Properties

Label 1197.2.j.b
Level $1197$
Weight $2$
Character orbit 1197.j
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1197,2,Mod(172,1197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1197, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1197.172");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{4} + \zeta_{6} q^{5} + (2 \zeta_{6} + 1) q^{7} + (2 \zeta_{6} - 2) q^{10} + ( - 4 \zeta_{6} + 4) q^{11} + 4 q^{13} + (6 \zeta_{6} - 4) q^{14} + 4 \zeta_{6} q^{16}+ \cdots + (10 \zeta_{6} - 16) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + q^{5} + 4 q^{7} - 2 q^{10} + 4 q^{11} + 8 q^{13} - 2 q^{14} + 4 q^{16} + 3 q^{17} + q^{19} - 4 q^{20} + 16 q^{22} - 3 q^{23} + 4 q^{25} + 8 q^{26} - 10 q^{28} - 20 q^{29} - 8 q^{32}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times\).

\(n\) \(514\) \(533\) \(1009\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
172.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −1.00000 + 1.73205i 0.500000 + 0.866025i 0 2.00000 + 1.73205i 0 0 −1.00000 + 1.73205i
856.1 1.00000 1.73205i 0 −1.00000 1.73205i 0.500000 0.866025i 0 2.00000 1.73205i 0 0 −1.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1197.2.j.b 2
3.b odd 2 1 399.2.j.a 2
7.c even 3 1 inner 1197.2.j.b 2
7.c even 3 1 8379.2.a.b 1
7.d odd 6 1 8379.2.a.c 1
21.g even 6 1 2793.2.a.k 1
21.h odd 6 1 399.2.j.a 2
21.h odd 6 1 2793.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.a 2 3.b odd 2 1
399.2.j.a 2 21.h odd 6 1
1197.2.j.b 2 1.a even 1 1 trivial
1197.2.j.b 2 7.c even 3 1 inner
2793.2.a.k 1 21.g even 6 1
2793.2.a.l 1 21.h odd 6 1
8379.2.a.b 1 7.c even 3 1
8379.2.a.c 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1197, [\chi])\):

\( T_{2}^{2} - 2T_{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$29$ \( (T + 10)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( (T + 7)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$83$ \( (T + 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$97$ \( (T + 12)^{2} \) Copy content Toggle raw display
show more
show less