Properties

Label 120.2.d.b.109.6
Level $120$
Weight $2$
Character 120.109
Analytic conductor $0.958$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,2,Mod(109,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 120.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.958204824255\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.839056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 8x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.6
Root \(1.32132i\) of defining polynomial
Character \(\chi\) \(=\) 120.109
Dual form 120.2.d.b.109.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34067 + 0.450129i) q^{2} -1.00000 q^{3} +(1.59477 + 1.20695i) q^{4} +(0.254102 + 2.22158i) q^{5} +(-1.34067 - 0.450129i) q^{6} -2.64265i q^{7} +(1.59477 + 2.33596i) q^{8} +1.00000 q^{9} +(-0.659335 + 3.09278i) q^{10} -1.51363i q^{11} +(-1.59477 - 1.20695i) q^{12} -3.87086 q^{13} +(1.18953 - 3.54291i) q^{14} +(-0.254102 - 2.22158i) q^{15} +(1.08656 + 3.84959i) q^{16} -3.31415i q^{17} +(1.34067 + 0.450129i) q^{18} -7.08582i q^{19} +(-2.27610 + 3.84959i) q^{20} +2.64265i q^{21} +(0.681331 - 2.02927i) q^{22} +4.82778i q^{23} +(-1.59477 - 2.33596i) q^{24} +(-4.87086 + 1.12902i) q^{25} +(-5.18953 - 1.74239i) q^{26} -1.00000 q^{27} +(3.18953 - 4.21441i) q^{28} +2.18513i q^{29} +(0.659335 - 3.09278i) q^{30} -7.36266 q^{31} +(-0.276098 + 5.65011i) q^{32} +1.51363i q^{33} +(1.49180 - 4.44317i) q^{34} +(5.87086 - 0.671502i) q^{35} +(1.59477 + 1.20695i) q^{36} +7.87086 q^{37} +(3.18953 - 9.49971i) q^{38} +3.87086 q^{39} +(-4.78430 + 4.13648i) q^{40} +8.72532 q^{41} +(-1.18953 + 3.54291i) q^{42} -1.01641 q^{43} +(1.82687 - 2.41389i) q^{44} +(0.254102 + 2.22158i) q^{45} +(-2.17313 + 6.47244i) q^{46} +7.08582i q^{47} +(-1.08656 - 3.84959i) q^{48} +0.0164068 q^{49} +(-7.03840 - 0.678887i) q^{50} +3.31415i q^{51} +(-6.17313 - 4.67192i) q^{52} -4.50820 q^{53} +(-1.34067 - 0.450129i) q^{54} +(3.36266 - 0.384617i) q^{55} +(6.17313 - 4.21441i) q^{56} +7.08582i q^{57} +(-0.983593 + 2.92953i) q^{58} +6.79893i q^{59} +(2.27610 - 3.84959i) q^{60} -3.60104i q^{61} +(-9.87086 - 3.31415i) q^{62} -2.64265i q^{63} +(-2.91344 + 7.45063i) q^{64} +(-0.983593 - 8.59945i) q^{65} +(-0.681331 + 2.02927i) q^{66} +1.01641 q^{67} +(4.00000 - 5.28530i) q^{68} -4.82778i q^{69} +(8.17313 + 1.74239i) q^{70} -6.72532 q^{71} +(1.59477 + 2.33596i) q^{72} +15.5146i q^{73} +(10.5522 + 3.54291i) q^{74} +(4.87086 - 1.12902i) q^{75} +(8.55220 - 11.3002i) q^{76} -4.00000 q^{77} +(5.18953 + 1.74239i) q^{78} +7.36266 q^{79} +(-8.27610 + 3.39208i) q^{80} +1.00000 q^{81} +(11.6977 + 3.92752i) q^{82} -7.74173 q^{83} +(-3.18953 + 4.21441i) q^{84} +(7.36266 - 0.842131i) q^{85} +(-1.36266 - 0.457515i) q^{86} -2.18513i q^{87} +(3.53579 - 2.41389i) q^{88} -14.7581 q^{89} +(-0.659335 + 3.09278i) q^{90} +10.2293i q^{91} +(-5.82687 + 7.69919i) q^{92} +7.36266 q^{93} +(-3.18953 + 9.49971i) q^{94} +(15.7417 - 1.80052i) q^{95} +(0.276098 - 5.65011i) q^{96} -11.1444i q^{97} +(0.0219960 + 0.00738516i) q^{98} -1.51363i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 6 q^{3} + q^{4} - q^{6} + q^{8} + 6 q^{9} - 11 q^{10} - q^{12} + 8 q^{13} - 10 q^{14} + q^{16} + q^{18} + 9 q^{20} - 10 q^{22} - q^{24} + 2 q^{25} - 14 q^{26} - 6 q^{27} + 2 q^{28}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34067 + 0.450129i 0.947994 + 0.318290i
\(3\) −1.00000 −0.577350
\(4\) 1.59477 + 1.20695i 0.797384 + 0.603473i
\(5\) 0.254102 + 2.22158i 0.113638 + 0.993522i
\(6\) −1.34067 0.450129i −0.547324 0.183765i
\(7\) 2.64265i 0.998827i −0.866364 0.499414i \(-0.833549\pi\)
0.866364 0.499414i \(-0.166451\pi\)
\(8\) 1.59477 + 2.33596i 0.563835 + 0.825887i
\(9\) 1.00000 0.333333
\(10\) −0.659335 + 3.09278i −0.208500 + 0.978022i
\(11\) 1.51363i 0.456377i −0.973617 0.228189i \(-0.926720\pi\)
0.973617 0.228189i \(-0.0732803\pi\)
\(12\) −1.59477 1.20695i −0.460370 0.348415i
\(13\) −3.87086 −1.07358 −0.536792 0.843714i \(-0.680364\pi\)
−0.536792 + 0.843714i \(0.680364\pi\)
\(14\) 1.18953 3.54291i 0.317916 0.946882i
\(15\) −0.254102 2.22158i −0.0656088 0.573610i
\(16\) 1.08656 + 3.84959i 0.271641 + 0.962399i
\(17\) 3.31415i 0.803800i −0.915684 0.401900i \(-0.868350\pi\)
0.915684 0.401900i \(-0.131650\pi\)
\(18\) 1.34067 + 0.450129i 0.315998 + 0.106097i
\(19\) 7.08582i 1.62560i −0.582545 0.812799i \(-0.697943\pi\)
0.582545 0.812799i \(-0.302057\pi\)
\(20\) −2.27610 + 3.84959i −0.508951 + 0.860796i
\(21\) 2.64265i 0.576673i
\(22\) 0.681331 2.02927i 0.145260 0.432643i
\(23\) 4.82778i 1.00666i 0.864094 + 0.503331i \(0.167892\pi\)
−0.864094 + 0.503331i \(0.832108\pi\)
\(24\) −1.59477 2.33596i −0.325530 0.476826i
\(25\) −4.87086 + 1.12902i −0.974173 + 0.225803i
\(26\) −5.18953 1.74239i −1.01775 0.341711i
\(27\) −1.00000 −0.192450
\(28\) 3.18953 4.21441i 0.602765 0.796448i
\(29\) 2.18513i 0.405769i 0.979203 + 0.202885i \(0.0650316\pi\)
−0.979203 + 0.202885i \(0.934968\pi\)
\(30\) 0.659335 3.09278i 0.120377 0.564661i
\(31\) −7.36266 −1.32237 −0.661187 0.750222i \(-0.729947\pi\)
−0.661187 + 0.750222i \(0.729947\pi\)
\(32\) −0.276098 + 5.65011i −0.0488076 + 0.998808i
\(33\) 1.51363i 0.263490i
\(34\) 1.49180 4.44317i 0.255841 0.761997i
\(35\) 5.87086 0.671502i 0.992357 0.113504i
\(36\) 1.59477 + 1.20695i 0.265795 + 0.201158i
\(37\) 7.87086 1.29396 0.646981 0.762506i \(-0.276031\pi\)
0.646981 + 0.762506i \(0.276031\pi\)
\(38\) 3.18953 9.49971i 0.517411 1.54106i
\(39\) 3.87086 0.619834
\(40\) −4.78430 + 4.13648i −0.756464 + 0.654035i
\(41\) 8.72532 1.36267 0.681333 0.731973i \(-0.261400\pi\)
0.681333 + 0.731973i \(0.261400\pi\)
\(42\) −1.18953 + 3.54291i −0.183549 + 0.546683i
\(43\) −1.01641 −0.155001 −0.0775003 0.996992i \(-0.524694\pi\)
−0.0775003 + 0.996992i \(0.524694\pi\)
\(44\) 1.82687 2.41389i 0.275411 0.363908i
\(45\) 0.254102 + 2.22158i 0.0378792 + 0.331174i
\(46\) −2.17313 + 6.47244i −0.320410 + 0.954309i
\(47\) 7.08582i 1.03357i 0.856114 + 0.516786i \(0.172872\pi\)
−0.856114 + 0.516786i \(0.827128\pi\)
\(48\) −1.08656 3.84959i −0.156832 0.555641i
\(49\) 0.0164068 0.00234382
\(50\) −7.03840 0.678887i −0.995380 0.0960091i
\(51\) 3.31415i 0.464074i
\(52\) −6.17313 4.67192i −0.856059 0.647879i
\(53\) −4.50820 −0.619249 −0.309625 0.950859i \(-0.600203\pi\)
−0.309625 + 0.950859i \(0.600203\pi\)
\(54\) −1.34067 0.450129i −0.182441 0.0612549i
\(55\) 3.36266 0.384617i 0.453421 0.0518617i
\(56\) 6.17313 4.21441i 0.824919 0.563174i
\(57\) 7.08582i 0.938539i
\(58\) −0.983593 + 2.92953i −0.129152 + 0.384667i
\(59\) 6.79893i 0.885145i 0.896733 + 0.442573i \(0.145934\pi\)
−0.896733 + 0.442573i \(0.854066\pi\)
\(60\) 2.27610 3.84959i 0.293843 0.496981i
\(61\) 3.60104i 0.461065i −0.973065 0.230533i \(-0.925953\pi\)
0.973065 0.230533i \(-0.0740469\pi\)
\(62\) −9.87086 3.31415i −1.25360 0.420898i
\(63\) 2.64265i 0.332942i
\(64\) −2.91344 + 7.45063i −0.364180 + 0.931329i
\(65\) −0.983593 8.59945i −0.122000 1.06663i
\(66\) −0.681331 + 2.02927i −0.0838660 + 0.249786i
\(67\) 1.01641 0.124174 0.0620869 0.998071i \(-0.480224\pi\)
0.0620869 + 0.998071i \(0.480224\pi\)
\(68\) 4.00000 5.28530i 0.485071 0.640937i
\(69\) 4.82778i 0.581197i
\(70\) 8.17313 + 1.74239i 0.976876 + 0.208255i
