L(s) = 1 | + 0.149i·2-s + 2.76·3-s + 1.97·4-s − 4.13i·5-s + 0.413i·6-s + i·7-s + 0.595i·8-s + 4.61·9-s + 0.618·10-s − 2.55i·11-s + 5.45·12-s − 0.149·14-s − 11.4i·15-s + 3.86·16-s − 1.50·17-s + 0.691i·18-s + ⋯ |
L(s) = 1 | + 0.105i·2-s + 1.59·3-s + 0.988·4-s − 1.84i·5-s + 0.168i·6-s + 0.377i·7-s + 0.210i·8-s + 1.53·9-s + 0.195·10-s − 0.769i·11-s + 1.57·12-s − 0.0399·14-s − 2.94i·15-s + 0.966·16-s − 0.364·17-s + 0.162i·18-s + ⋯ |
Λ(s)=(=(1183s/2ΓC(s)L(s)(0.722+0.691i)Λ(2−s)
Λ(s)=(=(1183s/2ΓC(s+1/2)L(s)(0.722+0.691i)Λ(1−s)
Degree: |
2 |
Conductor: |
1183
= 7⋅132
|
Sign: |
0.722+0.691i
|
Analytic conductor: |
9.44630 |
Root analytic conductor: |
3.07348 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1183(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1183, ( :1/2), 0.722+0.691i)
|
Particular Values
L(1) |
≈ |
3.479606615 |
L(21) |
≈ |
3.479606615 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−iT |
| 13 | 1 |
good | 2 | 1−0.149iT−2T2 |
| 3 | 1−2.76T+3T2 |
| 5 | 1+4.13iT−5T2 |
| 11 | 1+2.55iT−11T2 |
| 17 | 1+1.50T+17T2 |
| 19 | 1−5.93iT−19T2 |
| 23 | 1+6.55T+23T2 |
| 29 | 1−0.283T+29T2 |
| 31 | 1−1.95iT−31T2 |
| 37 | 1−5.66iT−37T2 |
| 41 | 1−6.70iT−41T2 |
| 43 | 1−8.14T+43T2 |
| 47 | 1+3.94iT−47T2 |
| 53 | 1+1.08T+53T2 |
| 59 | 1+3.71iT−59T2 |
| 61 | 1−1.93T+61T2 |
| 67 | 1−3.38iT−67T2 |
| 71 | 1+5.36iT−71T2 |
| 73 | 1−2.62iT−73T2 |
| 79 | 1−7.89T+79T2 |
| 83 | 1−10.5iT−83T2 |
| 89 | 1+6.64iT−89T2 |
| 97 | 1+0.504iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.486734374020988338081569451638, −8.544124550528839889558587744585, −8.249956034569618938604169514227, −7.65948581388541983394153398303, −6.25887107245756455092538778699, −5.48321798323146671787709539949, −4.25930735406136291027524222629, −3.38198863691151545591524597367, −2.20147294258284861136431629560, −1.38802875215899210107331621423,
2.15841324931164942804046852482, 2.44500561719935921308275660884, 3.39945439270224790847016242865, 4.15504092407431979811326667598, 6.03910535040330605852399947731, 6.92727048988158527465841550300, 7.36666081774686506000211748919, 7.912147658294991219985834108674, 9.177223084706835188647483102393, 9.926712548473340648731981782464