L(s) = 1 | + 2-s − 6·3-s + 4-s − 6·6-s + 8-s + 21·9-s − 6·12-s + 8·13-s + 16-s + 21·18-s − 6·24-s + 25-s + 8·26-s − 56·27-s − 16·31-s + 5·32-s + 21·36-s + 16·37-s − 48·39-s − 4·41-s − 6·48-s + 18·49-s + 50-s + 8·52-s − 24·53-s − 56·54-s − 16·62-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 3.46·3-s + 1/2·4-s − 2.44·6-s + 0.353·8-s + 7·9-s − 1.73·12-s + 2.21·13-s + 1/4·16-s + 4.94·18-s − 1.22·24-s + 1/5·25-s + 1.56·26-s − 10.7·27-s − 2.87·31-s + 0.883·32-s + 7/2·36-s + 2.63·37-s − 7.68·39-s − 0.624·41-s − 0.866·48-s + 18/7·49-s + 0.141·50-s + 1.10·52-s − 3.29·53-s − 7.62·54-s − 2.03·62-s + ⋯ |
Λ(s)=(=((218⋅36⋅56)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((218⋅36⋅56)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6196423910 |
L(21) |
≈ |
0.6196423910 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T−p2T5+p3T6 |
| 3 | (1+T)6 |
| 5 | 1−T2+8T3−pT4+p3T6 |
good | 7 | 1−18T2+191T4−1532T6+191p2T8−18p4T10+p6T12 |
| 11 | 1−34T2+503T4−5436T6+503p2T8−34p4T10+p6T12 |
| 13 | (1−4T+23T2−48T3+23pT4−4p2T5+p3T6)2 |
| 17 | 1−66T2+2255T4−47324T6+2255p2T8−66p4T10+p6T12 |
| 19 | 1−54T2+1367T4−25652T6+1367p2T8−54p4T10+p6T12 |
| 23 | 1−2pT2+1775T4−40932T6+1775p2T8−2p5T10+p6T12 |
| 29 | 1−66T2+3207T4−111228T6+3207p2T8−66p4T10+p6T12 |
| 31 | (1+8T+89T2+432T3+89pT4+8p2T5+p3T6)2 |
| 37 | (1−8T+3pT2−584T3+3p2T4−8p2T5+p3T6)2 |
| 41 | (1+2T+23T2+220T3+23pT4+2p2T5+p3T6)2 |
| 43 | (1+65T2−64T3+65pT4+p3T6)2 |
| 47 | 1−222T2+22367T4−1328324T6+22367p2T8−222p4T10+p6T12 |
| 53 | (1+12T+191T2+1264T3+191pT4+12p2T5+p3T6)2 |
| 59 | 1−178T2+20567T4−1418652T6+20567p2T8−178p4T10+p6T12 |
| 61 | 1−190T2+20039T4−1419204T6+20039p2T8−190p4T10+p6T12 |
| 67 | (1+137T2+64T3+137pT4+p3T6)2 |
| 71 | (1−8T+133T2−1008T3+133pT4−8p2T5+p3T6)2 |
| 73 | 1−54T2+2367T4−531700T6+2367p2T8−54p4T10+p6T12 |
| 79 | (1−8T+233T2−1200T3+233pT4−8p2T5+p3T6)2 |
| 83 | (1−8T+185T2−880T3+185pT4−8p2T5+p3T6)2 |
| 89 | (1+10T+103T2+396T3+103pT4+10p2T5+p3T6)2 |
| 97 | 1−246T2+39183T4−4535476T6+39183p2T8−246p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.41723458285377844873052520256, −7.23918524644620620596748114809, −7.05349848888652327567376920367, −6.86981232137470216174228105715, −6.63721449314990582705857205057, −6.22691155196623033128677063676, −6.15148969379611355540884927692, −6.14296126560268722196977971321, −6.07284318511331767459595709353, −5.69149156033938695983616953089, −5.42270100349333544655125648144, −5.33880860225500696184261446878, −5.06683614032494353272679440030, −4.87299565805114013270565354649, −4.41879866932439474026769339950, −4.39508971616457155186481528911, −4.22098229968495723923824090517, −3.74240884645171283901061950817, −3.48817147279504785598946044861, −3.46030293882061327036993626990, −2.87615994388096863389644470442, −2.04128664062871564010657097566, −2.03227801394467690408670626568, −1.24970307222334753202882376774, −0.884039741002023211256200436812,
0.884039741002023211256200436812, 1.24970307222334753202882376774, 2.03227801394467690408670626568, 2.04128664062871564010657097566, 2.87615994388096863389644470442, 3.46030293882061327036993626990, 3.48817147279504785598946044861, 3.74240884645171283901061950817, 4.22098229968495723923824090517, 4.39508971616457155186481528911, 4.41879866932439474026769339950, 4.87299565805114013270565354649, 5.06683614032494353272679440030, 5.33880860225500696184261446878, 5.42270100349333544655125648144, 5.69149156033938695983616953089, 6.07284318511331767459595709353, 6.14296126560268722196977971321, 6.15148969379611355540884927692, 6.22691155196623033128677063676, 6.63721449314990582705857205057, 6.86981232137470216174228105715, 7.05349848888652327567376920367, 7.23918524644620620596748114809, 7.41723458285377844873052520256
Plot not available for L-functions of degree greater than 10.