\(71\) −6.72532 −0.798149 −0.399074 0.916919i \(-0.630669\pi\)
−0.399074 + 0.916919i \(0.630669\pi\)
\(72\) 1.59477 + 2.33596i 0.187945 + 0.275296i
\(73\) 15.5146i 1.81585i 0.419132 + 0.907925i \(0.362334\pi\)
−0.419132 + 0.907925i \(0.637666\pi\)
\(74\) 10.5522 + 3.54291i 1.22667 + 0.411855i
\(75\) 4.87086 1.12902i 0.562439 0.130368i
\(76\) 8.55220 11.3002i 0.981004 1.29622i
\(77\) −4.00000 −0.455842
\(78\) 5.18953 + 1.74239i 0.587599 + 0.197287i
\(79\) 7.36266 0.828364 0.414182 0.910194i \(-0.364068\pi\)
0.414182 + 0.910194i \(0.364068\pi\)
\(80\) −8.27610 + 3.39208i −0.925296 + 0.379246i
\(81\) 1.00000 0.111111
\(82\) 11.6977 + 3.92752i 1.29180 + 0.433723i
\(83\) −7.74173 −0.849765 −0.424883 0.905248i \(-0.639685\pi\)
−0.424883 + 0.905248i \(0.639685\pi\)
\(84\) −3.18953 + 4.21441i −0.348007 + 0.459830i
\(85\) 7.36266 0.842131i 0.798593 0.0913420i
\(86\) −1.36266 0.457515i −0.146940 0.0493351i
\(87\) 2.18513i 0.234271i
\(88\) 3.53579 2.41389i 0.376916 0.257322i
\(89\) −14.7581 −1.56436 −0.782180 0.623053i \(-0.785892\pi\)
−0.782180 + 0.623053i \(0.785892\pi\)
\(90\) −0.659335 + 3.09278i −0.0695000 + 0.326007i
\(91\) 10.2293i 1.07233i
\(92\) −5.82687 + 7.69919i −0.607493 + 0.802696i
\(93\) 7.36266 0.763472
\(94\) −3.18953 + 9.49971i −0.328975 + 0.979820i
\(95\) 15.7417 1.80052i 1.61507 0.184729i
\(96\) 0.276098 5.65011i 0.0281791 0.576662i
\(97\) 11.1444i 1.13154i −0.824563 0.565769i \(-0.808579\pi\)
0.824563 0.565769i \(-0.191421\pi\)
\(98\) 0.0219960 + 0.00738516i 0.00222193 + 0.000746014i
\(99\) 1.51363i 0.152126i
\(100\) −9.13056 4.07835i −0.913056 0.407835i
\(101\) 13.3295i 1.32633i −0.748471 0.663167i \(-0.769212\pi\)
0.748471 0.663167i \(-0.230788\pi\)
\(102\) −1.49180 + 4.44317i −0.147710 + 0.439939i
\(103\) 0.958386i 0.0944326i −0.998885 0.0472163i \(-0.984965\pi\)
0.998885 0.0472163i \(-0.0150350\pi\)
\(104\) −6.17313 9.04219i −0.605325 0.886660i
\(105\) −5.87086 + 0.671502i −0.572938 + 0.0655318i
\(106\) −6.04399 2.02927i −0.587044 0.197101i
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) −1.59477 1.20695i −0.153457 0.116138i
\(109\) 0.769233i 0.0736792i −0.999321 0.0368396i \(-0.988271\pi\)
0.999321 0.0368396i \(-0.0117291\pi\)
\(110\) 4.68133 + 0.997991i 0.446347 + 0.0951547i
\(111\) −7.87086 −0.747069
\(112\) 10.1731 2.87141i 0.961270 0.271322i
\(113\) 14.4585i 1.36014i −0.733146 0.680071i \(-0.761949\pi\)
0.733146 0.680071i \(-0.238051\pi\)
\(114\) −3.18953 + 9.49971i −0.298727 + 0.889729i
\(115\) −10.7253 + 1.22675i −1.00014 + 0.114395i
\(116\) −2.63734 + 3.48478i −0.244871 + 0.323554i
\(117\) −3.87086 −0.357862
\(118\) −3.06040 + 9.11509i −0.281733 + 0.839112i
\(119\) −8.75814 −0.802857
\(120\) 4.78430 4.13648i 0.436745 0.377607i
\(121\) 8.70892 0.791720
\(122\) 1.62093 4.82778i 0.146752 0.437087i
\(123\) −8.72532 −0.786736
\(124\) −11.7417 8.88633i −1.05444 0.798016i
\(125\) −3.74590 10.5341i −0.335043 0.942203i
\(126\) 1.18953 3.54291i 0.105972 0.315627i
\(127\) 11.5290i 1.02303i −0.859274 0.511516i \(-0.829084\pi\)
0.859274 0.511516i \(-0.170916\pi\)
\(128\) −7.25969 + 8.67738i −0.641672 + 0.766979i
\(129\) 1.01641 0.0894896
\(130\) 2.55220 11.9717i 0.223842 1.04999i
\(131\) 7.37270i 0.644156i 0.946713 + 0.322078i \(0.104381\pi\)
−0.946713 + 0.322078i \(0.895619\pi\)
\(132\) −1.82687 + 2.41389i −0.159009 + 0.210102i
\(133\) −18.7253 −1.62369
\(134\) 1.36266 + 0.457515i 0.117716 + 0.0395232i
\(135\) −0.254102 2.22158i −0.0218696 0.191203i
\(136\) 7.74173 5.28530i 0.663848 0.453211i
\(137\) 3.88792i 0.332167i 0.986112 + 0.166084i \(0.0531122\pi\)
−0.986112 + 0.166084i \(0.946888\pi\)
\(138\) 2.17313 6.47244i 0.184989 0.550971i
\(139\) 14.6291i 1.24083i 0.784275 + 0.620414i \(0.213035\pi\)
−0.784275 + 0.620414i \(0.786965\pi\)
\(140\) 10.1731 + 6.01493i 0.859786 + 0.508354i
\(141\) 7.08582i 0.596733i
\(142\) −9.01641 3.02727i −0.756640 0.254042i
\(143\) 5.85907i 0.489960i
\(144\) 1.08656 + 3.84959i 0.0905470 + 0.320800i
\(145\) −4.85446 + 0.555246i −0.403141 + 0.0461107i
\(146\) −6.98359 + 20.7999i −0.577966 + 1.72141i
\(147\) −0.0164068 −0.00135321
\(148\) 12.5522 + 9.49971i 1.03178 + 0.780871i
\(149\) 11.0715i 0.907010i 0.891254 + 0.453505i \(0.149827\pi\)
−0.891254 + 0.453505i \(0.850173\pi\)
\(150\) 7.03840 + 0.678887i 0.574683 + 0.0554309i
\(151\) 0.637339 0.0518659 0.0259329 0.999664i \(-0.491744\pi\)
0.0259329 + 0.999664i \(0.491744\pi\)
\(152\) 16.5522 11.3002i 1.34256 0.916569i
\(153\) 3.31415i 0.267933i
\(154\) −5.36266 1.80052i −0.432136 0.145090i
\(155\) −1.87086 16.3568i −0.150271 1.31381i
\(156\) 6.17313 + 4.67192i 0.494246 + 0.374053i
\(157\) −0.129135 −0.0103061 −0.00515306 0.999987i \(-0.501640\pi\)
−0.00515306 + 0.999987i \(0.501640\pi\)
\(158\) 9.87086 + 3.31415i 0.785284 + 0.263660i
\(159\) 4.50820 0.357524
\(160\) −12.6224 + 0.822329i −0.997885 + 0.0650108i
\(161\) 12.7581 1.00548
\(162\) 1.34067 + 0.450129i 0.105333 + 0.0353655i
\(163\) 19.4835 1.52606 0.763031 0.646362i \(-0.223710\pi\)
0.763031 + 0.646362i \(0.223710\pi\)
\(164\) 13.9149 + 10.5310i 1.08657 + 0.822332i
\(165\) −3.36266 + 0.384617i −0.261783 + 0.0299424i
\(166\) −10.3791 3.48478i −0.805572 0.270471i
\(167\) 1.80052i 0.139328i −0.997571 0.0696641i \(-0.977807\pi\)
0.997571 0.0696641i \(-0.0221928\pi\)
\(168\) −6.17313 + 4.21441i −0.476267 + 0.325149i
\(169\) 1.98359 0.152584
\(170\) 10.2499 + 2.18513i 0.786134 + 0.167592i
\(171\) 7.08582i 0.541866i
\(172\) −1.62093 1.22675i −0.123595 0.0935386i
\(173\) 23.2335 1.76641 0.883206 0.468985i \(-0.155380\pi\)
0.883206 + 0.468985i \(0.155380\pi\)
\(174\) 0.983593 2.92953i 0.0745660 0.222087i
\(175\) 2.98359 + 12.8720i 0.225538 + 0.973031i
\(176\) 5.82687 1.64466i 0.439217 0.123971i
\(177\) 6.79893i 0.511039i
\(178\) −19.7857 6.64307i −1.48300 0.497919i
\(179\) 2.85664i 0.213515i 0.994285 + 0.106757i \(0.0340468\pi\)
−0.994285 + 0.106757i \(0.965953\pi\)
\(180\) −2.27610 + 3.84959i −0.169650 + 0.286932i
\(181\) 5.28530i 0.392853i 0.980519 + 0.196427i \(0.0629337\pi\)
−0.980519 + 0.196427i \(0.937066\pi\)
\(182\) −4.60453 + 13.7141i −0.341310 + 1.01656i
\(183\) 3.60104i 0.266196i
\(184\) −11.2775 + 7.69919i −0.831390 + 0.567592i
\(185\) 2.00000 + 17.4858i 0.147043 + 1.28558i
\(186\) 9.87086 + 3.31415i 0.723767 + 0.243005i
\(187\) −5.01641 −0.366836
\(188\) −8.55220 + 11.3002i −0.623733 + 0.824154i
\(189\) 2.64265i 0.192224i
\(190\) 21.9149 + 4.67192i 1.58987 + 0.338937i
\(191\) −5.96719 −0.431770 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(192\) 2.91344 7.45063i 0.210259 0.537703i
\(193\) 14.9409i 1.07547i −0.843115 0.537733i \(-0.819281\pi\)
0.843115 0.537733i \(-0.180719\pi\)
\(194\) 5.01641 14.9409i 0.360157 1.07269i
\(195\) 0.983593 + 8.59945i 0.0704366 + 0.615819i
\(196\) 0.0261649 + 0.0198021i 0.00186892 + 0.00141443i
\(197\) −3.23353 −0.230379 −0.115190 0.993344i \(-0.536748\pi\)
−0.115190 + 0.993344i \(0.536748\pi\)
\(198\) 0.681331 2.02927i 0.0484201 0.144214i
\(199\) 8.12080 0.575668 0.287834 0.957680i \(-0.407065\pi\)
0.287834 + 0.957680i \(0.407065\pi\)
\(200\) −10.4052 9.57764i −0.735761 0.677241i
\(201\) −1.01641 −0.0716918
\(202\) 6.00000 17.8704i 0.422159 1.25736i
\(203\) 5.77454 0.405293
\(204\) −4.00000 + 5.28530i −0.280056 + 0.370045i
