Properties

Label 399.2.j.a
Level 399399
Weight 22
Character orbit 399.j
Analytic conductor 3.1863.186
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(58,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.58");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 399=3719 399 = 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 399.j (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.186031040653.18603104065
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2ζ6q2+(ζ61)q3+(2ζ62)q4ζ6q5+2q6+(2ζ6+1)q7ζ6q9+(2ζ62)q10+(4ζ64)q112ζ6q12++4q99+O(q100) q - 2 \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + (2 \zeta_{6} - 2) q^{4} - \zeta_{6} q^{5} + 2 q^{6} + (2 \zeta_{6} + 1) q^{7} - \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{10} + (4 \zeta_{6} - 4) q^{11} - 2 \zeta_{6} q^{12} + \cdots + 4 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2q32q4q5+4q6+4q7q92q104q112q12+8q13+2q14+2q15+4q163q172q18+q19+4q205q21++8q99+O(q100) 2 q - 2 q^{2} - q^{3} - 2 q^{4} - q^{5} + 4 q^{6} + 4 q^{7} - q^{9} - 2 q^{10} - 4 q^{11} - 2 q^{12} + 8 q^{13} + 2 q^{14} + 2 q^{15} + 4 q^{16} - 3 q^{17} - 2 q^{18} + q^{19} + 4 q^{20} - 5 q^{21}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/399Z)×\left(\mathbb{Z}/399\mathbb{Z}\right)^\times.

nn 115115 134134 211211
χ(n)\chi(n) ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
58.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 + 1.73205i −0.500000 0.866025i −1.00000 1.73205i −0.500000 + 0.866025i 2.00000 2.00000 1.73205i 0 −0.500000 + 0.866025i −1.00000 1.73205i
172.1 −1.00000 1.73205i −0.500000 + 0.866025i −1.00000 + 1.73205i −0.500000 0.866025i 2.00000 2.00000 + 1.73205i 0 −0.500000 0.866025i −1.00000 + 1.73205i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 399.2.j.a 2
3.b odd 2 1 1197.2.j.b 2
7.c even 3 1 inner 399.2.j.a 2
7.c even 3 1 2793.2.a.l 1
7.d odd 6 1 2793.2.a.k 1
21.g even 6 1 8379.2.a.c 1
21.h odd 6 1 1197.2.j.b 2
21.h odd 6 1 8379.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
399.2.j.a 2 1.a even 1 1 trivial
399.2.j.a 2 7.c even 3 1 inner
1197.2.j.b 2 3.b odd 2 1
1197.2.j.b 2 21.h odd 6 1
2793.2.a.k 1 7.d odd 6 1
2793.2.a.l 1 7.c even 3 1
8379.2.a.b 1 21.h odd 6 1
8379.2.a.c 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+2T2+4 T_{2}^{2} + 2T_{2} + 4 acting on S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T24T+7 T^{2} - 4T + 7 Copy content Toggle raw display
1111 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1313 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1717 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
2929 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
4141 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4343 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
5959 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
6161 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
6767 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
7979 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
8383 (T3)2 (T - 3)^{2} Copy content Toggle raw display
8989 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
9797 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
show more
show less