Properties

Label 1176.2.u.c.521.9
Level $1176$
Weight $2$
Character 1176.521
Analytic conductor $9.390$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(521,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.9
Character \(\chi\) \(=\) 1176.521
Dual form 1176.2.u.c.1097.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02370 - 1.39715i) q^{3} +(-0.244530 - 0.423539i) q^{5} +(-0.904057 + 2.86054i) q^{9} +(1.31874 + 0.761372i) q^{11} -0.652068i q^{13} +(-0.341421 + 0.775225i) q^{15} +(3.77769 - 6.54315i) q^{17} +(0.364587 - 0.210494i) q^{19} +(-5.11819 + 2.95499i) q^{23} +(2.38041 - 4.12299i) q^{25} +(4.92209 - 1.66524i) q^{27} -7.16356i q^{29} +(-6.39140 - 3.69008i) q^{31} +(-0.286244 - 2.62189i) q^{33} +(4.04609 + 7.00804i) q^{37} +(-0.911037 + 0.667525i) q^{39} -2.53185 q^{41} -5.56181 q^{43} +(1.43262 - 0.316585i) q^{45} +(-4.65721 - 8.06652i) q^{47} +(-13.0090 + 1.42025i) q^{51} +(-1.26640 - 0.731158i) q^{53} -0.744715i q^{55} +(-0.667322 - 0.293899i) q^{57} +(3.67844 - 6.37124i) q^{59} +(-9.65588 + 5.57482i) q^{61} +(-0.276176 + 0.159450i) q^{65} +(-7.31199 + 12.6647i) q^{67} +(9.36807 + 4.12584i) q^{69} -12.8513i q^{71} +(8.00657 + 4.62259i) q^{73} +(-8.19727 + 0.894936i) q^{75} +(-0.607201 - 1.05170i) q^{79} +(-7.36536 - 5.17218i) q^{81} -9.03219 q^{83} -3.69504 q^{85} +(-10.0086 + 7.33337i) q^{87} +(-4.77997 - 8.27914i) q^{89} +(1.38732 + 12.7073i) q^{93} +(-0.178305 - 0.102945i) q^{95} +4.95430i q^{97} +(-3.37015 + 3.08397i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{15} - 8 q^{25} - 16 q^{37} + 64 q^{39} + 32 q^{43} - 48 q^{51} + 96 q^{57} - 16 q^{67} - 80 q^{81} - 128 q^{85} + 32 q^{93} - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.02370 1.39715i −0.591036 0.806645i
\(4\) 0 0
\(5\) −0.244530 0.423539i −0.109357 0.189412i 0.806153 0.591707i \(-0.201546\pi\)
−0.915510 + 0.402295i \(0.868213\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.904057 + 2.86054i −0.301352 + 0.953513i
\(10\) 0 0
\(11\) 1.31874 + 0.761372i 0.397614 + 0.229562i 0.685454 0.728116i \(-0.259604\pi\)
−0.287840 + 0.957678i \(0.592937\pi\)
\(12\) 0 0
\(13\) 0.652068i 0.180851i −0.995903 0.0904255i \(-0.971177\pi\)
0.995903 0.0904255i \(-0.0288227\pi\)
\(14\) 0 0
\(15\) −0.341421 + 0.775225i −0.0881545 + 0.200162i
\(16\) 0 0
\(17\) 3.77769 6.54315i 0.916224 1.58695i 0.111125 0.993806i \(-0.464555\pi\)
0.805099 0.593140i \(-0.202112\pi\)
\(18\) 0 0
\(19\) 0.364587 0.210494i 0.0836420 0.0482907i −0.457596 0.889160i \(-0.651289\pi\)
0.541238 + 0.840870i \(0.317956\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.11819 + 2.95499i −1.06722 + 0.616157i −0.927420 0.374023i \(-0.877978\pi\)
−0.139797 + 0.990180i \(0.544645\pi\)
\(24\) 0 0
\(25\) 2.38041 4.12299i 0.476082 0.824598i
\(26\) 0 0
\(27\) 4.92209 1.66524i 0.947257 0.320476i
\(28\) 0 0
\(29\) 7.16356i 1.33024i −0.746737 0.665120i \(-0.768381\pi\)
0.746737 0.665120i \(-0.231619\pi\)
\(30\) 0 0
\(31\) −6.39140 3.69008i −1.14793 0.662757i −0.199548 0.979888i \(-0.563947\pi\)
−0.948382 + 0.317131i \(0.897281\pi\)
\(32\) 0 0
\(33\) −0.286244 2.62189i −0.0498288 0.456413i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.04609 + 7.00804i 0.665174 + 1.15211i 0.979238 + 0.202713i \(0.0649758\pi\)
−0.314065 + 0.949402i \(0.601691\pi\)
\(38\) 0 0
\(39\) −0.911037 + 0.667525i −0.145883 + 0.106890i
\(40\) 0 0
\(41\) −2.53185 −0.395409 −0.197704 0.980262i \(-0.563349\pi\)
−0.197704 + 0.980262i \(0.563349\pi\)
\(42\) 0 0
\(43\) −5.56181 −0.848168 −0.424084 0.905623i \(-0.639404\pi\)
−0.424084 + 0.905623i \(0.639404\pi\)
\(44\) 0 0
\(45\) 1.43262 0.316585i 0.213562 0.0471937i
\(46\) 0 0
\(47\) −4.65721 8.06652i −0.679323 1.17662i −0.975185 0.221392i \(-0.928940\pi\)
0.295862 0.955231i \(-0.404393\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −13.0090 + 1.42025i −1.82162 + 0.198875i
\(52\) 0 0
\(53\) −1.26640 0.731158i −0.173954 0.100432i 0.410495 0.911863i \(-0.365356\pi\)
−0.584449 + 0.811431i \(0.698689\pi\)
\(54\) 0 0
\(55\) 0.744715i 0.100417i
\(56\) 0 0
\(57\) −0.667322 0.293899i −0.0883889 0.0389278i
\(58\) 0 0
\(59\) 3.67844 6.37124i 0.478892 0.829465i −0.520815 0.853669i \(-0.674372\pi\)
0.999707 + 0.0242046i \(0.00770531\pi\)
\(60\) 0 0
\(61\) −9.65588 + 5.57482i −1.23631 + 0.713783i −0.968338 0.249644i \(-0.919686\pi\)
−0.267971 + 0.963427i \(0.586353\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.276176 + 0.159450i −0.0342554 + 0.0197774i
\(66\) 0 0
\(67\) −7.31199 + 12.6647i −0.893302 + 1.54724i −0.0574095 + 0.998351i \(0.518284\pi\)
−0.835892 + 0.548893i \(0.815049\pi\)
\(68\) 0 0
\(69\) 9.36807 + 4.12584i 1.12778 + 0.496693i
\(70\) 0 0
\(71\) 12.8513i 1.52516i −0.646891 0.762582i \(-0.723931\pi\)
0.646891 0.762582i \(-0.276069\pi\)
\(72\) 0 0
\(73\) 8.00657 + 4.62259i 0.937098 + 0.541034i 0.889049 0.457811i \(-0.151366\pi\)
0.0480485 + 0.998845i \(0.484700\pi\)
\(74\) 0 0
\(75\) −8.19727 + 0.894936i −0.946540 + 0.103338i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.607201 1.05170i −0.0683154 0.118326i 0.829844 0.557995i \(-0.188429\pi\)
−0.898160 + 0.439669i \(0.855096\pi\)
\(80\) 0 0
