Properties

Label 2400.2.k.f.1201.2
Level $2400$
Weight $2$
Character 2400.1201
Analytic conductor $19.164$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,2,Mod(1201,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.180227832610816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + x^{10} - 8x^{6} + 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1201.2
Root \(-0.450129 - 1.34067i\) of defining polynomial
Character \(\chi\) \(=\) 2400.1201
Dual form 2400.2.k.f.1201.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -2.64265 q^{7} -1.00000 q^{9} +1.51363i q^{11} +3.87086i q^{13} +3.31415 q^{17} -7.08582i q^{19} +2.64265i q^{21} -4.82778 q^{23} +1.00000i q^{27} -2.18513i q^{29} +7.36266 q^{31} +1.51363 q^{33} +7.87086i q^{37} +3.87086 q^{39} +8.72532 q^{41} -1.01641i q^{43} +7.08582 q^{47} -0.0164068 q^{49} -3.31415i q^{51} +4.50820i q^{53} -7.08582 q^{57} +6.79893i q^{59} -3.60104i q^{61} +2.64265 q^{63} -1.01641i q^{67} +4.82778i q^{69} +6.72532 q^{71} +15.5146 q^{73} -4.00000i q^{77} +7.36266 q^{79} +1.00000 q^{81} -7.74173i q^{83} -2.18513 q^{87} +14.7581 q^{89} -10.2293i q^{91} -7.36266i q^{93} +11.1444 q^{97} -1.51363i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 32 q^{31} - 16 q^{39} - 8 q^{41} + 12 q^{49} - 32 q^{71} + 32 q^{79} + 12 q^{81} + 40 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.64265 −0.998827 −0.499414 0.866364i \(-0.666451\pi\)
−0.499414 + 0.866364i \(0.666451\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.51363i 0.456377i 0.973617 + 0.228189i \(0.0732803\pi\)
−0.973617 + 0.228189i \(0.926720\pi\)
\(12\) 0 0
\(13\) 3.87086i 1.07358i 0.843714 + 0.536792i \(0.180364\pi\)
−0.843714 + 0.536792i \(0.819636\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.31415 0.803800 0.401900 0.915684i \(-0.368350\pi\)
0.401900 + 0.915684i \(0.368350\pi\)
\(18\) 0 0
\(19\) − 7.08582i − 1.62560i −0.582545 0.812799i \(-0.697943\pi\)
0.582545 0.812799i \(-0.302057\pi\)
\(20\) 0 0
\(21\) 2.64265i 0.576673i
\(22\) 0 0
\(23\) −4.82778 −1.00666 −0.503331 0.864094i \(-0.667892\pi\)
−0.503331 + 0.864094i \(0.667892\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) − 2.18513i − 0.405769i −0.979203 0.202885i \(-0.934968\pi\)
0.979203 0.202885i \(-0.0650316\pi\)
\(30\) 0 0
\(31\) 7.36266 1.32237 0.661187 0.750222i \(-0.270053\pi\)
0.661187 + 0.750222i \(0.270053\pi\)
\(32\) 0 0
\(33\) 1.51363 0.263490
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.87086i 1.29396i 0.762506 + 0.646981i \(0.223969\pi\)
−0.762506 + 0.646981i \(0.776031\pi\)
\(38\) 0 0
\(39\) 3.87086 0.619834
\(40\) 0 0
\(41\) 8.72532 1.36267 0.681333 0.731973i \(-0.261400\pi\)
0.681333 + 0.731973i \(0.261400\pi\)
\(42\) 0 0
\(43\) − 1.01641i − 0.155001i −0.996992 0.0775003i \(-0.975306\pi\)
0.996992 0.0775003i \(-0.0246939\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.08582 1.03357 0.516786 0.856114i \(-0.327128\pi\)
0.516786 + 0.856114i \(0.327128\pi\)
\(48\) 0 0
\(49\) −0.0164068 −0.00234382
\(50\) 0 0
\(51\) − 3.31415i − 0.464074i
\(52\) 0 0
\(53\) 4.50820i 0.619249i 0.950859 + 0.309625i \(0.100203\pi\)
−0.950859 + 0.309625i \(0.899797\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −7.08582 −0.938539
\(58\) 0 0