\(205\) 2.21712 + 19.3840i 0.154850 + 1.35384i
\(206\) 0.431398 1.28488i 0.0300569 0.0895215i
\(207\) 4.82778i 0.335554i
\(208\) −4.20594 14.9013i −0.291630 1.03322i
\(209\) −10.7253 −0.741886
\(210\) −8.17313 1.74239i −0.563999 0.120236i
\(211\) 13.7141i 0.944119i −0.881567 0.472059i \(-0.843511\pi\)
0.881567 0.472059i \(-0.156489\pi\)
\(212\) −7.18953 5.44116i −0.493779 0.373700i
\(213\) 6.72532 0.460812
\(214\) 5.36266 + 1.80052i 0.366584 + 0.123081i
\(215\) −0.258271 2.25803i −0.0176139 0.153997i
\(216\) −1.59477 2.33596i −0.108510 0.158942i
\(217\) 19.4569i 1.32082i
\(218\) 0.346255 1.03128i 0.0234513 0.0698474i
\(219\) 15.5146i 1.04838i
\(220\) 5.82687 + 3.44518i 0.392848 + 0.232274i
\(221\) 12.8286i 0.862947i
\(222\) −10.5522 3.54291i −0.708217 0.237784i
\(223\) 9.84472i 0.659251i −0.944112 0.329626i \(-0.893077\pi\)
0.944112 0.329626i \(-0.106923\pi\)
\(224\) 14.9313 + 0.729629i 0.997637 + 0.0487504i
\(225\) −4.87086 + 1.12902i −0.324724 + 0.0752677i
\(226\) 6.50820 19.3840i 0.432919 1.28941i
\(227\) 5.70892 0.378914 0.189457 0.981889i \(-0.439327\pi\)
0.189457 + 0.981889i \(0.439327\pi\)
\(228\) −8.55220 + 11.3002i −0.566383 + 0.748376i
\(229\) 0.769233i 0.0508324i 0.999677 + 0.0254162i \(0.00809109\pi\)
−0.999677 + 0.0254162i \(0.991909\pi\)
\(230\) −14.9313 3.18312i −0.984538 0.209889i
\(231\) 4.00000 0.263181
\(232\) −5.10439 + 3.48478i −0.335120 + 0.228787i
\(233\) 18.4008i 1.20548i 0.797939 + 0.602739i \(0.205924\pi\)
−0.797939 + 0.602739i \(0.794076\pi\)
\(234\) −5.18953 1.74239i −0.339250 0.113904i
\(235\) −15.7417 + 1.80052i −1.02688 + 0.117453i
\(236\) −8.20594 + 10.8427i −0.534161 + 0.705800i
\(237\) −7.36266 −0.478256
\(238\) −11.7417 3.94229i −0.761103 0.255541i
\(239\) −10.0328 −0.648969 −0.324484 0.945891i \(-0.605191\pi\)
−0.324484 + 0.945891i \(0.605191\pi\)
\(240\) 8.27610 3.39208i 0.534220 0.218958i
\(241\) 10.7581 0.692992 0.346496 0.938051i \(-0.387371\pi\)
0.346496 + 0.938051i \(0.387371\pi\)
\(242\) 11.6757 + 3.92014i 0.750545 + 0.251996i
\(243\) −1.00000 −0.0641500
\(244\) 4.34625 5.74281i 0.278240 0.367646i
\(245\) 0.00416898 + 0.0364490i 0.000266347 + 0.00232864i
\(246\) −11.6977 3.92752i −0.745820 0.250410i
\(247\) 27.4282i 1.74522i
\(248\) −11.7417 17.1989i −0.745601 1.09213i
\(249\) 7.74173 0.490612
\(250\) −0.280267 15.8089i −0.0177256 0.999843i
\(251\) 12.6580i 0.798966i −0.916741 0.399483i \(-0.869190\pi\)
0.916741 0.399483i \(-0.130810\pi\)
\(252\) 3.18953 4.21441i 0.200922 0.265483i
\(253\) 7.30749 0.459418
\(254\) 5.18953 15.4565i 0.325620 0.969827i
\(255\) −7.36266 + 0.842131i −0.461068 + 0.0527363i
\(256\) −13.6388 + 8.36566i −0.852422 + 0.522854i
\(257\) 13.3110i 0.830316i 0.909749 + 0.415158i \(0.136274\pi\)
−0.909749 + 0.415158i \(0.863726\pi\)
\(258\) 1.36266 + 0.457515i 0.0848356 + 0.0284836i
\(259\) 20.7999i 1.29244i
\(260\) 8.81047 14.9013i 0.546402 0.924137i
\(261\) 2.18513i 0.135256i
\(262\) −3.31867 + 9.88432i −0.205028 + 0.610656i
\(263\) 18.4256i 1.13617i −0.822969 0.568087i \(-0.807684\pi\)
0.822969 0.568087i \(-0.192316\pi\)
\(264\) −3.53579 + 2.41389i −0.217613 + 0.148565i
\(265\) −1.14554 10.0153i −0.0703701 0.615238i
\(266\) −25.1044 8.42882i −1.53925 0.516804i
\(267\) 14.7581 0.903183
\(268\) 1.62093 + 1.22675i 0.0990142 + 0.0749356i
\(269\) 3.86940i 0.235921i 0.993018 + 0.117961i \(0.0376357\pi\)
−0.993018 + 0.117961i \(0.962364\pi\)
\(270\) 0.659335 3.09278i 0.0401258 0.188220i
\(271\) −17.3955 −1.05670 −0.528350 0.849027i \(-0.677189\pi\)
−0.528350 + 0.849027i \(0.677189\pi\)
\(272\) 12.7581 3.60104i 0.773576 0.218345i
\(273\) 10.2293i 0.619108i
\(274\) −1.75007 + 5.21240i −0.105725 + 0.314893i
\(275\) 1.70892 + 7.37270i 0.103052 + 0.444591i
\(276\) 5.82687 7.69919i 0.350737 0.463437i
\(277\) −0.887271 −0.0533110 −0.0266555 0.999645i \(-0.508486\pi\)
−0.0266555 + 0.999645i \(0.508486\pi\)
\(278\) −6.58501 + 19.6128i −0.394943 + 1.17630i
\(279\) −7.36266 −0.440791
\(280\) 10.9313 + 12.6432i 0.653268 + 0.755577i
\(281\) −13.4835 −0.804356 −0.402178 0.915562i \(-0.631747\pi\)
−0.402178 + 0.915562i \(0.631747\pi\)
\(282\) 3.18953 9.49971i 0.189934 0.565699i
\(283\) 28.4342 1.69024 0.845120 0.534577i \(-0.179529\pi\)
0.845120 + 0.534577i \(0.179529\pi\)
\(284\) −10.7253 8.11710i −0.636431 0.481661i
\(285\) −15.7417 + 1.80052i −0.932460 + 0.106653i
\(286\) −2.63734 + 7.85505i −0.155949 + 0.464479i
\(287\) 23.0580i 1.36107i
\(288\) −0.276098 + 5.65011i −0.0162692 + 0.332936i
\(289\) 6.01641 0.353906
\(290\) −6.75814 1.44073i −0.396851 0.0846029i
\(291\) 11.1444i 0.653294i
\(292\) −18.7253 + 24.7422i −1.09582 + 1.44793i
\(293\) 7.99166 0.466878 0.233439 0.972371i \(-0.425002\pi\)
0.233439 + 0.972371i \(0.425002\pi\)
\(294\) −0.0219960 0.00738516i −0.00128283 0.000430711i
\(295\) −15.1044 + 1.72762i −0.879412 + 0.100586i
\(296\) 12.5522 + 18.3860i 0.729582 + 1.06867i
\(297\) 1.51363i 0.0878299i
\(298\) −4.98359 + 14.8431i −0.288692 + 0.859840i
\(299\) 18.6877i 1.08074i
\(300\) 9.13056 + 4.07835i 0.527153 + 0.235464i
\(301\) 2.68601i 0.154819i
\(302\) 0.854458 + 0.286885i 0.0491685 + 0.0165084i
\(303\) 13.3295i 0.765760i
\(304\) 27.2775 7.69919i 1.56447 0.441579i
\(305\) 8.00000 0.915029i 0.458079 0.0523944i
\(306\) 1.49180 4.44317i 0.0852803 0.253999i
\(307\) −17.4506 −0.995961 −0.497980 0.867188i \(-0.665925\pi\)
−0.497980 + 0.867188i \(0.665925\pi\)
\(308\) −6.37907 4.82778i −0.363481 0.275088i
\(309\) 0.958386i 0.0545207i
\(310\) 4.85446 22.7711i 0.275715 1.29331i
\(311\) 21.4506 1.21635 0.608177 0.793801i \(-0.291901\pi\)
0.608177 + 0.793801i \(0.291901\pi\)
\(312\) 6.17313 + 9.04219i 0.349485 + 0.511913i
\(313\) 7.73879i 0.437422i −0.975790 0.218711i \(-0.929815\pi\)
0.975790 0.218711i \(-0.0701853\pi\)
\(314\) −0.173127 0.0581276i −0.00977014 0.00328033i
\(315\) 5.87086 0.671502i 0.330786 0.0378348i
\(316\) 11.7417 + 8.88633i 0.660524 + 0.499895i
\(317\) −11.2335 −0.630938 −0.315469 0.948936i \(-0.602162\pi\)
−0.315469 + 0.948936i \(0.602162\pi\)
\(318\) 6.04399 + 2.02927i 0.338930 + 0.113796i
\(319\) 3.30749 0.185184
\(320\) −17.2925 4.57922i −0.966680 0.255986i
\(321\) −4.00000 −0.223258
\(322\) 17.1044 + 5.74281i 0.953190 + 0.320034i
\(323\) −23.4835 −1.30665
\(324\) 1.59477 + 1.20695i 0.0885982 + 0.0670525i
\(325\) 18.8545 4.37027i 1.04586 0.242419i
\(326\) 26.1208 + 8.77008i 1.44670 + 0.485730i
\(327\) 0.769233i 0.0425387i
\(328\) 13.9149 + 20.3820i 0.768319 + 1.12541i
\(329\) 18.7253 1.03236
\(330\) −4.68133 0.997991i −0.257699 0.0549376i
\(331\) 8.00084i 0.439766i 0.975526 + 0.219883i \(0.0705676\pi\)
−0.975526 + 0.219883i \(0.929432\pi\)
\(332\) −12.3463 9.34385i −0.677589 0.512810i
\(333\) 7.87086 0.431321
\(334\) 0.810466 2.41389i 0.0443467 0.132082i
\(335\) 0.258271 + 2.25803i 0.0141108 + 0.123369i
\(336\) −10.1731 + 2.87141i −0.554990 + 0.156648i
\(337\) 21.5692i 1.17495i −0.809243 0.587474i \(-0.800123\pi\)
0.809243 0.587474i \(-0.199877\pi\)
\(338\) 2.65933 + 0.892874i 0.144649 + 0.0485659i
\(339\) 14.4585i 0.785279i
\(340\) 12.7581 + 7.54333i 0.691907 + 0.409095i
\(341\) 11.1444i 0.603501i
\(342\) 3.18953 9.49971i 0.172470 0.513685i
\(343\) 18.5419i 1.00117i
\(344\) −1.62093 2.37429i −0.0873948 0.128013i