\(81\) −7.36536 5.17218i −0.818374 0.574687i
\(82\) 0 0
\(83\) −9.03219 −0.991412 −0.495706 0.868491i \(-0.665091\pi\)
−0.495706 + 0.868491i \(0.665091\pi\)
\(84\) 0 0
\(85\) −3.69504 −0.400783
\(86\) 0 0
\(87\) −10.0086 + 7.33337i −1.07303 + 0.786220i
\(88\) 0 0
\(89\) −4.77997 8.27914i −0.506675 0.877588i −0.999970 0.00772531i \(-0.997541\pi\)
0.493295 0.869862i \(-0.335792\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.38732 + 12.7073i 0.143858 + 1.31769i
\(94\) 0 0
\(95\) −0.178305 0.102945i −0.0182937 0.0105619i
\(96\) 0 0
\(97\) 4.95430i 0.503033i 0.967853 + 0.251517i \(0.0809293\pi\)
−0.967853 + 0.251517i \(0.919071\pi\)
\(98\) 0 0
\(99\) −3.37015 + 3.08397i −0.338712 + 0.309951i
\(100\) 0 0
\(101\) 2.75513 4.77203i 0.274146 0.474835i −0.695773 0.718261i \(-0.744938\pi\)
0.969919 + 0.243427i \(0.0782715\pi\)
\(102\) 0 0
\(103\) 7.95002 4.58995i 0.783339 0.452261i −0.0542734 0.998526i \(-0.517284\pi\)
0.837612 + 0.546265i \(0.183951\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.14771 2.39468i 0.400974 0.231503i −0.285930 0.958250i \(-0.592303\pi\)
0.686904 + 0.726748i \(0.258969\pi\)
\(108\) 0 0
\(109\) 6.68814 11.5842i 0.640608 1.10957i −0.344689 0.938717i \(-0.612016\pi\)
0.985297 0.170849i \(-0.0546510\pi\)
\(110\) 0 0
\(111\) 5.64928 12.8272i 0.536206 1.21750i
\(112\) 0 0
\(113\) 12.5764i 1.18309i −0.806271 0.591546i \(-0.798518\pi\)
0.806271 0.591546i \(-0.201482\pi\)
\(114\) 0 0
\(115\) 2.50311 + 1.44517i 0.233416 + 0.134763i
\(116\) 0 0
\(117\) 1.86527 + 0.589506i 0.172444 + 0.0544999i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.34062 7.51818i −0.394602 0.683471i
\(122\) 0 0
\(123\) 2.59187 + 3.53738i 0.233701 + 0.318954i
\(124\) 0 0
\(125\) −4.77363 −0.426967
\(126\) 0 0
\(127\) 0.264143 0.0234389 0.0117194 0.999931i \(-0.496269\pi\)
0.0117194 + 0.999931i \(0.496269\pi\)
\(128\) 0 0
\(129\) 5.69365 + 7.77068i 0.501298 + 0.684171i
\(130\) 0 0
\(131\) 3.75958 + 6.51179i 0.328476 + 0.568938i 0.982210 0.187787i \(-0.0601316\pi\)
−0.653733 + 0.756725i \(0.726798\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.90890 1.67749i −0.164292 0.144376i
\(136\) 0 0
\(137\) 0.0171515 + 0.00990240i 0.00146535 + 0.000846019i 0.500732 0.865602i \(-0.333064\pi\)
−0.499267 + 0.866448i \(0.666397\pi\)
\(138\) 0 0
\(139\) 10.1198i 0.858349i −0.903222 0.429174i \(-0.858805\pi\)
0.903222 0.429174i \(-0.141195\pi\)
\(140\) 0 0
\(141\) −6.50253 + 14.7645i −0.547612 + 1.24340i
\(142\) 0 0
\(143\) 0.496466 0.859905i 0.0415166 0.0719089i
\(144\) 0 0
\(145\) −3.03405 + 1.75171i −0.251964 + 0.145471i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.1991 7.04315i 0.999388 0.576997i 0.0913212 0.995821i \(-0.470891\pi\)
0.908067 + 0.418824i \(0.137558\pi\)
\(150\) 0 0
\(151\) −6.29018 + 10.8949i −0.511887 + 0.886615i 0.488018 + 0.872834i \(0.337720\pi\)
−0.999905 + 0.0137810i \(0.995613\pi\)
\(152\) 0 0
\(153\) 15.3017 + 16.7216i 1.23707 + 1.35186i
\(154\) 0 0
\(155\) 3.60934i 0.289910i
\(156\) 0 0
\(157\) −7.50874 4.33517i −0.599263 0.345984i 0.169489 0.985532i \(-0.445788\pi\)
−0.768751 + 0.639548i \(0.779122\pi\)
\(158\) 0 0
\(159\) 0.274885 + 2.51784i 0.0217998 + 0.199678i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.67582 + 2.90260i 0.131260 + 0.227349i 0.924163 0.381999i \(-0.124764\pi\)
−0.792902 + 0.609349i \(0.791431\pi\)
\(164\) 0 0
\(165\) −1.04048 + 0.762368i −0.0810011 + 0.0593503i
\(166\) 0 0
\(167\) −23.4014 −1.81085 −0.905426 0.424505i \(-0.860448\pi\)
−0.905426 + 0.424505i \(0.860448\pi\)
\(168\) 0 0
\(169\) 12.5748 0.967293
\(170\) 0 0
\(171\) 0.272520 + 1.23321i 0.0208401 + 0.0943062i
\(172\) 0 0
\(173\) 7.12063 + 12.3333i 0.541371 + 0.937683i 0.998826 + 0.0484497i \(0.0154280\pi\)
−0.457454 + 0.889233i \(0.651239\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.6672 + 1.38294i −0.952126 + 0.103948i
\(178\) 0 0
\(179\) 17.6031 + 10.1632i 1.31572 + 0.759632i 0.983037 0.183407i \(-0.0587126\pi\)
0.332684 + 0.943039i \(0.392046\pi\)
\(180\) 0 0
\(181\) 0.798480i 0.0593506i −0.999560 0.0296753i \(-0.990553\pi\)
0.999560 0.0296753i \(-0.00944732\pi\)
\(182\) 0 0
\(183\) 17.6736 + 7.78374i 1.30647 + 0.575390i
\(184\) 0 0
\(185\) 1.97879 3.42736i 0.145483 0.251984i
\(186\) 0 0
\(187\) 9.96354 5.75245i 0.728606 0.420661i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.2420 10.5320i 1.31995 0.762071i 0.336227 0.941781i \(-0.390849\pi\)
0.983720 + 0.179710i \(0.0575158\pi\)
\(192\) 0 0
\(193\) 8.95075 15.5032i 0.644289 1.11594i −0.340176 0.940362i \(-0.610487\pi\)
0.984465 0.175580i \(-0.0561801\pi\)
\(194\) 0 0
\(195\) 0.505499 + 0.222629i 0.0361995 + 0.0159428i
\(196\) 0 0
\(197\) 19.1354i 1.36334i 0.731658 + 0.681672i \(0.238747\pi\)
−0.731658 + 0.681672i \(0.761253\pi\)
\(198\) 0 0
\(199\) −10.8740 6.27810i −0.770837 0.445043i 0.0623361 0.998055i \(-0.480145\pi\)
−0.833173 + 0.553012i \(0.813478\pi\)
\(200\) 0 0
\(201\) 25.1799 2.74901i 1.77605 0.193900i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.619115 + 1.07234i 0.0432408 + 0.0748953i
\(206\) 0 0
\(207\) −3.82572 17.3123i −0.265906 1.20328i
\(208\) 0 0
\(209\) 0.641058 0.0443429
\(210\) 0 0