\(59\) 6.79893i 0.885145i 0.896733 + 0.442573i \(0.145934\pi\)
−0.896733 + 0.442573i \(0.854066\pi\)
\(60\) 0 0
\(61\) − 3.60104i − 0.461065i −0.973065 0.230533i \(-0.925953\pi\)
0.973065 0.230533i \(-0.0740469\pi\)
\(62\) 0 0
\(63\) 2.64265 0.332942
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.01641i − 0.124174i −0.998071 0.0620869i \(-0.980224\pi\)
0.998071 0.0620869i \(-0.0197756\pi\)
\(68\) 0 0
\(69\) 4.82778i 0.581197i
\(70\) 0 0
\(71\) 6.72532 0.798149 0.399074 0.916919i \(-0.369331\pi\)
0.399074 + 0.916919i \(0.369331\pi\)
\(72\) 0 0
\(73\) 15.5146 1.81585 0.907925 0.419132i \(-0.137666\pi\)
0.907925 + 0.419132i \(0.137666\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.00000i − 0.455842i
\(78\) 0 0
\(79\) 7.36266 0.828364 0.414182 0.910194i \(-0.364068\pi\)
0.414182 + 0.910194i \(0.364068\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 7.74173i − 0.849765i −0.905248 0.424883i \(-0.860315\pi\)
0.905248 0.424883i \(-0.139685\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.18513 −0.234271
\(88\) 0 0
\(89\) 14.7581 1.56436 0.782180 0.623053i \(-0.214108\pi\)
0.782180 + 0.623053i \(0.214108\pi\)
\(90\) 0 0
\(91\) − 10.2293i − 1.07233i
\(92\) 0 0
\(93\) − 7.36266i − 0.763472i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.1444 1.13154 0.565769 0.824563i \(-0.308579\pi\)
0.565769 + 0.824563i \(0.308579\pi\)
\(98\) 0 0
\(99\) − 1.51363i − 0.152126i
\(100\) 0 0
\(101\) − 13.3295i − 1.32633i −0.748471 0.663167i \(-0.769212\pi\)
0.748471 0.663167i \(-0.230788\pi\)
\(102\) 0 0
\(103\) 0.958386 0.0944326 0.0472163 0.998885i \(-0.484965\pi\)
0.0472163 + 0.998885i \(0.484965\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) 0.769233i 0.0736792i 0.999321 + 0.0368396i \(0.0117291\pi\)
−0.999321 + 0.0368396i \(0.988271\pi\)
\(110\) 0 0
\(111\) 7.87086 0.747069
\(112\) 0 0
\(113\) −14.4585 −1.36014 −0.680071 0.733146i \(-0.738051\pi\)
−0.680071 + 0.733146i \(0.738051\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.87086i − 0.357862i
\(118\) 0 0
\(119\) −8.75814 −0.802857
\(120\) 0 0
\(121\) 8.70892 0.791720
\(122\) 0 0
\(123\) − 8.72532i − 0.786736i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −11.5290 −1.02303 −0.511516 0.859274i \(-0.670916\pi\)
−0.511516 + 0.859274i \(0.670916\pi\)
\(128\) 0 0
\(129\) −1.01641 −0.0894896
\(130\) 0 0
\(131\) − 7.37270i − 0.644156i −0.946713 0.322078i \(-0.895619\pi\)
0.946713 0.322078i \(-0.104381\pi\)
\(132\) 0 0
\(133\) 18.7253i 1.62369i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.88792 −0.332167 −0.166084 0.986112i \(-0.553112\pi\)
−0.166084 + 0.986112i \(0.553112\pi\)
\(138\) 0 0
\(139\) 14.6291i 1.24083i 0.784275 + 0.620414i \(0.213035\pi\)
−0.784275 + 0.620414i \(0.786965\pi\)
\(140\) 0 0
\(141\) − 7.08582i − 0.596733i
\(142\) 0 0
\(143\) −5.85907 −0.489960
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.0164068i 0.00135321i
\(148\) 0 0
\(149\) − 11.0715i − 0.907010i −0.891254 0.453505i \(-0.850173\pi\)
0.891254 0.453505i \(-0.149827\pi\)
\(150\) 0 0
\(151\) −0.637339 −0.0518659 −0.0259329 0.999664i \(-0.508256\pi\)
−0.0259329 + 0.999664i \(0.508256\pi\)
\(152\) 0 0
\(153\) −3.31415 −0.267933
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 0.129135i − 0.0103061i −0.999987 0.00515306i \(-0.998360\pi\)