\(345\) 10.7253 1.22675i 0.577432 0.0660459i
\(346\) 31.1484 + 10.4581i 1.67455 + 0.562231i
\(347\) −21.7089 −1.16540 −0.582698 0.812689i \(-0.698003\pi\)
−0.582698 + 0.812689i \(0.698003\pi\)
\(348\) 2.63734 3.48478i 0.141376 0.186804i
\(349\) 24.7422i 1.32442i −0.749318 0.662211i \(-0.769618\pi\)
0.749318 0.662211i \(-0.230382\pi\)
\(350\) −1.79406 + 18.6000i −0.0958965 + 0.994213i
\(351\) 3.87086 0.206611
\(352\) 8.55220 + 0.417910i 0.455834 + 0.0222747i
\(353\) 3.31415i 0.176394i −0.996103 0.0881972i \(-0.971889\pi\)
0.996103 0.0881972i \(-0.0281106\pi\)
\(354\) 3.06040 9.11509i 0.162658 0.484462i
\(355\) −1.70892 14.9409i −0.0906998 0.792979i
\(356\) −23.5358 17.8123i −1.24739 0.944048i
\(357\) 8.75814 0.463530
\(358\) −1.28586 + 3.82979i −0.0679596 + 0.202411i
\(359\) 16.7581 0.884461 0.442230 0.896902i \(-0.354187\pi\)
0.442230 + 0.896902i \(0.354187\pi\)
\(360\) −4.78430 + 4.13648i −0.252155 + 0.218012i
\(361\) −31.2088 −1.64257
\(362\) −2.37907 + 7.08582i −0.125041 + 0.372422i
\(363\) −8.70892 −0.457100
\(364\) −12.3463 + 16.3134i −0.647120 + 0.855055i
\(365\) −34.4671 + 3.94229i −1.80409 + 0.206349i
\(366\) −1.62093 + 4.82778i −0.0847275 + 0.252352i
\(367\) 28.5324i 1.48938i 0.667411 + 0.744690i \(0.267403\pi\)
−0.667411 + 0.744690i \(0.732597\pi\)
\(368\) −18.5850 + 5.24569i −0.968811 + 0.273451i
\(369\) 8.72532 0.454222
\(370\) −5.18953 + 24.3428i −0.269791 + 1.26552i
\(371\) 11.9136i 0.618523i
\(372\) 11.7417 + 8.88633i 0.608780 + 0.460735i
\(373\) −37.5798 −1.94581 −0.972904 0.231211i \(-0.925731\pi\)
−0.972904 + 0.231211i \(0.925731\pi\)
\(374\) −6.72532 2.25803i −0.347758 0.116760i
\(375\) 3.74590 + 10.5341i 0.193437 + 0.543981i
\(376\) −16.5522 + 11.3002i −0.853614 + 0.582765i
\(377\) 8.45836i 0.435628i
\(378\) −1.18953 + 3.54291i −0.0611830 + 0.182228i
\(379\) 6.74456i 0.346445i 0.984883 + 0.173222i \(0.0554179\pi\)
−0.984883 + 0.173222i \(0.944582\pi\)
\(380\) 27.2775 + 16.1280i 1.39931 + 0.827349i
\(381\) 11.5290i 0.590648i
\(382\) −8.00000 2.68601i −0.409316 0.137428i
\(383\) 21.8312i 1.11552i −0.830001 0.557762i \(-0.811660\pi\)
0.830001 0.557762i \(-0.188340\pi\)
\(384\) 7.25969 8.67738i 0.370470 0.442816i
\(385\) −1.01641 8.88633i −0.0518009 0.452889i
\(386\) 6.72532 20.0307i 0.342310 1.01954i
\(387\) −1.01641 −0.0516669
\(388\) 13.4506 17.7727i 0.682853 0.902270i
\(389\) 8.81344i 0.446859i −0.974720 0.223429i \(-0.928275\pi\)
0.974720 0.223429i \(-0.0717252\pi\)
\(390\) −2.55220 + 11.9717i −0.129235 + 0.606212i
\(391\) 16.0000 0.809155
\(392\) 0.0261649 + 0.0383256i 0.00132153 + 0.00193573i
\(393\) 7.37270i 0.371904i
\(394\) −4.33508 1.45551i −0.218398 0.0733273i
\(395\) 1.87086 + 16.3568i 0.0941334 + 0.822998i
\(396\) 1.82687 2.41389i 0.0918038 0.121303i
\(397\) 0.821644 0.0412372 0.0206186 0.999787i \(-0.493436\pi\)
0.0206186 + 0.999787i \(0.493436\pi\)
\(398\) 10.8873 + 3.65541i 0.545730 + 0.183229i
\(399\) 18.7253 0.937439
\(400\) −9.63876 17.5241i −0.481938 0.876205i
\(401\) −12.7253 −0.635472 −0.317736 0.948179i \(-0.602923\pi\)
−0.317736 + 0.948179i \(0.602923\pi\)
\(402\) −1.36266 0.457515i −0.0679634 0.0228188i
\(403\) 28.4999 1.41968
\(404\) 16.0880 21.2574i 0.800407 1.05760i
\(405\) 0.254102 + 2.22158i 0.0126264 + 0.110391i
\(406\) 7.74173 + 2.59929i 0.384216 + 0.129001i
\(407\) 11.9136i 0.590535i
\(408\) −7.74173 + 5.28530i −0.383273 + 0.261661i
\(409\) −2.25827 −0.111664 −0.0558321 0.998440i \(-0.517781\pi\)
−0.0558321 + 0.998440i \(0.517781\pi\)
\(410\) −5.75291 + 26.9855i −0.284116 + 1.33272i
\(411\) 3.88792i 0.191777i
\(412\) 1.15672 1.52840i 0.0569875 0.0752990i
\(413\) 17.9672 0.884107
\(414\) −2.17313 + 6.47244i −0.106803 + 0.318103i
\(415\) −1.96719 17.1989i −0.0965654 0.844261i
\(416\) 1.06874 21.8708i 0.0523991 1.07231i
\(417\) 14.6291i 0.716392i
\(418\) −14.3791 4.82778i −0.703303 0.236135i
\(419\) 33.4579i 1.63453i 0.576264 + 0.817263i \(0.304510\pi\)
−0.576264 + 0.817263i \(0.695490\pi\)
\(420\) −10.1731 6.01493i −0.496398 0.293498i
\(421\) 11.3398i 0.552669i −0.961061 0.276335i \(-0.910880\pi\)
0.961061 0.276335i \(-0.0891198\pi\)
\(422\) 6.17313 18.3860i 0.300503 0.895018i
\(423\) 7.08582i 0.344524i
\(424\) −7.18953 10.5310i −0.349155 0.511430i
\(425\) 3.74173 + 16.1428i 0.181501 + 0.783040i
\(426\) 9.01641 + 3.02727i 0.436846 + 0.146671i
\(427\) −9.51627 −0.460525
\(428\) 6.37907 + 4.82778i 0.308344 + 0.233360i
\(429\) 5.85907i 0.282878i
\(430\) 0.670152 3.14352i 0.0323176 0.151594i
\(431\) 10.6597 0.513459 0.256730 0.966483i \(-0.417355\pi\)
0.256730 + 0.966483i \(0.417355\pi\)
\(432\) −1.08656 3.84959i −0.0522773 0.185214i
\(433\) 26.5132i 1.27414i 0.770805 + 0.637072i \(0.219854\pi\)
−0.770805 + 0.637072i \(0.780146\pi\)
\(434\) −8.75814 + 26.0852i −0.420404 + 1.25213i
\(435\) 4.85446 0.555246i 0.232753 0.0266220i
\(436\) 0.928423 1.22675i 0.0444634 0.0587506i
\(437\) 34.2088 1.63643
\(438\) 6.98359 20.7999i 0.333689 0.993859i
\(439\) −32.8789 −1.56923 −0.784613 0.619986i \(-0.787138\pi\)
−0.784613 + 0.619986i \(0.787138\pi\)
\(440\) 6.26111 + 7.24167i 0.298487 + 0.345233i
\(441\) 0.0164068 0.000781274
\(442\) −5.77454 + 17.1989i −0.274667 + 0.818068i
\(443\) −5.70892 −0.271239 −0.135619 0.990761i \(-0.543302\pi\)
−0.135619 + 0.990761i \(0.543302\pi\)
\(444\) −12.5522 9.49971i −0.595701 0.450836i
\(445\) −3.75007 32.7864i −0.177770 1.55423i
\(446\) 4.43140 13.1985i 0.209833 0.624966i
\(447\) 11.0715i 0.523662i
\(448\) 19.6894 + 7.69919i 0.930237 + 0.363753i
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) −7.03840 0.678887i −0.331793 0.0320030i
\(451\) 13.2069i 0.621890i
\(452\) 17.4506 23.0580i 0.820809 1.08456i
\(453\) −0.637339 −0.0299448
\(454\) 7.65375 + 2.56975i 0.359208 + 0.120604i
\(455\) −22.7253 + 2.59929i −1.06538 + 0.121857i
\(456\) −16.5522 + 11.3002i −0.775128 + 0.529182i
\(457\) 3.94229i 0.184413i 0.995740 + 0.0922064i \(0.0293920\pi\)
−0.995740 + 0.0922064i \(0.970608\pi\)
\(458\) −0.346255 + 1.03128i −0.0161794 + 0.0481888i
\(459\) 3.31415i 0.154691i
\(460\) −18.5850 10.9885i −0.866531 0.512342i
\(461\) 33.8969i 1.57874i −0.613920 0.789369i \(-0.710408\pi\)
0.613920 0.789369i \(-0.289592\pi\)
\(462\) 5.36266 + 1.80052i 0.249494 + 0.0837677i
\(463\) 22.8688i 1.06280i 0.847120 + 0.531402i \(0.178335\pi\)
−0.847120 + 0.531402i \(0.821665\pi\)
\(464\) −8.41188 + 2.37429i −0.390512 + 0.110224i
\(465\) 1.87086 + 16.3568i 0.0867593 + 0.758527i
\(466\) −8.28275 + 24.6693i −0.383691 + 1.14278i
\(467\) 15.7417 0.728440 0.364220 0.931313i \(-0.381336\pi\)
0.364220 + 0.931313i \(0.381336\pi\)
\(468\) −6.17313 4.67192i −0.285353 0.215960i
\(469\) 2.68601i 0.124028i
\(470\) −21.9149 4.67192i −1.01086 0.215500i
\(471\) 0.129135 0.00595024
\(472\) −15.8820 + 10.8427i −0.731030 + 0.499076i
\(473\) 1.53847i 0.0707388i
\(474\) −9.87086 3.31415i −0.453384 0.152224i
\(475\) 8.00000 + 34.5140i 0.367065 + 1.58361i
\(476\) −13.9672 10.5706i −0.640185 0.484502i
\(477\) −4.50820 −0.206416
\(478\) −13.4506 4.51606i −0.615218 0.206560i
\(479\) −20.6925 −0.945465 −0.472732 0.881206i \(-0.656732\pi\)
−0.472732 + 0.881206i \(0.656732\pi\)
\(480\) 12.6224 0.822329i 0.576129 0.0375340i
\(481\) −30.4671 −1.38918
\(482\) 14.4231 + 4.84255i 0.656952 + 0.220572i