\(211\) 8.96713 0.617322 0.308661 0.951172i \(-0.400119\pi\)
0.308661 + 0.951172i \(0.400119\pi\)
\(212\) 0 0
\(213\) −17.9551 + 13.1559i −1.23027 + 0.901427i
\(214\) 0 0
\(215\) 1.36003 + 2.35564i 0.0927534 + 0.160654i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.73790 15.9186i −0.117437 1.07568i
\(220\) 0 0
\(221\) −4.26658 2.46331i −0.287001 0.165700i
\(222\) 0 0
\(223\) 10.9815i 0.735376i 0.929949 + 0.367688i \(0.119851\pi\)
−0.929949 + 0.367688i \(0.880149\pi\)
\(224\) 0 0
\(225\) 9.64195 + 10.5367i 0.642797 + 0.702445i
\(226\) 0 0
\(227\) 2.72532 4.72038i 0.180886 0.313303i −0.761297 0.648404i \(-0.775437\pi\)
0.942182 + 0.335101i \(0.108770\pi\)
\(228\) 0 0
\(229\) −11.0855 + 6.40019i −0.732548 + 0.422937i −0.819354 0.573289i \(-0.805667\pi\)
0.0868056 + 0.996225i \(0.472334\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.9900 8.07713i 0.916515 0.529150i 0.0339934 0.999422i \(-0.489177\pi\)
0.882522 + 0.470272i \(0.155844\pi\)
\(234\) 0 0
\(235\) −2.27766 + 3.94502i −0.148578 + 0.257345i
\(236\) 0 0
\(237\) −0.847792 + 1.92498i −0.0550700 + 0.125041i
\(238\) 0 0
\(239\) 1.09590i 0.0708882i 0.999372 + 0.0354441i \(0.0112846\pi\)
−0.999372 + 0.0354441i \(0.988715\pi\)
\(240\) 0 0
\(241\) 7.41331 + 4.28007i 0.477533 + 0.275704i 0.719388 0.694609i \(-0.244422\pi\)
−0.241855 + 0.970312i \(0.577756\pi\)
\(242\) 0 0
\(243\) 0.313646 + 15.5853i 0.0201204 + 0.999798i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.137257 0.237735i −0.00873343 0.0151267i
\(248\) 0 0
\(249\) 9.24630 + 12.6193i 0.585960 + 0.799717i
\(250\) 0 0
\(251\) −3.88353 −0.245127 −0.122563 0.992461i \(-0.539111\pi\)
−0.122563 + 0.992461i \(0.539111\pi\)
\(252\) 0 0
\(253\) −8.99938 −0.565786
\(254\) 0 0
\(255\) 3.78263 + 5.16252i 0.236877 + 0.323290i
\(256\) 0 0
\(257\) 8.90592 + 15.4255i 0.555536 + 0.962217i 0.997862 + 0.0653624i \(0.0208203\pi\)
−0.442325 + 0.896855i \(0.645846\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 20.4916 + 6.47626i 1.26840 + 0.400871i
\(262\) 0 0
\(263\) 4.74223 + 2.73793i 0.292418 + 0.168828i 0.639032 0.769180i \(-0.279335\pi\)
−0.346614 + 0.938008i \(0.612669\pi\)
\(264\) 0 0
\(265\) 0.715161i 0.0439320i
\(266\) 0 0
\(267\) −6.67393 + 15.1537i −0.408438 + 0.927393i
\(268\) 0 0
\(269\) −6.07721 + 10.5260i −0.370534 + 0.641784i −0.989648 0.143518i \(-0.954159\pi\)
0.619114 + 0.785301i \(0.287492\pi\)
\(270\) 0 0
\(271\) 20.9346 12.0866i 1.27169 0.734208i 0.296380 0.955070i \(-0.404220\pi\)
0.975305 + 0.220862i \(0.0708871\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.27826 3.62476i 0.378593 0.218581i
\(276\) 0 0
\(277\) −1.46720 + 2.54127i −0.0881556 + 0.152690i −0.906732 0.421708i \(-0.861431\pi\)
0.818576 + 0.574398i \(0.194764\pi\)
\(278\) 0 0
\(279\) 16.3338 14.9468i 0.977879 0.894842i
\(280\) 0 0
\(281\) 1.97450i 0.117789i 0.998264 + 0.0588944i \(0.0187575\pi\)
−0.998264 + 0.0588944i \(0.981242\pi\)
\(282\) 0 0
\(283\) 20.9184 + 12.0773i 1.24347 + 0.717919i 0.969799 0.243905i \(-0.0784284\pi\)
0.273672 + 0.961823i \(0.411762\pi\)
\(284\) 0 0
\(285\) 0.0387029 + 0.354504i 0.00229256 + 0.0209990i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −20.0419 34.7135i −1.17893 2.04197i
\(290\) 0 0
\(291\) 6.92190 5.07174i 0.405769 0.297311i
\(292\) 0 0
\(293\) −22.8829 −1.33683 −0.668417 0.743787i \(-0.733028\pi\)
−0.668417 + 0.743787i \(0.733028\pi\)
\(294\) 0 0
\(295\) −3.59796 −0.209481
\(296\) 0 0
\(297\) 7.75880 + 1.55153i 0.450211 + 0.0900287i
\(298\) 0 0
\(299\) 1.92685 + 3.33741i 0.111433 + 0.193007i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.48769 + 1.03582i −0.545053 + 0.0595061i
\(304\) 0 0
\(305\) 4.72231 + 2.72643i 0.270399 + 0.156115i
\(306\) 0 0
\(307\) 9.74121i 0.555961i 0.960587 + 0.277980i \(0.0896650\pi\)
−0.960587 + 0.277980i \(0.910335\pi\)
\(308\) 0 0
\(309\) −14.5513 6.40862i −0.827796 0.364574i
\(310\) 0 0
\(311\) −11.0339 + 19.1113i −0.625676 + 1.08370i 0.362733 + 0.931893i \(0.381844\pi\)
−0.988410 + 0.151810i \(0.951490\pi\)
\(312\) 0 0
\(313\) 13.5067 7.79812i 0.763446 0.440776i −0.0670859 0.997747i \(-0.521370\pi\)
0.830532 + 0.556972i \(0.188037\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.3149 8.84205i 0.860169 0.496619i −0.00389987 0.999992i \(-0.501241\pi\)
0.864069 + 0.503374i \(0.167908\pi\)
\(318\) 0 0
\(319\) 5.45413 9.44684i 0.305373 0.528921i
\(320\) 0 0
\(321\) −7.59176 3.34353i −0.423731 0.186617i
\(322\) 0 0
\(323\) 3.18073i 0.176980i
\(324\) 0 0
\(325\) −2.68847 1.55219i −0.149129 0.0860999i
\(326\) 0 0
\(327\) −23.0316 + 2.51447i −1.27365 + 0.139050i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.33251 + 10.9682i 0.348066 + 0.602869i 0.985906 0.167301i \(-0.0535051\pi\)
−0.637840 + 0.770169i \(0.720172\pi\)
\(332\) 0 0
\(333\) −23.7047 + 5.23834i −1.29901 + 0.287059i
\(334\) 0 0
\(335\) 7.15202 0.390756
\(336\) 0 0
\(337\) 25.7617 1.40333 0.701663 0.712509i \(-0.252441\pi\)
0.701663 + 0.712509i \(0.252441\pi\)
\(338\) 0 0
\(339\) −17.5712 + 12.8746i −0.954336 + 0.699251i
\(340\) 0 0
\(341\) −5.61904 9.73247i −0.304288 0.527043i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.543324 4.97664i −0.0292516 0.267933i
