L(s) = 1 | + (1 − 1.73i)2-s + (−0.999 − 1.73i)4-s + (0.5 − 0.866i)5-s + (2 − 1.73i)7-s + (−0.999 − 1.73i)10-s + (2 + 3.46i)11-s + 4·13-s + (−0.999 − 5.19i)14-s + (1.99 − 3.46i)16-s + (1.5 + 2.59i)17-s + (0.5 − 0.866i)19-s − 1.99·20-s + 7.99·22-s + (−1.5 + 2.59i)23-s + (2 + 3.46i)25-s + (4 − 6.92i)26-s + ⋯ |
L(s) = 1 | + (0.707 − 1.22i)2-s + (−0.499 − 0.866i)4-s + (0.223 − 0.387i)5-s + (0.755 − 0.654i)7-s + (−0.316 − 0.547i)10-s + (0.603 + 1.04i)11-s + 1.10·13-s + (−0.267 − 1.38i)14-s + (0.499 − 0.866i)16-s + (0.363 + 0.630i)17-s + (0.114 − 0.198i)19-s − 0.447·20-s + 1.70·22-s + (−0.312 + 0.541i)23-s + (0.400 + 0.692i)25-s + (0.784 − 1.35i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.033904325\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.033904325\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2 - 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 10T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3 + 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 + 7T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6 + 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5 - 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (3 + 5.19i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5 + 8.66i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3T + 83T^{2} \) |
| 89 | \( 1 + (7 - 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.748754648552596153722677321849, −8.957629836994008346834429375009, −7.83709052622580173282315018755, −7.11962274433598327916875275569, −5.79367924138190114320782861346, −4.93213569985568165199959255972, −4.06281629421142232561092527243, −3.49398011524995401196443638318, −1.85822919228122230212410417769, −1.36145542621407559053202370703,
1.53557872247746337890156215252, 3.11674797638828561074673624008, 4.13318000854646644873592841197, 5.14814043757902004970648201263, 5.94572643188098069192041258008, 6.36526725542690696131063994600, 7.38952075981755010033804826381, 8.286427150672961414179379640069, 8.738024783280089023136032357369, 9.892786872988371826042123126679