\(483\) −12.7581 −0.580515
\(484\) 13.8887 + 10.5112i 0.631304 + 0.477781i
\(485\) 24.7581 2.83180i 1.12421 0.128586i
\(486\) −1.34067 0.450129i −0.0608138 0.0204183i
\(487\) 30.8401i 1.39750i −0.715366 0.698750i \(-0.753740\pi\)
0.715366 0.698750i \(-0.246260\pi\)
\(488\) 8.41188 5.74281i 0.380788 0.259965i
\(489\) −19.4835 −0.881072
\(490\) −0.0108175 + 0.0507425i −0.000488687 + 0.00229231i
\(491\) 10.9737i 0.495238i −0.968858 0.247619i \(-0.920352\pi\)
0.968858 0.247619i \(-0.0796481\pi\)
\(492\) −13.9149 10.5310i −0.627330 0.474774i
\(493\) 7.24186 0.326157
\(494\) −12.3463 + 36.7721i −0.555484 + 1.65445i
\(495\) 3.36266 0.384617i 0.151140 0.0172872i
\(496\) −8.00000 28.3433i −0.359211 1.27265i
\(497\) 17.7727i 0.797213i
\(498\) 10.3791 + 3.48478i 0.465097 + 0.156157i
\(499\) 3.71729i 0.166409i −0.996533 0.0832044i \(-0.973485\pi\)
0.996533 0.0832044i \(-0.0265154\pi\)
\(500\) 6.74031 21.3206i 0.301436 0.953486i
\(501\) 1.80052i 0.0804412i
\(502\) 5.69774 16.9701i 0.254302 0.757414i
\(503\) 39.9451i 1.78107i 0.454919 + 0.890533i \(0.349668\pi\)
−0.454919 + 0.890533i \(0.650332\pi\)
\(504\) 6.17313 4.21441i 0.274973 0.187725i
\(505\) 29.6126 3.38705i 1.31774 0.150722i
\(506\) 9.79690 + 3.28932i 0.435525 + 0.146228i
\(507\) −1.98359 −0.0880945
\(508\) 13.9149 18.3860i 0.617372 0.815749i
\(509\) 0.0728979i 0.00323114i 0.999999 + 0.00161557i \(0.000514253\pi\)
−0.999999 + 0.00161557i \(0.999486\pi\)
\(510\) −10.2499 2.18513i −0.453875 0.0967594i
\(511\) 40.9997 1.81372
\(512\) −22.0506 + 5.07634i −0.974510 + 0.224345i
\(513\) 7.08582i 0.312846i
\(514\) −5.99166 + 17.8456i −0.264281 + 0.787134i
\(515\) 2.12914 0.243528i 0.0938209 0.0107311i
\(516\) 1.62093 + 1.22675i 0.0713576 + 0.0540046i
\(517\) 10.7253 0.471699
\(518\) 9.36266 27.8857i 0.411372 1.22523i
\(519\) −23.2335 −1.01984
\(520\) 18.5194 16.0118i 0.812129 0.702162i
\(521\) −11.9672 −0.524292 −0.262146 0.965028i \(-0.584430\pi\)
−0.262146 + 0.965028i \(0.584430\pi\)
\(522\) −0.983593 + 2.92953i −0.0430507 + 0.128222i
\(523\) −16.0656 −0.702501 −0.351250 0.936282i \(-0.614243\pi\)
−0.351250 + 0.936282i \(0.614243\pi\)
\(524\) −8.89845 + 11.7577i −0.388731 + 0.513639i
\(525\) −2.98359 12.8720i −0.130215 0.561779i
\(526\) 8.29392 24.7026i 0.361632 1.07709i
\(527\) 24.4010i 1.06292i
\(528\) −5.82687 + 1.64466i −0.253582 + 0.0715746i
\(529\) −0.307491 −0.0133692
\(530\) 2.97241 13.9429i 0.129113 0.605640i
\(531\) 6.79893i 0.295048i
\(532\) −29.8625 22.6004i −1.29470 0.979854i
\(533\) −33.7745 −1.46294
\(534\) 19.7857 + 6.64307i 0.856212 + 0.287474i
\(535\) 1.01641 + 8.88633i 0.0439431 + 0.384190i
\(536\) 1.62093 + 2.37429i 0.0700136 + 0.102554i
\(537\) 2.85664i 0.123273i
\(538\) −1.74173 + 5.18757i −0.0750913 + 0.223652i
\(539\) 0.0248338i 0.00106967i
\(540\) 2.27610 3.84959i 0.0979476 0.165660i
\(541\) 15.8559i 0.681698i 0.940118 + 0.340849i \(0.110715\pi\)
−0.940118 + 0.340849i \(0.889285\pi\)
\(542\) −23.3215 7.83021i −1.00174 0.336337i
\(543\) 5.28530i 0.226814i
\(544\) 18.7253 + 0.915029i 0.802842 + 0.0392316i
\(545\) 1.70892 0.195463i 0.0732019 0.00837274i
\(546\) 4.60453 13.7141i 0.197055 0.586910i
\(547\) −4.95078 −0.211680 −0.105840 0.994383i \(-0.533753\pi\)
−0.105840 + 0.994383i \(0.533753\pi\)
\(548\) −4.69251 + 6.20033i −0.200454 + 0.264865i
\(549\) 3.60104i 0.153688i
\(550\) −1.02759 + 10.6536i −0.0438164 + 0.454269i
\(551\) 15.4835 0.659618
\(552\) 11.2775 7.69919i 0.480003 0.327699i
\(553\) 19.4569i 0.827393i
\(554\) −1.18953 0.399387i −0.0505385 0.0169683i
\(555\) −2.00000 17.4858i −0.0848953 0.742230i
\(556\) −17.6566 + 23.3301i −0.748806 + 0.989416i
\(557\) 1.26634 0.0536565 0.0268283 0.999640i \(-0.491459\pi\)
0.0268283 + 0.999640i \(0.491459\pi\)
\(558\) −9.87086 3.31415i −0.417867 0.140299i
\(559\) 3.93437 0.166406
\(560\) 8.96408 + 21.8708i 0.378801 + 0.924211i
\(561\) 5.01641 0.211793
\(562\) −18.0768 6.06930i −0.762524 0.256018i
\(563\) 5.70892 0.240602 0.120301 0.992737i \(-0.461614\pi\)
0.120301 + 0.992737i \(0.461614\pi\)
\(564\) 8.55220 11.3002i 0.360112 0.475825i
\(565\) 32.1208 3.67393i 1.35133 0.154564i
\(566\) 38.1208 + 12.7991i 1.60234 + 0.537986i
\(567\) 2.64265i 0.110981i
\(568\) −10.7253 15.7101i −0.450025 0.659181i
\(569\) 2.75814 0.115627 0.0578135 0.998327i \(-0.481587\pi\)
0.0578135 + 0.998327i \(0.481587\pi\)
\(570\) −21.9149 4.67192i −0.917912 0.195685i
\(571\) 25.7735i 1.07859i 0.842118 + 0.539294i \(0.181309\pi\)
−0.842118 + 0.539294i \(0.818691\pi\)
\(572\) −7.07158 + 9.34385i −0.295677 + 0.390686i
\(573\) 5.96719 0.249283
\(574\) 10.3791 30.9130i 0.433214 1.29028i
\(575\) −5.45065 23.5155i −0.227308 0.980663i
\(576\) −2.91344 + 7.45063i −0.121393 + 0.310443i
\(577\) 32.7135i 1.36188i 0.732338 + 0.680941i \(0.238429\pi\)
−0.732338 + 0.680941i \(0.761571\pi\)
\(578\) 8.06599 + 2.70816i 0.335501 + 0.112645i
\(579\) 14.9409i 0.620921i
\(580\) −8.41188 4.97358i −0.349284 0.206517i
\(581\) 20.4587i 0.848769i
\(582\) −5.01641 + 14.9409i −0.207937 + 0.619319i
\(583\) 6.82376i 0.282611i
\(584\) −36.2416 + 24.7422i −1.49969 + 1.02384i
\(585\) −0.983593 8.59945i −0.0406666 0.355543i
\(586\) 10.7141 + 3.59728i 0.442597 + 0.148602i
\(587\) 43.4835 1.79475 0.897377 0.441264i \(-0.145470\pi\)
0.897377 + 0.441264i \(0.145470\pi\)
\(588\) −0.0261649 0.0198021i −0.00107902 0.000816623i
\(589\) 52.1705i 2.14965i
\(590\) −21.0276 4.48277i −0.865692 0.184553i
\(591\) 3.23353 0.133009
\(592\) 8.55220 + 30.2996i 0.351493 + 1.24531i
\(593\) 7.83021i 0.321548i 0.986991 + 0.160774i \(0.0513991\pi\)
−0.986991 + 0.160774i \(0.948601\pi\)
\(594\) −0.681331 + 2.02927i −0.0279553 + 0.0832622i
\(595\) −2.22546 19.4569i −0.0912348 0.797656i
\(596\) −13.3627 + 17.6564i −0.547356 + 0.723235i
\(597\) −8.12080 −0.332362
\(598\) 8.41188 25.0539i 0.343987 1.02453i
\(599\) 32.7581 1.33846 0.669231 0.743055i \(-0.266624\pi\)
0.669231 + 0.743055i \(0.266624\pi\)
\(600\) 10.4052 + 9.57764i 0.424792 + 0.391005i
\(601\) 17.8074 0.726377 0.363189 0.931716i \(-0.381688\pi\)
0.363189 + 0.931716i \(0.381688\pi\)
\(602\) −1.20905 + 3.60104i −0.0492772 + 0.146767i
\(603\) 1.01641 0.0413913
\(604\) 1.01641 + 0.769233i 0.0413570 + 0.0312997i
\(605\) 2.21295 + 19.3476i 0.0899692 + 0.786591i
\(606\) −6.00000 + 17.8704i −0.243733 + 0.725935i
\(607\) 3.41188i 0.138484i 0.997600 + 0.0692420i \(0.0220581\pi\)
−0.997600 + 0.0692420i \(0.977942\pi\)
\(608\) 40.0357 + 1.95638i 1.62366 + 0.0793416i
\(609\) −5.77454 −0.233996
\(610\) 11.1372 + 2.37429i 0.450932 + 0.0961321i
\(611\) 27.4282i 1.10963i
\(612\) 4.00000 5.28530i 0.161690 0.213646i
\(613\) −36.6290 −1.47943 −0.739716 0.672920i \(-0.765040\pi\)
−0.739716 + 0.672920i \(0.765040\pi\)
\(614\) −23.3955 7.85505i −0.944165 0.317004i
\(615\) −2.21712 19.3840i −0.0894029 0.781640i
\(616\) −6.37907 9.34385i −0.257020 0.376474i
\(617\) 40.3979i 1.62636i −0.582012 0.813180i \(-0.697734\pi\)
0.582012 0.813180i \(-0.302266\pi\)
\(618\) −0.431398 + 1.28488i −0.0173534 + 0.0516853i
\(619\) 24.5172i 0.985430i 0.870191 + 0.492715i \(0.163996\pi\)
−0.870191 + 0.492715i \(0.836004\pi\)
\(620\) 16.7581 28.3433i 0.673023 1.13829i
\(621\) 4.82778i 0.193732i
\(622\) 28.7581 + 9.65557i 1.15310 + 0.387153i