\(346\) 0 0
\(347\) −28.5826 16.5022i −1.53439 0.885883i −0.999152 0.0411840i \(-0.986887\pi\)
−0.535242 0.844699i \(-0.679780\pi\)
\(348\) 0 0
\(349\) 29.1507i 1.56040i −0.625528 0.780202i \(-0.715116\pi\)
0.625528 0.780202i \(-0.284884\pi\)
\(350\) 0 0
\(351\) −1.08585 3.20954i −0.0579585 0.171312i
\(352\) 0 0
\(353\) −2.29057 + 3.96738i −0.121915 + 0.211162i −0.920523 0.390689i \(-0.872237\pi\)
0.798608 + 0.601851i \(0.205570\pi\)
\(354\) 0 0
\(355\) −5.44301 + 3.14252i −0.288885 + 0.166788i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0021 9.23882i 0.844559 0.487606i −0.0142524 0.999898i \(-0.504537\pi\)
0.858811 + 0.512292i \(0.171204\pi\)
\(360\) 0 0
\(361\) −9.41138 + 16.3010i −0.495336 + 0.857947i
\(362\) 0 0
\(363\) −6.06051 + 13.7609i −0.318094 + 0.722260i
\(364\) 0 0
\(365\) 4.52146i 0.236664i
\(366\) 0 0
\(367\) 9.78362 + 5.64857i 0.510701 + 0.294853i 0.733122 0.680098i \(-0.238063\pi\)
−0.222421 + 0.974951i \(0.571396\pi\)
\(368\) 0 0
\(369\) 2.28894 7.24246i 0.119157 0.377027i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.31497 + 16.1340i 0.482311 + 0.835387i 0.999794 0.0203065i \(-0.00646421\pi\)
−0.517483 + 0.855694i \(0.673131\pi\)
\(374\) 0 0
\(375\) 4.88679 + 6.66948i 0.252353 + 0.344411i
\(376\) 0 0
\(377\) −4.67113 −0.240575
\(378\) 0 0
\(379\) −5.62097 −0.288730 −0.144365 0.989525i \(-0.546114\pi\)
−0.144365 + 0.989525i \(0.546114\pi\)
\(380\) 0 0
\(381\) −0.270404 0.369047i −0.0138532 0.0189069i
\(382\) 0 0
\(383\) 10.0536 + 17.4133i 0.513713 + 0.889777i 0.999873 + 0.0159076i \(0.00506374\pi\)
−0.486160 + 0.873870i \(0.661603\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.02819 15.9098i 0.255597 0.808739i
\(388\) 0 0
\(389\) 20.2353 + 11.6829i 1.02597 + 0.592345i 0.915828 0.401571i \(-0.131536\pi\)
0.110143 + 0.993916i \(0.464869\pi\)
\(390\) 0 0
\(391\) 44.6521i 2.25815i
\(392\) 0 0
\(393\) 5.24924 11.9188i 0.264789 0.601226i
\(394\) 0 0
\(395\) −0.296958 + 0.514347i −0.0149416 + 0.0258796i
\(396\) 0 0
\(397\) −28.4398 + 16.4197i −1.42735 + 0.824082i −0.996911 0.0785363i \(-0.974975\pi\)
−0.430441 + 0.902619i \(0.641642\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −28.5625 + 16.4906i −1.42635 + 0.823501i −0.996830 0.0795585i \(-0.974649\pi\)
−0.429515 + 0.903060i \(0.641316\pi\)
\(402\) 0 0
\(403\) −2.40618 + 4.16763i −0.119860 + 0.207604i
\(404\) 0 0
\(405\) −0.389565 + 4.38427i −0.0193576 + 0.217856i
\(406\) 0 0
\(407\) 12.3223i 0.610795i
\(408\) 0 0
\(409\) 14.5044 + 8.37414i 0.717198 + 0.414075i 0.813721 0.581256i \(-0.197439\pi\)
−0.0965223 + 0.995331i \(0.530772\pi\)
\(410\) 0 0
\(411\) −0.00372289 0.0341003i −0.000183637 0.00168204i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.20864 + 3.82549i 0.108418 + 0.187786i
\(416\) 0 0
\(417\) −14.1389 + 10.3597i −0.692383 + 0.507315i
\(418\) 0 0
\(419\) 22.5610 1.10218 0.551089 0.834446i \(-0.314212\pi\)
0.551089 + 0.834446i \(0.314212\pi\)
\(420\) 0 0
\(421\) −13.7973 −0.672441 −0.336220 0.941783i \(-0.609149\pi\)
−0.336220 + 0.941783i \(0.609149\pi\)
\(422\) 0 0
\(423\) 27.2850 6.02953i 1.32664 0.293166i
\(424\) 0 0
\(425\) −17.9849 31.1507i −0.872395 1.51103i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.70965 + 0.186651i −0.0825427 + 0.00901159i
\(430\) 0 0
\(431\) −6.81430 3.93424i −0.328233 0.189506i 0.326823 0.945086i \(-0.394022\pi\)
−0.655057 + 0.755580i \(0.727355\pi\)
\(432\) 0 0
\(433\) 23.7844i 1.14300i −0.820601 0.571502i \(-0.806361\pi\)
0.820601 0.571502i \(-0.193639\pi\)
\(434\) 0 0
\(435\) 5.55337 + 2.44579i 0.266264 + 0.117267i
\(436\) 0 0
\(437\) −1.24402 + 2.15470i −0.0595094 + 0.103073i
\(438\) 0 0
\(439\) −19.8458 + 11.4580i −0.947189 + 0.546860i −0.892207 0.451627i \(-0.850844\pi\)
−0.0549827 + 0.998487i \(0.517510\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.1187 + 7.57407i −0.623287 + 0.359855i −0.778147 0.628082i \(-0.783840\pi\)
0.154861 + 0.987936i \(0.450507\pi\)
\(444\) 0 0
\(445\) −2.33769 + 4.04901i −0.110817 + 0.191941i
\(446\) 0 0
\(447\) −22.3286 9.83386i −1.05611 0.465125i
\(448\) 0 0
\(449\) 15.2140i 0.717993i −0.933339 0.358997i \(-0.883119\pi\)
0.933339 0.358997i \(-0.116881\pi\)
\(450\) 0 0
\(451\) −3.33884 1.92768i −0.157220 0.0907710i
\(452\) 0 0
\(453\) 21.6611 2.36485i 1.01773 0.111110i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.5699 20.0396i −0.541216 0.937414i −0.998835 0.0482653i \(-0.984631\pi\)
0.457618 0.889149i \(-0.348703\pi\)
\(458\) 0 0
\(459\) 7.69818 38.4967i 0.359320 1.79687i
\(460\) 0 0
\(461\) 2.52672 0.117681 0.0588405 0.998267i \(-0.481260\pi\)
0.0588405 + 0.998267i \(0.481260\pi\)
\(462\) 0 0
\(463\) −37.3811 −1.73725 −0.868624 0.495472i \(-0.834995\pi\)
−0.868624 + 0.495472i \(0.834995\pi\)
\(464\) 0 0
\(465\) 5.04280 3.69490i 0.233854 0.171347i
\(466\) 0 0
\(467\) −13.1389 22.7572i −0.607994 1.05308i −0.991571 0.129567i \(-0.958641\pi\)
0.383577 0.923509i \(-0.374692\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.62985 + 14.9288i 0.0750993 + 0.687882i
\(472\) 0 0
\(473\) −7.33456 4.23461i −0.337243 0.194707i
\(474\) 0 0
\(475\) 2.00425i 0.0919614i
\(476\) 0 0
