Properties

Label 1197.2.j.b
Level 11971197
Weight 22
Character orbit 1197.j
Analytic conductor 9.5589.558
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1197,2,Mod(172,1197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1197, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1197.172");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1197=32719 1197 = 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1197.j (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.558093121959.55809312195
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 399)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q2+(2ζ62)q4+ζ6q5+(2ζ6+1)q7+(2ζ62)q10+(4ζ6+4)q11+4q13+(6ζ64)q14+4ζ6q16++(10ζ616)q98+O(q100) q + 2 \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{4} + \zeta_{6} q^{5} + (2 \zeta_{6} + 1) q^{7} + (2 \zeta_{6} - 2) q^{10} + ( - 4 \zeta_{6} + 4) q^{11} + 4 q^{13} + (6 \zeta_{6} - 4) q^{14} + 4 \zeta_{6} q^{16}+ \cdots + (10 \zeta_{6} - 16) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q22q4+q5+4q72q10+4q11+8q132q14+4q16+3q17+q194q20+16q223q23+4q25+8q2610q2820q298q32+22q98+O(q100) 2 q + 2 q^{2} - 2 q^{4} + q^{5} + 4 q^{7} - 2 q^{10} + 4 q^{11} + 8 q^{13} - 2 q^{14} + 4 q^{16} + 3 q^{17} + q^{19} - 4 q^{20} + 16 q^{22} - 3 q^{23} + 4 q^{25} + 8 q^{26} - 10 q^{28} - 20 q^{29} - 8 q^{32}+ \cdots - 22 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1197Z)×\left(\mathbb{Z}/1197\mathbb{Z}\right)^\times.

nn 514514 533533 10091009
χ(n)\chi(n) ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
172.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −1.00000 + 1.73205i 0.500000 + 0.866025i 0 2.00000 + 1.73205i 0 0 −1.00000 + 1.73205i
856.1 1.00000 1.73205i 0 −1.00000 1.73205i 0.500000 0.866025i 0 2.00000 1.73205i 0 0 −1.00000 1.73205i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1197.2.j.b 2
3.b odd 2 1 399.2.j.a 2
7.c even 3 1 inner 1197.2.j.b 2
7.c even 3 1 8379.2.a.b 1
7.d odd 6 1 8379.2.a.c 1
21.g even 6 1 2793.2.a.k 1
21.h odd 6 1 399.2.j.a 2
21.h odd 6 1 2793.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.a 2 3.b odd 2 1
399.2.j.a 2 21.h odd 6 1
1197.2.j.b 2 1.a even 1 1 trivial
1197.2.j.b 2 7.c even 3 1 inner
2793.2.a.k 1 21.g even 6 1
2793.2.a.l 1 21.h odd 6 1
8379.2.a.b 1 7.c even 3 1
8379.2.a.c 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1197,[χ])S_{2}^{\mathrm{new}}(1197, [\chi]):

T222T2+4 T_{2}^{2} - 2T_{2} + 4 Copy content Toggle raw display
T52T5+1 T_{5}^{2} - T_{5} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T24T+7 T^{2} - 4T + 7 Copy content Toggle raw display
1111 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1313 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1717 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2929 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
5959 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
6161 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
6767 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
7171 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7373 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
7979 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
8383 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
8989 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
9797 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
show more
show less