\(623\) 39.0006i 1.56252i
\(624\) 4.20594 + 14.9013i 0.168372 + 0.596528i
\(625\) 22.4506 10.9986i 0.898026 0.439943i
\(626\) 3.48346 10.3751i 0.139227 0.414674i
\(627\) 10.7253 0.428328
\(628\) −0.205941 0.155859i −0.00821793 0.00621947i
\(629\) 26.0852i 1.04009i
\(630\) 8.17313 + 1.74239i 0.325625 + 0.0694185i
\(631\) 18.7805 0.747640 0.373820 0.927501i \(-0.378048\pi\)
0.373820 + 0.927501i \(0.378048\pi\)
\(632\) 11.7417 + 17.1989i 0.467061 + 0.684135i
\(633\) 13.7141i 0.545087i
\(634\) −15.0604 5.05654i −0.598125 0.200821i
\(635\) 25.6126 2.92953i 1.01640 0.116255i
\(636\) 7.18953 + 5.44116i 0.285084 + 0.215756i
\(637\) −0.0635083 −0.00251629
\(638\) 4.43424 + 1.48880i 0.175553 + 0.0589421i
\(639\) −6.72532 −0.266050
\(640\) −21.1222 13.9231i −0.834929 0.550358i
\(641\) −15.5163 −0.612856 −0.306428 0.951894i \(-0.599134\pi\)
−0.306428 + 0.951894i \(0.599134\pi\)
\(642\) −5.36266 1.80052i −0.211647 0.0710608i
\(643\) −17.4506 −0.688186 −0.344093 0.938936i \(-0.611814\pi\)
−0.344093 + 0.938936i \(0.611814\pi\)
\(644\) 20.3463 + 15.3984i 0.801755 + 0.606781i
\(645\) 0.258271 + 2.25803i 0.0101694 + 0.0889099i
\(646\) −31.4835 10.5706i −1.23870 0.415895i
\(647\) 13.1403i 0.516600i 0.966065 + 0.258300i \(0.0831624\pi\)
−0.966065 + 0.258300i \(0.916838\pi\)
\(648\) 1.59477 + 2.33596i 0.0626484 + 0.0917653i
\(649\) 10.2911 0.403960
\(650\) 27.2447 + 2.62788i 1.06863 + 0.103074i
\(651\) 19.4569i 0.762577i
\(652\) 31.0716 + 23.5155i 1.21686 + 0.920937i
\(653\) 14.7993 0.579141 0.289570 0.957157i \(-0.406488\pi\)
0.289570 + 0.957157i \(0.406488\pi\)
\(654\) −0.346255 + 1.03128i −0.0135396 + 0.0403264i
\(655\) −16.3791 + 1.87342i −0.639983 + 0.0732004i
\(656\) 9.48062 + 33.5890i 0.370156 + 1.31143i
\(657\) 15.5146i 0.605284i
\(658\) 25.1044 + 8.42882i 0.978671 + 0.328590i
\(659\) 7.99614i 0.311485i −0.987798 0.155743i \(-0.950223\pi\)
0.987798 0.155743i \(-0.0497771\pi\)
\(660\) −5.82687 3.44518i −0.226811 0.134103i
\(661\) 0.915029i 0.0355905i −0.999842 0.0177953i \(-0.994335\pi\)
0.999842 0.0177953i \(-0.00566470\pi\)
\(662\) −3.60142 + 10.7265i −0.139973 + 0.416896i
\(663\) 12.8286i 0.498223i
\(664\) −12.3463 18.0844i −0.479128 0.701810i
\(665\) −4.75814 41.5999i −0.184513 1.61317i
\(666\) 10.5522 + 3.54291i 0.408889 + 0.137285i
\(667\) −10.5494 −0.408473
\(668\) 2.17313 2.87141i 0.0840808 0.111098i
\(669\) 9.84472i 0.380619i
\(670\) −0.670152 + 3.14352i −0.0258902 + 0.121445i
\(671\) −5.45065 −0.210420
\(672\) −14.9313 0.729629i −0.575986 0.0281461i
\(673\) 34.3978i 1.32594i 0.748647 + 0.662969i \(0.230704\pi\)
−0.748647 + 0.662969i \(0.769296\pi\)
\(674\) 9.70892 28.9170i 0.373973 1.11384i
\(675\) 4.87086 1.12902i 0.187480 0.0434559i
\(676\) 3.16337 + 2.39409i 0.121668 + 0.0920804i
\(677\) −40.1676 −1.54377 −0.771884 0.635764i \(-0.780685\pi\)
−0.771884 + 0.635764i \(0.780685\pi\)
\(678\) −6.50820 + 19.3840i −0.249946 + 0.744439i
\(679\) −29.4506 −1.13021
\(680\) 13.7089 + 15.8559i 0.525713 + 0.608046i
\(681\) −5.70892 −0.218766
\(682\) −5.01641 + 14.9409i −0.192088 + 0.572115i
\(683\) −33.2580 −1.27258 −0.636291 0.771449i \(-0.719532\pi\)
−0.636291 + 0.771449i \(0.719532\pi\)
\(684\) 8.55220 11.3002i 0.327001 0.432075i
\(685\) −8.63734 + 0.987927i −0.330016 + 0.0377468i
\(686\) 8.34625 24.8585i 0.318661 0.949101i
\(687\) 0.769233i 0.0293481i
\(688\) −1.10439 3.91275i −0.0421045 0.149172i
\(689\) 17.4506 0.664817
\(690\) 14.9313 + 3.18312i 0.568423 + 0.121179i
\(691\) 50.2241i 1.91062i −0.295611 0.955308i \(-0.595523\pi\)
0.295611 0.955308i \(-0.404477\pi\)
\(692\) 37.0521 + 28.0416i 1.40851 + 1.06598i
\(693\) −4.00000 −0.151947
\(694\) −29.1044 9.77182i −1.10479 0.370933i
\(695\) −32.4999 + 3.71729i −1.23279 + 0.141005i
\(696\) 5.10439 3.48478i 0.193481 0.132090i
\(697\) 28.9170i 1.09531i
\(698\) 11.1372 33.1710i 0.421549 1.25554i
\(699\) 18.4008i 0.695983i
\(700\) −10.7777 + 24.1289i −0.407357 + 0.911985i
\(701\) 23.7543i 0.897188i 0.893736 + 0.448594i \(0.148075\pi\)
−0.893736 + 0.448594i \(0.851925\pi\)
\(702\) 5.18953 + 1.74239i 0.195866 + 0.0657623i
\(703\) 55.7715i 2.10346i
\(704\) 11.2775 + 4.40987i 0.425037 + 0.166203i
\(705\) 15.7417 1.80052i 0.592868 0.0678114i
\(706\) 1.49180 4.44317i 0.0561445 0.167221i
\(707\) −35.2252 −1.32478
\(708\) 8.20594 10.8427i 0.308398 0.407494i
\(709\) 36.3146i 1.36382i 0.731435 + 0.681911i \(0.238851\pi\)
−0.731435 + 0.681911i \(0.761149\pi\)
\(710\) 4.43424 20.7999i 0.166414 0.780608i
\(711\) 7.36266 0.276121
\(712\) −23.5358 34.4744i −0.882041 1.29198i
\(713\) 35.5453i 1.33118i
\(714\) 11.7417 + 3.94229i 0.439423 + 0.147537i
\(715\) −13.0164 + 1.48880i −0.486786 + 0.0556779i
\(716\) −3.44780 + 4.55567i −0.128851 + 0.170253i
\(717\) 10.0328 0.374682
\(718\) 22.4671 + 7.54333i 0.838463 + 0.281515i
\(719\) −30.7253 −1.14586 −0.572931 0.819604i \(-0.694194\pi\)
−0.572931 + 0.819604i \(0.694194\pi\)
\(720\) −8.27610 + 3.39208i −0.308432 + 0.126415i
\(721\) −2.53268 −0.0943219
\(722\) −41.8405 14.0480i −1.55714 0.522812i
\(723\) −10.7581 −0.400099
\(724\) −6.37907 + 8.42882i −0.237076 + 0.313255i
\(725\) −2.46705 10.6435i −0.0916240 0.395289i
\(726\) −11.6757 3.92014i −0.433327 0.145490i
\(727\) 5.47445i 0.203036i −0.994834 0.101518i \(-0.967630\pi\)
0.994834 0.101518i \(-0.0323700\pi\)
\(728\) −23.8953 + 16.3134i −0.885620 + 0.604615i
\(729\) 1.00000 0.0370370
\(730\) −47.9833 10.2293i −1.77594 0.378605i
\(731\) 3.36852i 0.124589i
\(732\) −4.34625 + 5.74281i −0.160642 + 0.212260i
\(733\) 17.1455 0.633285 0.316643 0.948545i \(-0.397444\pi\)
0.316643 + 0.948545i \(0.397444\pi\)
\(734\) −12.8433 + 38.2524i −0.474054 + 1.41192i
\(735\) −0.00416898 0.0364490i −0.000153775 0.00134444i
\(736\) −27.2775 1.33294i −1.00546 0.0491328i
\(737\) 1.53847i 0.0566701i
\(738\) 11.6977 + 3.92752i 0.430600 + 0.144574i
\(739\) 11.6019i 0.426782i −0.976967 0.213391i \(-0.931549\pi\)
0.976967 0.213391i \(-0.0684508\pi\)
\(740\) −17.9149 + 30.2996i −0.658563 + 1.11384i
\(741\) 27.4282i 1.00760i
\(742\) −5.36266 + 15.9721i −0.196869 + 0.586356i
\(743\) 23.6613i 0.868048i −0.900901 0.434024i \(-0.857093\pi\)
0.900901 0.434024i \(-0.142907\pi\)
\(744\) 11.7417 + 17.1989i 0.430473 + 0.630542i
\(745\) −24.5962 + 2.81328i −0.901135 + 0.103071i
\(746\) −50.3819 16.9158i −1.84461 0.619330i
\(747\) −7.74173 −0.283255
\(748\) −8.00000 6.05453i −0.292509 0.221376i
\(749\) 10.5706i 0.386241i
\(750\) 0.280267 + 15.8089i 0.0102339 + 0.577260i
\(751\) −11.4283 −0.417024 −0.208512 0.978020i \(-0.566862\pi\)
−0.208512 + 0.978020i \(0.566862\pi\)
\(752\) −27.2775 + 7.69919i −0.994709 + 0.280761i
\(753\) 12.6580i 0.461283i
\(754\) 3.80736 11.3398i 0.138656 0.412972i
\(755\) 0.161949 + 1.41590i 0.00589392 + 0.0515299i
\(756\) −3.18953 + 4.21441i −0.116002 + 0.153277i
\(757\) 19.1784 0.697049 0.348525 0.937300i \(-0.386683\pi\)
0.348525 + 0.937300i \(0.386683\pi\)
\(758\) −3.03592 + 9.04219i −0.110270 + 0.328427i
\(759\) −7.30749 −0.265245
\(760\) 29.3103 + 33.9007i 1.06320 + 1.22971i
\(761\) 4.03281 0.146189 0.0730947 0.997325i \(-0.476712\pi\)
0.0730947 + 0.997325i \(0.476712\pi\)
\(762\) −5.18953 + 15.4565i −0.187997 + 0.559930i
\(763\) −2.03281 −0.0735928
