L(s) = 1 | + (1 − 1.73i)2-s + (−0.999 − 1.73i)4-s + (0.5 − 0.866i)5-s + (2 − 1.73i)7-s + (−0.999 − 1.73i)10-s + (2 + 3.46i)11-s + 4·13-s + (−0.999 − 5.19i)14-s + (1.99 − 3.46i)16-s + (1.5 + 2.59i)17-s + (0.5 − 0.866i)19-s − 1.99·20-s + 7.99·22-s + (−1.5 + 2.59i)23-s + (2 + 3.46i)25-s + (4 − 6.92i)26-s + ⋯ |
L(s) = 1 | + (0.707 − 1.22i)2-s + (−0.499 − 0.866i)4-s + (0.223 − 0.387i)5-s + (0.755 − 0.654i)7-s + (−0.316 − 0.547i)10-s + (0.603 + 1.04i)11-s + 1.10·13-s + (−0.267 − 1.38i)14-s + (0.499 − 0.866i)16-s + (0.363 + 0.630i)17-s + (0.114 − 0.198i)19-s − 0.447·20-s + 1.70·22-s + (−0.312 + 0.541i)23-s + (0.400 + 0.692i)25-s + (0.784 − 1.35i)26-s + ⋯ |
Λ(s)=(=(1197s/2ΓC(s)L(s)(−0.266+0.963i)Λ(2−s)
Λ(s)=(=(1197s/2ΓC(s+1/2)L(s)(−0.266+0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
1197
= 32⋅7⋅19
|
Sign: |
−0.266+0.963i
|
Analytic conductor: |
9.55809 |
Root analytic conductor: |
3.09161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1197(856,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1197, ( :1/2), −0.266+0.963i)
|
Particular Values
L(1) |
≈ |
3.033904325 |
L(21) |
≈ |
3.033904325 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−2+1.73i)T |
| 19 | 1+(−0.5+0.866i)T |
good | 2 | 1+(−1+1.73i)T+(−1−1.73i)T2 |
| 5 | 1+(−0.5+0.866i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−2−3.46i)T+(−5.5+9.52i)T2 |
| 13 | 1−4T+13T2 |
| 17 | 1+(−1.5−2.59i)T+(−8.5+14.7i)T2 |
| 23 | 1+(1.5−2.59i)T+(−11.5−19.9i)T2 |
| 29 | 1+10T+29T2 |
| 31 | 1+(−15.5+26.8i)T2 |
| 37 | 1+(−3+5.19i)T+(−18.5−32.0i)T2 |
| 41 | 1+2T+41T2 |
| 43 | 1+7T+43T2 |
| 47 | 1+(−23.5−40.7i)T2 |
| 53 | 1+(6+10.3i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−6−10.3i)T+(−29.5+51.0i)T2 |
| 61 | 1+(5−8.66i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5+8.66i)T+(−33.5+58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+(3+5.19i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−5+8.66i)T+(−39.5−68.4i)T2 |
| 83 | 1+3T+83T2 |
| 89 | 1+(7−12.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+12T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.748754648552596153722677321849, −8.957629836994008346834429375009, −7.83709052622580173282315018755, −7.11962274433598327916875275569, −5.79367924138190114320782861346, −4.93213569985568165199959255972, −4.06281629421142232561092527243, −3.49398011524995401196443638318, −1.85822919228122230212410417769, −1.36145542621407559053202370703,
1.53557872247746337890156215252, 3.11674797638828561074673624008, 4.13318000854646644873592841197, 5.14814043757902004970648201263, 5.94572643188098069192041258008, 6.36526725542690696131063994600, 7.38952075981755010033804826381, 8.286427150672961414179379640069, 8.738024783280089023136032357369, 9.892786872988371826042123126679