i)23-s + (2.38 − 4.12i)25-s + (4.92 − 1.66i)27-s − 7.16i·29-s + (−6.39 − 3.69i)31-s + (−0.286 − 2.62i)33-s + (4.04 + 7.00i)37-s + ⋯ |
L(s) = 1 | + (−0.591 − 0.806i)3-s + (−0.109 − 0.189i)5-s + (−0.301 + 0.953i)9-s + (0.397 + 0.229i)11-s − 0.180i·13-s + (−0.0881 + 0.200i)15-s + (0.916 − 1.58i)17-s + (0.0836 − 0.0482i)19-s + (−1.06 + 0.616i)23-s + (0.476 − 0.824i)25-s + (0.947 − 0.320i)27-s − 1.33i·29-s + (−1.14 − 0.662i)31-s + (−0.0498 − 0.456i)33-s + (0.665 + 1.15i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.746 + 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9142652921\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9142652921\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.02 + 1.39i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.244 + 0.423i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.31 - 0.761i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.652iT - 13T^{2} \) |
| 17 | \( 1 + (-3.77 + 6.54i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.364 + 0.210i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.11 - 2.95i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 7.16iT - 29T^{2} \) |
| 31 | \( 1 + (6.39 + 3.69i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.04 - 7.00i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.53T + 41T^{2} \) |
| 43 | \( 1 + 5.56T + 43T^{2} \) |
| 47 | \( 1 + (4.65 + 8.06i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.26 + 0.731i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.67 + 6.37i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (9.65 - 5.57i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.31 - 12.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.8iT - 71T^{2} \) |
| 73 | \( 1 + (-8.00 - 4.62i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.607 + 1.05i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.03T + 83T^{2} \) |
| 89 | \( 1 + (4.77 + 8.27i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 4.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.634726432611621213529270578886, −8.423715366853462671940624033007, −7.71643146447744692309866764238, −7.02028361401949706847650189202, −6.09809568447721236433593810332, −5.32016002597123252351415979022, −4.39854643896850132428579868633, −3.02175218455236110502640464610, −1.79047128028968487160298493196, −0.44292954919824002636692485881,
1.48997388274708261618208640141, 3.29785748944395591755135057810, 3.90551448153218601661989377158, 4.99465862450517893487424728759, 5.87060420150621987584094411771, 6.53795486884365111332551776250, 7.62824205980084766227315123141, 8.640519076375596450149843266999, 9.314120647431845621061276636893, 10.25708256349848728907225582076