\(477\) 3.23640 2.96158i 0.148185 0.135602i
\(478\) 0 0
\(479\) 5.24766 9.08921i 0.239772 0.415297i −0.720877 0.693063i \(-0.756261\pi\)
0.960649 + 0.277766i \(0.0895941\pi\)
\(480\) 0 0
\(481\) 4.56972 2.63833i 0.208361 0.120297i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.09834 1.21148i 0.0952808 0.0550104i
\(486\) 0 0
\(487\) 7.43071 12.8704i 0.336718 0.583212i −0.647096 0.762409i \(-0.724017\pi\)
0.983813 + 0.179197i \(0.0573499\pi\)
\(488\) 0 0
\(489\) 2.33983 5.31277i 0.105811 0.240252i
\(490\) 0 0
\(491\) 13.2061i 0.595981i −0.954569 0.297990i \(-0.903684\pi\)
0.954569 0.297990i \(-0.0963164\pi\)
\(492\) 0 0
\(493\) −46.8722 27.0617i −2.11102 1.21880i
\(494\) 0 0
\(495\) 2.13029 + 0.673264i 0.0957492 + 0.0302610i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.1373 + 27.9506i 0.722404 + 1.25124i 0.960034 + 0.279884i \(0.0902960\pi\)
−0.237630 + 0.971356i \(0.576371\pi\)
\(500\) 0 0
\(501\) 23.9561 + 32.6952i 1.07028 + 1.46071i
\(502\) 0 0
\(503\) 35.5206 1.58379 0.791894 0.610659i \(-0.209095\pi\)
0.791894 + 0.610659i \(0.209095\pi\)
\(504\) 0 0
\(505\) −2.69486 −0.119919
\(506\) 0 0
\(507\) −12.8729 17.5689i −0.571705 0.780262i
\(508\) 0 0
\(509\) 15.8697 + 27.4871i 0.703411 + 1.21834i 0.967262 + 0.253780i \(0.0816738\pi\)
−0.263851 + 0.964563i \(0.584993\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.44401 1.64320i 0.0637544 0.0725490i
\(514\) 0 0
\(515\) −3.88804 2.24476i −0.171328 0.0989161i
\(516\) 0 0
\(517\) 14.1835i 0.623788i
\(518\) 0 0
\(519\) 9.94204 22.5742i 0.436407 0.990899i
\(520\) 0 0
\(521\) 6.43143 11.1396i 0.281766 0.488033i −0.690054 0.723758i \(-0.742413\pi\)
0.971820 + 0.235725i \(0.0757465\pi\)
\(522\) 0 0
\(523\) 25.6383 14.8023i 1.12109 0.647260i 0.179409 0.983775i \(-0.442582\pi\)
0.941678 + 0.336515i \(0.109248\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −48.2894 + 27.8799i −2.10352 + 1.21447i
\(528\) 0 0
\(529\) 5.96390 10.3298i 0.259300 0.449121i
\(530\) 0 0
\(531\) 14.8997 + 16.2823i 0.646590 + 0.706591i
\(532\) 0 0
\(533\) 1.65094i 0.0715101i
\(534\) 0 0
\(535\) −2.02848 1.17114i −0.0876989 0.0506330i
\(536\) 0 0
\(537\) −3.82093 34.9983i −0.164886 1.51029i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.99513 + 8.65182i 0.214757 + 0.371971i 0.953198 0.302348i \(-0.0977706\pi\)
−0.738440 + 0.674319i \(0.764437\pi\)
\(542\) 0 0
\(543\) −1.11560 + 0.817408i −0.0478748 + 0.0350783i
\(544\) 0 0
\(545\) −6.54182 −0.280221
\(546\) 0 0
\(547\) 36.1746 1.54671 0.773357 0.633970i \(-0.218576\pi\)
0.773357 + 0.633970i \(0.218576\pi\)
\(548\) 0 0
\(549\) −7.21754 32.6610i −0.308037 1.39394i
\(550\) 0 0
\(551\) −1.50789 2.61174i −0.0642382 0.111264i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −6.81423 + 0.743942i −0.289248 + 0.0315786i
\(556\) 0 0
\(557\) 6.40214 + 3.69628i 0.271267 + 0.156616i 0.629463 0.777030i \(-0.283275\pi\)
−0.358196 + 0.933646i \(0.616608\pi\)
\(558\) 0 0
\(559\) 3.62668i 0.153392i
\(560\) 0 0
\(561\) −18.2368 8.03175i −0.769957 0.339101i
\(562\) 0 0
\(563\) 6.74518 11.6830i 0.284275 0.492379i −0.688158 0.725561i \(-0.741580\pi\)
0.972433 + 0.233182i \(0.0749137\pi\)
\(564\) 0 0
\(565\) −5.32662 + 3.07532i −0.224092 + 0.129380i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.8855 + 17.2544i −1.25286 + 0.723342i −0.971677 0.236311i \(-0.924062\pi\)
−0.281187 + 0.959653i \(0.590728\pi\)
\(570\) 0 0
\(571\) 11.0628 19.1612i 0.462962 0.801873i −0.536145 0.844126i \(-0.680120\pi\)
0.999107 + 0.0422525i \(0.0134534\pi\)
\(572\) 0 0
\(573\) −33.3893 14.7051i −1.39486 0.614316i
\(574\) 0 0
\(575\) 28.1363i 1.17337i
\(576\) 0 0
\(577\) −2.16681 1.25101i −0.0902056 0.0520802i 0.454219 0.890890i \(-0.349918\pi\)
−0.544424 + 0.838810i \(0.683252\pi\)
\(578\) 0 0
\(579\) −30.8232 + 3.36511i −1.28097 + 0.139849i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.11337 1.92841i −0.0461109 0.0798665i
\(584\) 0 0
\(585\) −0.206435 0.934165i −0.00853504 0.0386230i
\(586\) 0 0
\(587\) 4.36635 0.180219 0.0901093 0.995932i \(-0.471278\pi\)
0.0901093 + 0.995932i \(0.471278\pi\)
\(588\) 0 0
\(589\) −3.10696 −0.128020
\(590\) 0 0
\(591\) 26.7351 19.5890i 1.09973 0.805785i
\(592\) 0 0
\(593\) −3.27519 5.67280i −0.134496 0.232954i 0.790909 0.611934i \(-0.209608\pi\)
−0.925405 + 0.378980i \(0.876275\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.36031 + 21.6195i 0.0966010 + 0.884828i
\(598\) 0 0
\(599\) 7.30262 + 4.21617i 0.298377 + 0.172268i 0.641713 0.766944i \(-0.278224\pi\)
−0.343337 + 0.939212i \(0.611557\pi\)
\(600\) 0 0
\(601\) 3.05803i 0.124740i 0.998053 + 0.0623699i \(0.0198659\pi\)
−0.998053 + 0.0623699i \(0.980134\pi\)
\(602\) 0 0
\(603\) −29.6175 32.3659i −1.20612 1.31804i
\(604\) 0 0
\(605\) −2.12283 + 3.67685i −0.0863053 + 0.149485i
\(606\) 0 0
\(607\) −1.79290 + 1.03513i −0.0727714 + 0.0420146i −0.535944 0.844253i \(-0.680044\pi\)
0.463173 + 0.886268i \(0.346711\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.25992 + 3.03681i −0.212793 + 0.122856i
\(612\) 0 0
\(613\) −14.0987 + 24.4196i −0.569440 + 0.986299i 0.427181 + 0.904166i \(0.359507\pi\)
−0.996621 + 0.0821331i \(0.973827\pi\)
\(614\) 0 0