\(764\) −9.51627 7.20207i −0.344287 0.260562i
\(765\) 7.36266 0.842131i 0.266198 0.0304473i
\(766\) 9.82687 29.2684i 0.355059 1.05751i
\(767\) 26.3177i 0.950279i
\(768\) 13.6388 8.36566i 0.492146 0.301870i
\(769\) 2.95078 0.106408 0.0532039 0.998584i \(-0.483057\pi\)
0.0532039 + 0.998584i \(0.483057\pi\)
\(770\) 2.63734 12.3711i 0.0950431 0.445824i
\(771\) 13.3110i 0.479383i
\(772\) 18.0328 23.8272i 0.649015 0.857560i
\(773\) −45.2663 −1.62812 −0.814059 0.580783i \(-0.802747\pi\)
−0.814059 + 0.580783i \(0.802747\pi\)
\(774\) −1.36266 0.457515i −0.0489798 0.0164450i
\(775\) 35.8625 8.31256i 1.28822 0.298596i
\(776\) 26.0328 17.7727i 0.934524 0.638002i
\(777\) 20.7999i 0.746193i
\(778\) 3.96719 11.8159i 0.142231 0.423619i
\(779\) 61.8260i 2.21515i
\(780\) −8.81047 + 14.9013i −0.315465 + 0.533551i
\(781\) 10.1797i 0.364257i
\(782\) 21.4506 + 7.20207i 0.767074 + 0.257546i
\(783\) 2.18513i 0.0780903i
\(784\) 0.0178270 + 0.0631594i 0.000636678 + 0.00225569i
\(785\) −0.0328135 0.286885i −0.00117116 0.0102394i
\(786\) 3.31867 9.88432i 0.118373 0.352562i
\(787\) 52.9997 1.88924 0.944618 0.328171i \(-0.106432\pi\)
0.944618 + 0.328171i \(0.106432\pi\)
\(788\) −5.15672 3.90269i −0.183701 0.139028i
\(789\) 18.4256i 0.655970i
\(790\) −4.85446 + 22.7711i −0.172714 + 0.810159i
\(791\) −38.2088 −1.35855
\(792\) 3.53579 2.41389i 0.125639 0.0857739i
\(793\) 13.9391i 0.494993i
\(794\) 1.10155 + 0.369846i 0.0390926 + 0.0131254i
\(795\) 1.14554 + 10.0153i 0.0406282 + 0.355208i
\(796\) 12.9508 + 9.80136i 0.459028 + 0.347400i
\(797\) −16.5738 −0.587075 −0.293538 0.955948i \(-0.594833\pi\)
−0.293538 + 0.955948i \(0.594833\pi\)
\(798\) 25.1044 + 8.42882i 0.888686 + 0.298377i
\(799\) 23.4835 0.830785
\(800\) −5.03423 27.8327i −0.177987 0.984033i
\(801\) −14.7581 −0.521453
\(802\) −17.0604 5.72804i −0.602424 0.202264i
\(803\) 23.4835 0.828713
\(804\) −1.62093 1.22675i −0.0571659 0.0432641i
\(805\) 3.24186 + 28.3433i 0.114261 + 0.998969i
\(806\) 38.2088 + 12.8286i 1.34585 + 0.451869i
\(807\) 3.86940i 0.136209i
\(808\) 31.1372 21.2574i 1.09540 0.747834i
\(809\) 37.5491 1.32016 0.660078 0.751197i \(-0.270523\pi\)
0.660078 + 0.751197i \(0.270523\pi\)
\(810\) −0.659335 + 3.09278i −0.0231667 + 0.108669i
\(811\) 32.1102i 1.12754i 0.825931 + 0.563771i \(0.190650\pi\)
−0.825931 + 0.563771i \(0.809350\pi\)
\(812\) 9.20905 + 6.96956i 0.323174 + 0.244584i
\(813\) 17.3955 0.610086
\(814\) 5.36266 15.9721i 0.187961 0.559824i
\(815\) 4.95078 + 43.2841i 0.173418 + 1.51618i
\(816\) −12.7581 + 3.60104i −0.446624 + 0.126061i
\(817\) 7.20207i 0.251969i
\(818\) −3.02759 1.01651i −0.105857 0.0355416i
\(819\) 10.2293i 0.357442i
\(820\) −19.8597 + 33.5890i −0.693530 + 1.17298i
\(821\) 29.3809i 1.02540i 0.858568 + 0.512699i \(0.171354\pi\)
−0.858568 + 0.512699i \(0.828646\pi\)
\(822\) 1.75007 5.21240i 0.0610406 0.181803i
\(823\) 28.3866i 0.989495i 0.869037 + 0.494748i \(0.164740\pi\)
−0.869037 + 0.494748i \(0.835260\pi\)
\(824\) 2.23875 1.52840i 0.0779907 0.0532444i
\(825\) −1.70892 7.37270i −0.0594968 0.256684i
\(826\) 24.0880 + 8.08756i 0.838128 + 0.281402i
\(827\) 1.45065 0.0504439 0.0252219 0.999682i \(-0.491971\pi\)
0.0252219 + 0.999682i \(0.491971\pi\)
\(828\) −5.82687 + 7.69919i −0.202498 + 0.267565i
\(829\) 37.4621i 1.30111i −0.759458 0.650556i \(-0.774536\pi\)
0.759458 0.650556i \(-0.225464\pi\)
\(830\) 5.10439 23.9435i 0.177176 0.831089i
\(831\) 0.887271 0.0307791
\(832\) 11.2775 28.8404i 0.390978 0.999860i
\(833\) 0.0543744i 0.00188396i
\(834\) 6.58501 19.6128i 0.228020 0.679135i
\(835\) 4.00000 0.457515i 0.138426 0.0158329i
\(836\) −17.1044 12.9449i −0.591568 0.447708i
\(837\) 7.36266 0.254491
\(838\) −15.0604 + 44.8559i −0.520253 + 1.54952i
\(839\) 48.7581 1.68332 0.841659 0.540010i \(-0.181579\pi\)
0.841659 + 0.540010i \(0.181579\pi\)
\(840\) −10.9313 12.6432i −0.377164 0.436233i
\(841\) 24.2252 0.835351
\(842\) 5.10439 15.2029i 0.175909 0.523927i
\(843\) 13.4835 0.464395
\(844\) 16.5522 21.8708i 0.569750 0.752825i
\(845\) 0.504034 + 4.40672i 0.0173393 + 0.151596i
\(846\) −3.18953 + 9.49971i −0.109658 + 0.326607i
\(847\) 23.0146i 0.790791i
\(848\) −4.89845 17.3548i −0.168213 0.595965i
\(849\) −28.4342 −0.975861
\(850\) −2.24993 + 23.3263i −0.0771721 + 0.800086i
\(851\) 37.9988i 1.30258i
\(852\) 10.7253 + 8.11710i 0.367443 + 0.278087i
\(853\) 4.37073 0.149651 0.0748255 0.997197i \(-0.476160\pi\)
0.0748255 + 0.997197i \(0.476160\pi\)
\(854\) −12.7581 4.28355i −0.436574 0.146580i
\(855\) 15.7417 1.80052i 0.538356 0.0615764i
\(856\) 6.37907 + 9.34385i 0.218032 + 0.319366i
\(857\) 20.5130i 0.700712i −0.936617 0.350356i \(-0.886061\pi\)
0.936617 0.350356i \(-0.113939\pi\)
\(858\) 2.63734 7.85505i 0.0900373 0.268167i
\(859\) 10.1131i 0.345054i 0.985005 + 0.172527i \(0.0551932\pi\)
−0.985005 + 0.172527i \(0.944807\pi\)
\(860\) 2.31344 3.91275i 0.0788877 0.133424i
\(861\) 23.0580i 0.785813i
\(862\) 14.2911 + 4.79824i 0.486756 + 0.163429i
\(863\) 13.2861i 0.452266i 0.974096 + 0.226133i \(0.0726083\pi\)
−0.974096 + 0.226133i \(0.927392\pi\)
\(864\) 0.276098 5.65011i 0.00939303 0.192221i
\(865\) 5.90368 + 51.6152i 0.200731 + 1.75497i
\(866\) −11.9344 + 35.5453i −0.405547 + 1.20788i
\(867\) −6.01641 −0.204328
\(868\) −23.4835 + 31.0293i −0.797081 + 1.05320i
\(869\) 11.1444i 0.378047i
\(870\) 6.75814 + 1.44073i 0.229122 + 0.0488455i
\(871\) −3.93437 −0.133311
\(872\) 1.79690 1.22675i 0.0608507 0.0415429i
\(873\) 11.1444i 0.377180i
\(874\) 45.8625 + 15.3984i 1.55132 + 0.520858i
\(875\) −27.8381 + 9.89909i −0.941098 + 0.334650i
\(876\) 18.7253 24.7422i 0.632670 0.835962i
\(877\) −33.6454 −1.13612 −0.568062 0.822986i \(-0.692307\pi\)
−0.568062 + 0.822986i \(0.692307\pi\)
\(878\) −44.0796 14.7998i −1.48762 0.499468i
\(879\) −7.99166 −0.269552
\(880\) 5.13436 + 12.5270i 0.173079 + 0.422284i
\(881\) −32.7909 −1.10476 −0.552378 0.833594i \(-0.686279\pi\)
−0.552378 + 0.833594i \(0.686279\pi\)
\(882\) 0.0219960 + 0.00738516i 0.000740643 + 0.000248671i
\(883\) −33.4506 −1.12570 −0.562852 0.826558i \(-0.690296\pi\)
−0.562852 + 0.826558i \(0.690296\pi\)
\(884\) −15.4835 + 20.4587i −0.520765 + 0.688100i
\(885\) 15.1044 1.72762i 0.507729 0.0580733i
\(886\) −7.65375 2.56975i −0.257133 0.0863325i
\(887\) 34.8924i 1.17157i 0.810466 + 0.585785i \(0.199214\pi\)
−0.810466 + 0.585785i \(0.800786\pi\)
\(888\) −12.5522 18.3860i −0.421224 0.616995i
\(889\) −30.4671 −1.02183
\(890\) 9.73055 45.6436i 0.326169 1.52998i
\(891\) 1.51363i 0.0507086i
\(892\) 11.8820 15.7000i 0.397840 0.525676i
\(893\) 50.2088 1.68017
\(894\) 4.98359 14.8431i 0.166676 0.496429i
\(895\) −6.34625 + 0.725876i −0.212132 + 0.0242634i
\(896\) 22.9313 + 19.1848i 0.766080 + 0.640920i
\(897\) 18.6877i 0.623964i
\(898\) 2.68133 + 0.900259i 0.0894772 + 0.0300420i
\(899\) 16.0884i 0.536578i
\(900\) −9.13056 4.07835i −0.304352 0.135945i
\(901\) 14.9409i 0.497752i
\(902\) 5.94483 17.7061i 0.197941 0.589548i
\(903\) 2.68601i 0.0893847i
\(904\) 33.7745 23.0580i 1.12332 0.766896i
\(905\) −11.7417 + 1.34300i −0.390308 + 0.0446429i
\(906\) −0.854458 0.286885i −0.0283875 0.00953111i
\(907\) 30.9836 1.02879 0.514397 0.857552i \(-0.328016\pi\)
0.514397 + 0.857552i \(0.328016\pi\)
\(908\) 9.10439 + 6.89035i 0.302140 + 0.228664i
