Properties

Label 399.2.j.a
Level $399$
Weight $2$
Character orbit 399.j
Analytic conductor $3.186$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(58,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.58");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + (2 \zeta_{6} - 2) q^{4} - \zeta_{6} q^{5} + 2 q^{6} + (2 \zeta_{6} + 1) q^{7} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 2 \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + (2 \zeta_{6} - 2) q^{4} - \zeta_{6} q^{5} + 2 q^{6} + (2 \zeta_{6} + 1) q^{7} - \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{10} + (4 \zeta_{6} - 4) q^{11} - 2 \zeta_{6} q^{12} + 4 q^{13} + ( - 6 \zeta_{6} + 4) q^{14} + q^{15} + 4 \zeta_{6} q^{16} + (3 \zeta_{6} - 3) q^{17} + (2 \zeta_{6} - 2) q^{18} + \zeta_{6} q^{19} + 2 q^{20} + (\zeta_{6} - 3) q^{21} + 8 q^{22} + 3 \zeta_{6} q^{23} + ( - 4 \zeta_{6} + 4) q^{25} - 8 \zeta_{6} q^{26} + q^{27} + (2 \zeta_{6} - 6) q^{28} + 10 q^{29} - 2 \zeta_{6} q^{30} + ( - 8 \zeta_{6} + 8) q^{32} - 4 \zeta_{6} q^{33} + 6 q^{34} + ( - 3 \zeta_{6} + 2) q^{35} + 2 q^{36} + 6 \zeta_{6} q^{37} + ( - 2 \zeta_{6} + 2) q^{38} + (4 \zeta_{6} - 4) q^{39} + 2 q^{41} + (4 \zeta_{6} + 2) q^{42} - 7 q^{43} - 8 \zeta_{6} q^{44} + (\zeta_{6} - 1) q^{45} + ( - 6 \zeta_{6} + 6) q^{46} - 4 q^{48} + (8 \zeta_{6} - 3) q^{49} - 8 q^{50} - 3 \zeta_{6} q^{51} + (8 \zeta_{6} - 8) q^{52} + ( - 12 \zeta_{6} + 12) q^{53} - 2 \zeta_{6} q^{54} + 4 q^{55} - q^{57} - 20 \zeta_{6} q^{58} + (12 \zeta_{6} - 12) q^{59} + (2 \zeta_{6} - 2) q^{60} - 10 \zeta_{6} q^{61} + ( - 3 \zeta_{6} + 2) q^{63} - 8 q^{64} - 4 \zeta_{6} q^{65} + (8 \zeta_{6} - 8) q^{66} + (10 \zeta_{6} - 10) q^{67} - 6 \zeta_{6} q^{68} - 3 q^{69} + (2 \zeta_{6} - 6) q^{70} + 6 q^{71} + (6 \zeta_{6} - 6) q^{73} + ( - 12 \zeta_{6} + 12) q^{74} + 4 \zeta_{6} q^{75} - 2 q^{76} + (4 \zeta_{6} - 12) q^{77} + 8 q^{78} + 10 \zeta_{6} q^{79} + ( - 4 \zeta_{6} + 4) q^{80} + (\zeta_{6} - 1) q^{81} - 4 \zeta_{6} q^{82} + 3 q^{83} + ( - 6 \zeta_{6} + 4) q^{84} + 3 q^{85} + 14 \zeta_{6} q^{86} + (10 \zeta_{6} - 10) q^{87} + 14 \zeta_{6} q^{89} + 2 q^{90} + (8 \zeta_{6} + 4) q^{91} - 6 q^{92} + ( - \zeta_{6} + 1) q^{95} + 8 \zeta_{6} q^{96} - 12 q^{97} + ( - 10 \zeta_{6} + 16) q^{98} + 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - q^{3} - 2 q^{4} - q^{5} + 4 q^{6} + 4 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - q^{3} - 2 q^{4} - q^{5} + 4 q^{6} + 4 q^{7} - q^{9} - 2 q^{10} - 4 q^{11} - 2 q^{12} + 8 q^{13} + 2 q^{14} + 2 q^{15} + 4 q^{16} - 3 q^{17} - 2 q^{18} + q^{19} + 4 q^{20} - 5 q^{21} + 16 q^{22} + 3 q^{23} + 4 q^{25} - 8 q^{26} + 2 q^{27} - 10 q^{28} + 20 q^{29} - 2 q^{30} + 8 q^{32} - 4 q^{33} + 12 q^{34} + q^{35} + 4 q^{36} + 6 q^{37} + 2 q^{38} - 4 q^{39} + 4 q^{41} + 8 q^{42} - 14 q^{43} - 8 q^{44} - q^{45} + 6 q^{46} - 8 q^{48} + 2 q^{49} - 16 q^{50} - 3 q^{51} - 8 q^{52} + 12 q^{53} - 2 q^{54} + 8 q^{55} - 2 q^{57} - 20 q^{58} - 12 q^{59} - 2 q^{60} - 10 q^{61} + q^{63} - 16 q^{64} - 4 q^{65} - 8 q^{66} - 10 q^{67} - 6 q^{68} - 6 q^{69} - 10 q^{70} + 12 q^{71} - 6 q^{73} + 12 q^{74} + 4 q^{75} - 4 q^{76} - 20 q^{77} + 16 q^{78} + 10 q^{79} + 4 q^{80} - q^{81} - 4 q^{82} + 6 q^{83} + 2 q^{84} + 6 q^{85} + 14 q^{86} - 10 q^{87} + 14 q^{89} + 4 q^{90} + 16 q^{91} - 12 q^{92} + q^{95} + 8 q^{96} - 24 q^{97} + 22 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/399\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(134\) \(211\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
58.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 + 1.73205i −0.500000 0.866025i −1.00000 1.73205i −0.500000 + 0.866025i 2.00000 2.00000 1.73205i 0 −0.500000 + 0.866025i −1.00000 1.73205i
172.1 −1.00000 1.73205i −0.500000 + 0.866025i −1.00000 + 1.73205i −0.500000 0.866025i 2.00000 2.00000 + 1.73205i 0 −0.500000 0.866025i −1.00000 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.j.a 2
3.b odd 2 1 1197.2.j.b 2
7.c even 3 1 inner 399.2.j.a 2
7.c even 3 1 2793.2.a.l 1
7.d odd 6 1 2793.2.a.k 1
21.g even 6 1 8379.2.a.c 1
21.h odd 6 1 1197.2.j.b 2
21.h odd 6 1 8379.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.a 2 1.a even 1 1 trivial
399.2.j.a 2 7.c even 3 1 inner
1197.2.j.b 2 3.b odd 2 1
1197.2.j.b 2 21.h odd 6 1
2793.2.a.k 1 7.d odd 6 1
2793.2.a.l 1 7.c even 3 1
8379.2.a.b 1 21.h odd 6 1
8379.2.a.c 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2T_{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(399, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( (T - 10)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( (T + 7)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$83$ \( (T - 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$97$ \( (T + 12)^{2} \) Copy content Toggle raw display
show more
show less