0.999987 0.00515306i \(-0.00164028\pi\)
\(158\) 0 0
\(159\) 4.50820 0.357524
\(160\) 0 0
\(161\) 12.7581 1.00548
\(162\) 0 0
\(163\) 19.4835i 1.52606i 0.646362 + 0.763031i \(0.276290\pi\)
−0.646362 + 0.763031i \(0.723710\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.80052 −0.139328 −0.0696641 0.997571i \(-0.522193\pi\)
−0.0696641 + 0.997571i \(0.522193\pi\)
\(168\) 0 0
\(169\) −1.98359 −0.152584
\(170\) 0 0
\(171\) 7.08582i 0.541866i
\(172\) 0 0
\(173\) − 23.2335i − 1.76641i −0.468985 0.883206i \(-0.655380\pi\)
0.468985 0.883206i \(-0.344620\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.79893 0.511039
\(178\) 0 0
\(179\) 2.85664i 0.213515i 0.994285 + 0.106757i \(0.0340468\pi\)
−0.994285 + 0.106757i \(0.965953\pi\)
\(180\) 0 0
\(181\) 5.28530i 0.392853i 0.980519 + 0.196427i \(0.0629337\pi\)
−0.980519 + 0.196427i \(0.937066\pi\)
\(182\) 0 0
\(183\) −3.60104 −0.266196
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.01641i 0.366836i
\(188\) 0 0
\(189\) − 2.64265i − 0.192224i
\(190\) 0 0
\(191\) 5.96719 0.431770 0.215885 0.976419i \(-0.430736\pi\)
0.215885 + 0.976419i \(0.430736\pi\)
\(192\) 0 0
\(193\) −14.9409 −1.07547 −0.537733 0.843115i \(-0.680719\pi\)
−0.537733 + 0.843115i \(0.680719\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3.23353i − 0.230379i −0.993344 0.115190i \(-0.963252\pi\)
0.993344 0.115190i \(-0.0367476\pi\)
\(198\) 0 0
\(199\) 8.12080 0.575668 0.287834 0.957680i \(-0.407065\pi\)
0.287834 + 0.957680i \(0.407065\pi\)
\(200\) 0 0
\(201\) −1.01641 −0.0716918
\(202\) 0 0
\(203\) 5.77454i 0.405293i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.82778 0.335554
\(208\) 0 0
\(209\) 10.7253 0.741886
\(210\) 0 0
\(211\) 13.7141i 0.944119i 0.881567 + 0.472059i \(0.156489\pi\)
−0.881567 + 0.472059i \(0.843511\pi\)
\(212\) 0 0
\(213\) − 6.72532i − 0.460812i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −19.4569 −1.32082
\(218\) 0 0
\(219\) − 15.5146i − 1.04838i
\(220\) 0 0
\(221\) 12.8286i 0.862947i
\(222\) 0 0
\(223\) 9.84472 0.659251 0.329626 0.944112i \(-0.393077\pi\)
0.329626 + 0.944112i \(0.393077\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 5.70892i − 0.378914i −0.981889 0.189457i \(-0.939327\pi\)
0.981889 0.189457i \(-0.0606728\pi\)
\(228\) 0 0
\(229\) − 0.769233i − 0.0508324i −0.999677 0.0254162i \(-0.991909\pi\)
0.999677 0.0254162i \(-0.00809109\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 18.4008 1.20548 0.602739 0.797939i \(-0.294076\pi\)
0.602739 + 0.797939i \(0.294076\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 7.36266i − 0.478256i
\(238\) 0 0
\(239\) −10.0328 −0.648969 −0.324484 0.945891i \(-0.605191\pi\)
−0.324484 + 0.945891i \(0.605191\pi\)
\(240\) 0 0
\(241\) 10.7581 0.692992 0.346496 0.938051i \(-0.387371\pi\)
0.346496 + 0.938051i \(0.387371\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 27.4282 1.74522
\(248\) 0 0
\(249\) −7.74173 −0.490612
\(250\) 0 0
\(251\) 12.6580i 0.798966i 0.916741 + 0.399483i \(0.130810\pi\)
−0.916741 + 0.399483i \(0.869190\pi\)
\(252\) 0 0
\(253\) − 7.30749i − 0.459418i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3110 −0.830316 −0.415158 0.909749i \(-0.636274\pi\)
−0.415158 + 0.909749i \(0.636274\pi\)