\(909\) 13.3295i 0.442112i
\(910\) −31.6371 6.74456i −1.04876 0.223580i
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) −27.2775 + 7.69919i −0.903249 + 0.254946i
\(913\) 11.7181i 0.387814i
\(914\) −1.77454 + 5.28530i −0.0586967 + 0.174822i
\(915\) −8.00000 + 0.915029i −0.264472 + 0.0302499i
\(916\) −0.928423 + 1.22675i −0.0306760 + 0.0405329i
\(917\) 19.4835 0.643400
\(918\) −1.49180 + 4.44317i −0.0492366 + 0.146646i
\(919\) 15.6043 0.514737 0.257368 0.966313i \(-0.417145\pi\)
0.257368 + 0.966313i \(0.417145\pi\)
\(920\) −19.9700 23.0976i −0.658392 0.761504i
\(921\) 17.4506 0.575018
\(922\) 15.2580 45.4444i 0.502496 1.49663i
\(923\) 26.0328 0.856880
\(924\) 6.37907 + 4.82778i 0.209856 + 0.158822i
\(925\) −38.3379 + 8.88633i −1.26054 + 0.292181i
\(926\) −10.2939 + 30.6594i −0.338279 + 1.00753i
\(927\) 0.958386i 0.0314775i
\(928\) −12.3463 0.603310i −0.405286 0.0198046i
\(929\) 38.9341 1.27739 0.638693 0.769461i \(-0.279475\pi\)
0.638693 + 0.769461i \(0.279475\pi\)
\(930\) −4.85446 + 22.7711i −0.159184 + 0.746693i
\(931\) 0.116255i 0.00381011i
\(932\) −22.2088 + 29.3450i −0.727473 + 0.961228i
\(933\) −21.4506 −0.702263
\(934\) 21.1044 + 7.08582i 0.690557 + 0.231855i
\(935\) −1.27468 11.1444i −0.0416864 0.364460i
\(936\) −6.17313 9.04219i −0.201775 0.295553i
\(937\) 19.6027i 0.640393i −0.947351 0.320197i \(-0.896251\pi\)
0.947351 0.320197i \(-0.103749\pi\)
\(938\) 1.20905 3.60104i 0.0394769 0.117578i
\(939\) 7.73879i 0.252546i
\(940\) −27.2775 16.1280i −0.889695 0.526038i
\(941\) 25.0476i 0.816530i −0.912864 0.408265i \(-0.866134\pi\)
0.912864 0.408265i \(-0.133866\pi\)
\(942\) 0.173127 + 0.0581276i 0.00564079 + 0.00189390i
\(943\) 42.1240i 1.37175i
\(944\) −26.1731 + 7.38747i −0.851863 + 0.240442i
\(945\) −5.87086 + 0.671502i −0.190979 + 0.0218439i
\(946\) −0.692509 + 2.06257i −0.0225154 + 0.0670599i
\(947\) 7.93437 0.257832 0.128916 0.991655i \(-0.458850\pi\)
0.128916 + 0.991655i \(0.458850\pi\)
\(948\) −11.7417 8.88633i −0.381354 0.288615i
\(949\) 60.0550i 1.94947i
\(950\) −4.81047 + 49.8728i −0.156072 + 1.61809i
\(951\) 11.2335 0.364272
\(952\) −13.9672 20.4587i −0.452679 0.663069i
\(953\) 11.4809i 0.371903i −0.982559 0.185952i \(-0.940463\pi\)
0.982559 0.185952i \(-0.0595368\pi\)
\(954\) −6.04399 2.02927i −0.195681 0.0657002i
\(955\) −1.51627 13.2566i −0.0490654 0.428974i
\(956\) −16.0000 12.1091i −0.517477 0.391635i
\(957\) −3.30749 −0.106916
\(958\) −27.7417 9.31431i −0.896295 0.300932i
\(959\) 10.2744 0.331778
\(960\) 17.2925 + 4.57922i 0.558113 + 0.147794i
\(961\) 23.2088 0.748670
\(962\) −40.8461 13.7141i −1.31693 0.442161i
\(963\) 4.00000 0.128898
\(964\) 17.1567 + 12.9845i 0.552581 + 0.418202i
\(965\) 33.1924 3.79650i 1.06850 0.122214i
\(966\) −17.1044 5.74281i −0.550325 0.184772i
\(967\) 15.8993i 0.511285i −0.966771 0.255643i \(-0.917713\pi\)
0.966771 0.255643i \(-0.0822871\pi\)
\(968\) 13.8887 + 20.3437i 0.446399 + 0.653871i
\(969\) 23.4835 0.754397
\(970\) 34.4671 + 7.34787i 1.10667 + 0.235926i
\(971\) 40.6600i 1.30484i 0.757857 + 0.652421i \(0.226246\pi\)
−0.757857 + 0.652421i \(0.773754\pi\)
\(972\) −1.59477 1.20695i −0.0511522 0.0387128i
\(973\) 38.6597 1.23937
\(974\) 13.8820 41.3463i 0.444809 1.32482i
\(975\) −18.8545 + 4.37027i −0.603826 + 0.139961i
\(976\) 13.8625 3.91275i 0.443729 0.125244i
\(977\) 26.5676i 0.849972i 0.905200 + 0.424986i \(0.139721\pi\)
−0.905200 + 0.424986i \(0.860279\pi\)
\(978\) −26.1208 8.77008i −0.835251 0.280436i
\(979\) 22.3384i 0.713938i
\(980\) −0.0373434 + 0.0631594i −0.00119289 + 0.00201755i
\(981\) 0.769233i 0.0245597i
\(982\) 4.93960 14.7121i 0.157629 0.469482i
\(983\) 9.88057i 0.315141i 0.987508 + 0.157571i \(0.0503662\pi\)
−0.987508 + 0.157571i \(0.949634\pi\)
\(984\) −13.9149 20.3820i −0.443589 0.649755i
\(985\) −0.821644 7.18355i −0.0261798 0.228887i
\(986\) 9.70892 + 3.25978i 0.309195 + 0.103812i
\(987\) −18.7253 −0.596034
\(988\) −33.1044 + 43.7416i −1.05319 + 1.39161i
\(989\) 4.90699i 0.156033i
\(990\) 4.68133 + 0.997991i 0.148782 + 0.0317182i
\(991\) −53.0549 −1.68534 −0.842672 0.538427i \(-0.819019\pi\)
−0.842672 + 0.538427i \(0.819019\pi\)
\(992\) 2.03281 41.5999i 0.0645419 1.32080i
\(993\) 8.00084i 0.253899i
\(994\) −8.00000 + 23.8272i −0.253745 + 0.755753i
\(995\) 2.06351 + 18.0410i 0.0654176 + 0.571939i
\(996\) 12.3463 + 9.34385i 0.391206 + 0.296071i
\(997\) 32.3051 1.02311 0.511556 0.859250i \(-0.329069\pi\)
0.511556 + 0.859250i \(0.329069\pi\)
\(998\) 1.67326 4.98364i 0.0529662 0.157754i
\(999\) −7.87086 −0.249023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.2.d.b.109.6 yes 6
3.2 odd 2 360.2.d.e.109.1 6
4.3 odd 2 480.2.d.b.49.4 6
5.2 odd 4 600.2.k.f.301.6 12
5.3 odd 4 600.2.k.f.301.7 12
5.4 even 2 120.2.d.a.109.1 6
8.3 odd 2 480.2.d.a.49.3 6
8.5 even 2 120.2.d.a.109.2 yes 6
12.11 even 2 1440.2.d.f.1009.3 6
15.2 even 4 1800.2.k.u.901.7 12
15.8 even 4 1800.2.k.u.901.6 12
15.14 odd 2 360.2.d.f.109.6 6
16.3 odd 4 3840.2.f.m.769.12 12
16.5 even 4 3840.2.f.l.769.7 12
16.11 odd 4 3840.2.f.m.769.1 12
16.13 even 4 3840.2.f.l.769.6 12
20.3 even 4 2400.2.k.f.1201.11 12
20.7 even 4 2400.2.k.f.1201.2 12
20.19 odd 2 480.2.d.a.49.4 6
24.5 odd 2 360.2.d.f.109.5 6
24.11 even 2 1440.2.d.e.1009.4 6
40.3 even 4 2400.2.k.f.1201.5 12
40.13 odd 4 600.2.k.f.301.8 12
40.19 odd 2 480.2.d.b.49.3 6
40.27 even 4 2400.2.k.f.1201.8 12
40.29 even 2 inner 120.2.d.b.109.5 yes 6
40.37 odd 4 600.2.k.f.301.5 12
60.23 odd 4 7200.2.k.u.3601.9 12
60.47 odd 4 7200.2.k.u.3601.3 12
60.59 even 2 1440.2.d.e.1009.3 6
80.19 odd 4 3840.2.f.m.769.6 12
80.29 even 4 3840.2.f.l.769.12 12
80.59 odd 4 3840.2.f.m.769.7 12
80.69 even 4 3840.2.f.l.769.1 12
120.29 odd 2 360.2.d.e.109.2 6
120.53 even 4 1800.2.k.u.901.5 12
120.59 even 2 1440.2.d.f.1009.4 6
120.77 even 4 1800.2.k.u.901.8 12
120.83 odd 4 7200.2.k.u.3601.10 12
120.107 odd 4 7200.2.k.u.3601.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.d.a.109.1 6 5.4 even 2
120.2.d.a.109.2 yes 6 8.5 even 2
120.2.d.b.109.5 yes 6 40.29 even 2 inner
120.2.d.b.109.6 yes 6 1.1 even 1 trivial
360.2.d.e.109.1 6 3.2 odd 2
360.2.d.e.109.2 6 120.29 odd 2
360.2.d.f.109.5 6 24.5 odd 2
360.2.d.f.109.6 6 15.14 odd 2
480.2.d.a.49.3 6 8.3 odd 2
480.2.d.a.49.4 6 20.19 odd 2
480.2.d.b.49.3 6 40.19 odd 2
480.2.d.b.49.4 6 4.3 odd 2
600.2.k.f.301.5 12 40.37 odd 4
600.2.k.f.301.6 12 5.2 odd 4
600.2.k.f.301.7 12 5.3 odd 4
600.2.k.f.301.8 12 40.13 odd 4
1440.2.d.e.1009.3 6 60.59 even 2
1440.2.d.e.1009.4 6 24.11 even 2
1440.2.d.f.1009.3 6 12.11 even 2
1440.2.d.f.1009.4 6 120.59 even 2
1800.2.k.u.901.5 12 120.53 even 4
1800.2.k.u.901.6 12 15.8 even 4
1800.2.k.u.901.7 12 15.2 even 4
1800.2.k.u.901.8 12 120.77 even 4
2400.2.k.f.1201.2 12 20.7 even 4
2400.2.k.f.1201.5 12 40.3 even 4
2400.2.k.f.1201.8 12 40.27 even 4
2400.2.k.f.1201.11 12 20.3 even 4
3840.2.f.l.769.1 12 80.69 even 4
3840.2.f.l.769.6 12 16.13 even 4
3840.2.f.l.769.7 12 16.5 even 4
3840.2.f.l.769.12 12 80.29 even 4
3840.2.f.m.769.1 12 16.11 odd 4
3840.2.f.m.769.6 12 80.19 odd 4
3840.2.f.m.769.7 12 80.59 odd 4
3840.2.f.m.769.12 12 16.3 odd 4
7200.2.k.u.3601.3 12 60.47 odd 4
7200.2.k.u.3601.4 12 120.107 odd 4
7200.2.k.u.3601.9 12 60.23 odd 4
7200.2.k.u.3601.10 12 120.83 odd 4