\(615\) 0.864427 1.96275i 0.0348570 0.0791459i
\(616\) 0 0
\(617\) 22.8152i 0.918505i 0.888306 + 0.459253i \(0.151883\pi\)
−0.888306 + 0.459253i \(0.848117\pi\)
\(618\) 0 0
\(619\) 3.10983 + 1.79546i 0.124995 + 0.0721657i 0.561194 0.827685i \(-0.310342\pi\)
−0.436199 + 0.899850i \(0.643676\pi\)
\(620\) 0 0
\(621\) −20.2714 + 23.0677i −0.813463 + 0.925677i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −10.7347 18.5931i −0.429390 0.743725i
\(626\) 0 0
\(627\) −0.656254 0.895655i −0.0262083 0.0357690i
\(628\) 0 0
\(629\) 61.1395 2.43779
\(630\) 0 0
\(631\) 14.4106 0.573678 0.286839 0.957979i \(-0.407395\pi\)
0.286839 + 0.957979i \(0.407395\pi\)
\(632\) 0 0
\(633\) −9.17969 12.5284i −0.364860 0.497960i
\(634\) 0 0
\(635\) −0.0645910 0.111875i −0.00256322 0.00443962i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 36.7615 + 11.6183i 1.45426 + 0.459612i
\(640\) 0 0
\(641\) −12.2032 7.04551i −0.481997 0.278281i 0.239251 0.970958i \(-0.423098\pi\)
−0.721248 + 0.692677i \(0.756431\pi\)
\(642\) 0 0
\(643\) 8.06888i 0.318205i −0.987262 0.159103i \(-0.949140\pi\)
0.987262 0.159103i \(-0.0508601\pi\)
\(644\) 0 0
\(645\) 1.89892 4.31165i 0.0747698 0.169771i
\(646\) 0 0
\(647\) 21.6216 37.4496i 0.850031 1.47230i −0.0311479 0.999515i \(-0.509916\pi\)
0.881179 0.472782i \(-0.156750\pi\)
\(648\) 0 0
\(649\) 9.70177 5.60132i 0.380828 0.219871i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −38.0536 + 21.9702i −1.48915 + 0.859762i −0.999923 0.0123939i \(-0.996055\pi\)
−0.489228 + 0.872156i \(0.662721\pi\)
\(654\) 0 0
\(655\) 1.83866 3.18466i 0.0718426 0.124435i
\(656\) 0 0
\(657\) −20.4615 + 18.7240i −0.798279 + 0.730493i
\(658\) 0 0
\(659\) 24.6275i 0.959351i −0.877446 0.479676i \(-0.840754\pi\)
0.877446 0.479676i \(-0.159246\pi\)
\(660\) 0 0
\(661\) −19.3064 11.1466i −0.750933 0.433551i 0.0750980 0.997176i \(-0.476073\pi\)
−0.826031 + 0.563625i \(0.809406\pi\)
\(662\) 0 0
\(663\) 0.926102 + 8.48275i 0.0359668 + 0.329443i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21.1682 + 36.6644i 0.819637 + 1.41965i
\(668\) 0 0
\(669\) 15.3428 11.2418i 0.593187 0.434634i
\(670\) 0 0
\(671\) −16.9781 −0.655431
\(672\) 0 0
\(673\) 14.5042 0.559096 0.279548 0.960132i \(-0.409815\pi\)
0.279548 + 0.960132i \(0.409815\pi\)
\(674\) 0 0
\(675\) 4.85080 24.2577i 0.186708 0.933679i
\(676\) 0 0
\(677\) −20.7863 36.0030i −0.798884 1.38371i −0.920344 0.391111i \(-0.872091\pi\)
0.121460 0.992596i \(-0.461242\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.38500 + 1.02461i −0.359634 + 0.0392630i
\(682\) 0 0
\(683\) 6.59064 + 3.80511i 0.252184 + 0.145599i 0.620764 0.783998i \(-0.286823\pi\)
−0.368580 + 0.929596i \(0.620156\pi\)
\(684\) 0 0
\(685\) 0.00968575i 0.000370073i
\(686\) 0 0
\(687\) 20.2903 + 8.93614i 0.774122 + 0.340935i
\(688\) 0 0
\(689\) −0.476764 + 0.825780i −0.0181633 + 0.0314597i
\(690\) 0 0
\(691\) −1.82457 + 1.05341i −0.0694098 + 0.0400738i −0.534303 0.845293i \(-0.679426\pi\)
0.464893 + 0.885367i \(0.346093\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.28612 + 2.47459i −0.162582 + 0.0938667i
\(696\) 0 0
\(697\) −9.56455 + 16.5663i −0.362283 + 0.627493i
\(698\) 0 0
\(699\) −25.6066 11.2775i −0.968530 0.426555i
\(700\) 0 0
\(701\) 0.0201617i 0.000761498i −1.00000 0.000380749i \(-0.999879\pi\)
1.00000 0.000380749i \(-0.000121196\pi\)
\(702\) 0 0
\(703\) 2.95031 + 1.70336i 0.111273 + 0.0642434i
\(704\) 0 0
\(705\) 7.84343 0.856305i 0.295401 0.0322503i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.59166 + 4.48888i 0.0973317 + 0.168583i 0.910579 0.413334i \(-0.135636\pi\)
−0.813248 + 0.581918i \(0.802303\pi\)
\(710\) 0 0
\(711\) 3.55738 0.786122i 0.133412 0.0294819i
\(712\) 0 0
\(713\) 43.6165 1.63345
\(714\) 0 0
\(715\) −0.485605 −0.0181606
\(716\) 0 0
\(717\) 1.53114 1.12188i 0.0571816 0.0418975i
\(718\) 0 0
\(719\) −13.0697 22.6375i −0.487419 0.844235i 0.512476 0.858701i \(-0.328728\pi\)
−0.999895 + 0.0144668i \(0.995395\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.60913 14.7390i −0.0598442 0.548151i
\(724\) 0 0
\(725\) −29.5353 17.0522i −1.09691 0.633303i
\(726\) 0 0
\(727\) 20.9197i 0.775867i 0.921687 + 0.387934i \(0.126811\pi\)
−0.921687 + 0.387934i \(0.873189\pi\)
\(728\) 0 0
\(729\) 21.4539 16.3930i 0.794590 0.607147i
\(730\) 0 0
\(731\) −21.0108 + 36.3917i −0.777112 + 1.34600i
\(732\) 0 0
\(733\) −1.42523 + 0.822856i −0.0526420 + 0.0303929i −0.526090 0.850429i \(-0.676343\pi\)
0.473448 + 0.880822i \(0.343009\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.2852 + 11.1343i −0.710378 + 0.410137i
\(738\) 0 0
\(739\) 1.82710 3.16463i 0.0672109 0.116413i −0.830462 0.557076i \(-0.811923\pi\)
0.897673 + 0.440663i \(0.145257\pi\)
\(740\) 0 0
\(741\) −0.191642 + 0.435139i −0.00704014 + 0.0159852i
\(742\) 0 0
\(743\) 23.6421i 0.867346i −0.901070 0.433673i \(-0.857217\pi\)
0.901070 0.433673i \(-0.142783\pi\)
\(744\) 0 0
\(745\) −5.96610 3.44453i −0.218581 0.126198i
\(746\) 0 0
\(747\) 8.16561 25.8369i 0.298764 0.945324i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.24296 16.0093i −0.337280 0.584187i 0.646640 0.762796i \(-0.276174\pi\)
−0.983920 + 0.178609i \(0.942840\pi\)
\(752\) 0 0
\(753\) 3.97559 + 5.42588i 0.144879 + 0.197730i
\(754\) 0 0
\(755\) 6.15256 0.223914
\(756\) 0 0
\(757\) −39.2439 −1.42634 −0.713172 0.700989i \(-0.752742\pi\)
−0.713172 + 0.700989i \(0.752742\pi\)
\(758\) 0 0
\(759\) 9.21271 + 12.5735i 0.334400 + 0.456389i
\(760\) 0 0
\(761\) 12.1576 + 21.0575i 0.440711 + 0.763334i 0.997742 0.0671572i \(-0.0213929\pi\)
−0.557031 + 0.830492i \(0.688060\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.34053 10.5698i 0.120777 0.382152i
\(766\) 0 0
\(767\) −4.15448 2.39859i −0.150010 0.0866081i
\(768\) 0 0
\(769\) 2.38223i 0.0859053i −0.999077 0.0429526i \(-0.986324\pi\)
0.999077 0.0429526i \(-0.0136765\pi\)
\(770\) 0 0
\(771\) 12.4347 28.2341i 0.447826 1.01683i
\(772\) 0 0
\(773\) −17.9700 + 31.1250i −0.646337 + 1.11949i 0.337654 + 0.941270i \(0.390367\pi\)
−0.983991 + 0.178219i \(0.942967\pi\)
\(774\) 0 0
\(775\) −30.4283 + 17.5678i −1.09302 + 0.631054i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.923080 + 0.532940i −0.0330728 + 0.0190946i
\(780\) 0 0
\(781\) 9.78460 16.9474i 0.350120 0.606426i
\(782\) 0 0
\(783\) −11.9291 35.2597i −0.426310 1.26008i
\(784\) 0 0
\(785\) 4.24033i 0.151344i
\(786\) 0 0
\(787\) 7.32505 + 4.22912i 0.261110 + 0.150752i 0.624841 0.780752i \(-0.285164\pi\)
−0.363731 + 0.931504i \(0.618497\pi\)
\(788\) 0 0
\(789\) −1.02935 9.42843i −0.0366457 0.335661i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3.63516 + 6.29629i 0.129088 + 0.223588i
\(794\) 0 0
\(795\) 0.999188 0.732114i 0.0354375 0.0259654i
\(796\) 0 0
\(797\) −22.7299 −0.805134 −0.402567 0.915390i \(-0.631882\pi\)
−0.402567 + 0.915390i \(0.631882\pi\)
\(798\) 0 0
\(799\) −70.3739 −2.48965
\(800\) 0 0
\(801\) 28.0042 6.18846i 0.989479 0.218658i
\(802\) 0 0
\(803\) 7.03903 + 12.1920i 0.248402 + 0.430245i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 20.9277 2.28478i 0.736691 0.0804280i
\(808\) 0 0
\(809\) 34.8944 + 20.1463i 1.22682 + 0.708307i 0.966364 0.257178i \(-0.0827926\pi\)
0.260459 + 0.965485i \(0.416126\pi\)
\(810\) 0 0
\(811\) 47.7723i 1.67751i −0.544507 0.838756i \(-0.683283\pi\)
0.544507 0.838756i \(-0.316717\pi\)
\(812\) 0 0
\(813\) −38.3176 16.8757i −1.34386 0.591855i
\(814\) 0 0
\(815\) 0.819576 1.41955i 0.0287085 0.0497246i
\(816\) 0 0
\(817\) −2.02776 + 1.17073i −0.0709425 + 0.0409587i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.56155 1.47891i 0.0893988 0.0516144i −0.454634 0.890678i \(-0.650230\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(822\) 0 0
\(823\) −24.3551 + 42.1842i −0.848964 + 1.47045i 0.0331698 + 0.999450i \(0.489440\pi\)
−0.882134 + 0.470999i \(0.843894\pi\)
\(824\) 0 0
\(825\) −11.4914 5.06099i −0.400080 0.176201i
\(826\) 0 0
\(827\) 53.0570i 1.84497i 0.386028 + 0.922487i \(0.373847\pi\)
−0.386028 + 0.922487i \(0.626153\pi\)
\(828\) 0 0
\(829\) 35.6250 + 20.5681i 1.23731 + 0.714360i 0.968543 0.248846i \(-0.0800514\pi\)
0.268764 + 0.963206i \(0.413385\pi\)
\(830\) 0 0
\(831\) 5.05251 0.551607i 0.175270 0.0191350i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.72234 + 9.91139i 0.198030 + 0.342998i
\(836\) 0 0
\(837\) −37.6039 7.51965i −1.29978 0.259917i
\(838\) 0 0
\(839\) 42.0861 1.45297 0.726486 0.687181i \(-0.241152\pi\)
0.726486 + 0.687181i \(0.241152\pi\)
\(840\) 0 0
\(841\) −22.3166 −0.769536
\(842\) 0 0
\(843\) 2.75867 2.02130i 0.0950137 0.0696174i
\(844\) 0 0
\(845\) −3.07492 5.32592i −0.105781 0.183217i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.54055 41.5897i −0.155831 1.42736i
\(850\) 0 0
\(851\) −41.4173 23.9123i −1.41977 0.819703i
\(852\) 0 0
\(853\) 21.7333i 0.744134i 0.928206 + 0.372067i \(0.121351\pi\)
−0.928206 + 0.372067i \(0.878649\pi\)
\(854\) 0 0
\(855\) 0.455675 0.416981i 0.0155838 0.0142605i
\(856\) 0 0
\(857\) −2.71077 + 4.69519i −0.0925982 + 0.160385i −0.908604 0.417659i \(-0.862851\pi\)
0.816005 + 0.578044i \(0.196184\pi\)
\(858\) 0 0
\(859\) −2.39371 + 1.38201i −0.0816722 + 0.0471535i −0.540280 0.841485i \(-0.681682\pi\)
0.458608 + 0.888639i \(0.348348\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.40681 2.54427i 0.150009 0.0866080i −0.423116 0.906075i \(-0.639064\pi\)
0.573126 + 0.819467i \(0.305731\pi\)
\(864\) 0 0
\(865\) 3.48242 6.03173i 0.118406 0.205085i
\(866\) 0 0
\(867\) −27.9830 + 63.5379i −0.950354 + 2.15786i
\(868\) 0 0
\(869\) 1.84922i 0.0627306i
\(870\) 0 0
\(871\) 8.25827 + 4.76791i 0.279821 + 0.161555i
\(872\) 0 0
\(873\) −14.1720 4.47897i −0.479649 0.151590i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.13967 7.17011i −0.139787 0.242118i 0.787629 0.616150i \(-0.211308\pi\)
−0.927416 + 0.374032i \(0.877975\pi\)
\(878\) 0 0
\(879\) 23.4254 + 31.9709i 0.790118 + 1.07835i
\(880\) 0 0
\(881\) 14.3278 0.482714 0.241357 0.970436i \(-0.422407\pi\)
0.241357 + 0.970436i \(0.422407\pi\)
\(882\) 0 0
\(883\) 55.7910 1.87752 0.938758 0.344576i \(-0.111977\pi\)
0.938758 + 0.344576i \(0.111977\pi\)
\(884\) 0 0
\(885\) 3.68325 + 5.02689i 0.123811 + 0.168977i
\(886\) 0 0
\(887\) 16.7623 + 29.0332i 0.562824 + 0.974840i 0.997248 + 0.0741320i \(0.0236186\pi\)
−0.434424 + 0.900708i \(0.643048\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −5.77501 12.4285i −0.193470 0.416371i
\(892\) 0 0
\(893\) −3.39591 1.96063i −0.113640 0.0656100i
\(894\) 0 0
\(895\) 9.94083i 0.332285i
\(896\) 0 0
\(897\) 2.69033 6.10862i 0.0898275 0.203961i
\(898\) 0 0
\(899\) −26.4341 + 45.7852i −0.881626 + 1.52702i
\(900\) 0 0
\(901\) −9.56815 + 5.52417i −0.318761 + 0.184037i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.338188 + 0.195253i −0.0112417 + 0.00649042i
\(906\) 0 0
\(907\) −3.39351 + 5.87774i −0.112680 + 0.195167i −0.916850 0.399232i \(-0.869277\pi\)
0.804170 + 0.594399i \(0.202610\pi\)
\(908\) 0 0
\(909\) 11.1598 + 12.1954i 0.370147 + 0.404494i
\(910\) 0 0
\(911\) 5.62793i 0.186462i 0.995645 + 0.0932308i \(0.0297194\pi\)
−0.995645 + 0.0932308i \(0.970281\pi\)
\(912\) 0 0
\(913\) −11.9111 6.87686i −0.394199 0.227591i
\(914\) 0 0
\(915\) −1.02502 9.38884i −0.0338863 0.310385i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.3617 24.8752i −0.473748 0.820556i 0.525800 0.850608i \(-0.323766\pi\)
−0.999548 + 0.0300524i \(0.990433\pi\)
\(920\) 0 0
\(921\) 13.6099 9.97213i 0.448463 0.328593i
\(922\) 0 0
\(923\) −8.37990 −0.275828
\(924\) 0 0
\(925\) 38.5254 1.26671
\(926\) 0 0
\(927\) 5.94245 + 26.8909i 0.195176 + 0.883214i
\(928\) 0 0
\(929\) 5.24240 + 9.08010i 0.171998 + 0.297909i 0.939118 0.343594i \(-0.111645\pi\)
−0.767121 + 0.641503i \(0.778311\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 37.9969 4.14830i 1.24396 0.135809i
\(934\) 0 0
\(935\) −4.87278 2.81330i −0.159357 0.0920048i
\(936\) 0 0
\(937\) 45.3531i 1.48162i 0.671713 + 0.740811i \(0.265559\pi\)
−0.671713 + 0.740811i \(0.734441\pi\)
\(938\) 0 0
\(939\) −24.7220 10.8880i −0.806773 0.355315i
\(940\) 0 0
\(941\) −14.7347 + 25.5213i −0.480338 + 0.831969i −0.999746 0.0225572i \(-0.992819\pi\)
0.519408 + 0.854526i \(0.326153\pi\)
\(942\) 0 0
\(943\) 12.9585 7.48159i 0.421987 0.243634i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.3729 10.0302i 0.564542 0.325939i −0.190424 0.981702i \(-0.560986\pi\)
0.754967 + 0.655763i \(0.227653\pi\)
\(948\) 0 0
\(949\) 3.01425 5.22083i 0.0978465 0.169475i
\(950\) 0 0
\(951\) −28.0316 12.3455i −0.908986 0.400331i
\(952\) 0 0
\(953\) 4.51738i 0.146332i −0.997320 0.0731661i \(-0.976690\pi\)
0.997320 0.0731661i \(-0.0233103\pi\)
\(954\) 0 0
\(955\) −8.92146 5.15081i −0.288692 0.166676i
\(956\) 0 0
\(957\) −18.7821 + 2.05053i −0.607138 + 0.0662842i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.7333 + 20.3227i 0.378495 + 0.655572i
\(962\) 0 0
\(963\) 3.10031 + 14.0296i 0.0999062 + 0.452098i
\(964\) 0 0
\(965\) −8.75493 −0.281831
\(966\) 0 0
\(967\) 28.2943 0.909883 0.454942 0.890521i \(-0.349660\pi\)
0.454942 + 0.890521i \(0.349660\pi\)
\(968\) 0 0
\(969\) −4.44396 + 3.25613i −0.142760 + 0.104602i
\(970\) 0 0
\(971\) −22.4658 38.9119i −0.720962 1.24874i −0.960615 0.277883i \(-0.910367\pi\)
0.239653 0.970859i \(-0.422966\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.583559 + 5.34518i 0.0186888 + 0.171183i
\(976\) 0 0
\(977\) −34.3384 19.8253i −1.09858 0.634267i −0.162734 0.986670i \(-0.552031\pi\)
−0.935848 + 0.352403i \(0.885365\pi\)
\(978\) 0 0
\(979\) 14.5573i 0.465254i
\(980\) 0 0
\(981\) 27.0906 + 29.6045i 0.864936 + 0.945198i
\(982\) 0 0
\(983\) −0.546313 + 0.946242i −0.0174247 + 0.0301804i −0.874606 0.484834i \(-0.838880\pi\)
0.857182 + 0.515014i \(0.172213\pi\)
\(984\) 0 0
\(985\) 8.10460 4.67920i 0.258234 0.149092i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.4664 16.4351i 0.905179 0.522605i
\(990\) 0 0
\(991\) 24.3111 42.1081i 0.772269 1.33761i −0.164048 0.986452i \(-0.552455\pi\)
0.936317 0.351157i \(-0.114212\pi\)
\(992\) 0 0
\(993\) 8.84164 20.0757i 0.280581 0.637083i
\(994\) 0 0
\(995\) 6.14075i 0.194675i
\(996\) 0 0
\(997\) 26.0510 + 15.0405i 0.825042 + 0.476338i 0.852152 0.523294i \(-0.175297\pi\)
−0.0271100 + 0.999632i \(0.508630\pi\)
\(998\) 0 0
\(999\) 31.5853 + 27.7565i 0.999315 + 0.878176i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.u.c.521.9 48
3.2 odd 2 inner 1176.2.u.c.521.1 48
7.2 even 3 inner 1176.2.u.c.1097.24 48
7.3 odd 6 1176.2.k.b.881.17 yes 24
7.4 even 3 1176.2.k.b.881.8 yes 24
7.5 odd 6 inner 1176.2.u.c.1097.1 48
7.6 odd 2 inner 1176.2.u.c.521.16 48
21.2 odd 6 inner 1176.2.u.c.1097.16 48
21.5 even 6 inner 1176.2.u.c.1097.9 48
21.11 odd 6 1176.2.k.b.881.18 yes 24
21.17 even 6 1176.2.k.b.881.7 24
21.20 even 2 inner 1176.2.u.c.521.24 48
28.3 even 6 2352.2.k.j.881.8 24
28.11 odd 6 2352.2.k.j.881.17 24
84.11 even 6 2352.2.k.j.881.7 24
84.59 odd 6 2352.2.k.j.881.18 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.7 24 21.17 even 6
1176.2.k.b.881.8 yes 24 7.4 even 3
1176.2.k.b.881.17 yes 24 7.3 odd 6
1176.2.k.b.881.18 yes 24 21.11 odd 6
1176.2.u.c.521.1 48 3.2 odd 2 inner
1176.2.u.c.521.9 48 1.1 even 1 trivial
1176.2.u.c.521.16 48 7.6 odd 2 inner
1176.2.u.c.521.24 48 21.20 even 2 inner
1176.2.u.c.1097.1 48 7.5 odd 6 inner
1176.2.u.c.1097.9 48 21.5 even 6 inner
1176.2.u.c.1097.16 48 21.2 odd 6 inner
1176.2.u.c.1097.24 48 7.2 even 3 inner
2352.2.k.j.881.7 24 84.11 even 6
2352.2.k.j.881.8 24 28.3 even 6
2352.2.k.j.881.17 24 28.11 odd 6
2352.2.k.j.881.18 24 84.59 odd 6