\(258\) 0 0
\(259\) − 20.7999i − 1.29244i
\(260\) 0 0
\(261\) 2.18513i 0.135256i
\(262\) 0 0
\(263\) 18.4256 1.13617 0.568087 0.822969i \(-0.307684\pi\)
0.568087 + 0.822969i \(0.307684\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 14.7581i − 0.903183i
\(268\) 0 0
\(269\) − 3.86940i − 0.235921i −0.993018 0.117961i \(-0.962364\pi\)
0.993018 0.117961i \(-0.0376357\pi\)
\(270\) 0 0
\(271\) 17.3955 1.05670 0.528350 0.849027i \(-0.322811\pi\)
0.528350 + 0.849027i \(0.322811\pi\)
\(272\) 0 0
\(273\) −10.2293 −0.619108
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 0.887271i − 0.0533110i −0.999645 0.0266555i \(-0.991514\pi\)
0.999645 0.0266555i \(-0.00848571\pi\)
\(278\) 0 0
\(279\) −7.36266 −0.440791
\(280\) 0 0
\(281\) −13.4835 −0.804356 −0.402178 0.915562i \(-0.631747\pi\)
−0.402178 + 0.915562i \(0.631747\pi\)
\(282\) 0 0
\(283\) 28.4342i 1.69024i 0.534577 + 0.845120i \(0.320471\pi\)
−0.534577 + 0.845120i \(0.679529\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −23.0580 −1.36107
\(288\) 0 0
\(289\) −6.01641 −0.353906
\(290\) 0 0
\(291\) − 11.1444i − 0.653294i
\(292\) 0 0
\(293\) − 7.99166i − 0.466878i −0.972371 0.233439i \(-0.925002\pi\)
0.972371 0.233439i \(-0.0749979\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.51363 −0.0878299
\(298\) 0 0
\(299\) − 18.6877i − 1.08074i
\(300\) 0 0
\(301\) 2.68601i 0.154819i
\(302\) 0 0
\(303\) −13.3295 −0.765760
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.4506i 0.995961i 0.867188 + 0.497980i \(0.165925\pi\)
−0.867188 + 0.497980i \(0.834075\pi\)
\(308\) 0 0
\(309\) − 0.958386i − 0.0545207i
\(310\) 0 0
\(311\) −21.4506 −1.21635 −0.608177 0.793801i \(-0.708099\pi\)
−0.608177 + 0.793801i \(0.708099\pi\)
\(312\) 0 0
\(313\) −7.73879 −0.437422 −0.218711 0.975790i \(-0.570185\pi\)
−0.218711 + 0.975790i \(0.570185\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 11.2335i − 0.630938i −0.948936 0.315469i \(-0.897838\pi\)
0.948936 0.315469i \(-0.102162\pi\)
\(318\) 0 0
\(319\) 3.30749 0.185184
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) − 23.4835i − 1.30665i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.769233 0.0425387
\(328\) 0 0
\(329\) −18.7253 −1.03236
\(330\) 0 0
\(331\) − 8.00084i − 0.439766i −0.975526 0.219883i \(-0.929432\pi\)
0.975526 0.219883i \(-0.0705676\pi\)
\(332\) 0 0
\(333\) − 7.87086i − 0.431321i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 21.5692 1.17495 0.587474 0.809243i \(-0.300123\pi\)
0.587474 + 0.809243i \(0.300123\pi\)
\(338\) 0 0
\(339\) 14.4585i 0.785279i
\(340\) 0 0
\(341\) 11.1444i 0.603501i
\(342\) 0 0
\(343\) 18.5419 1.00117
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.7089i 1.16540i 0.812689 + 0.582698i \(0.198003\pi\)
−0.812689 + 0.582698i \(0.801997\pi\)
\(348\) 0 0
\(349\) 24.7422i 1.32442i 0.749318 + 0.662211i \(0.230382\pi\)
−0.749318 + 0.662211i \(0.769618\pi\)
\(350\) 0 0
\(351\) −3.87086 −0.206611
\(352\) 0 0
\(353\) −3.31415 −0.176394 −0.0881972 0.996103i \(-0.528111\pi\)
−0.0881972 + 0.996103i \(0.528111\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 8.75814i 0.463530i
\(358\) 0 0
\(359\) 16.7581 0.884461 0.442230 0.896902i \(-0.354187\pi\)
0.442230 + 0.896902i \(0.354187\pi\)
\(360\) 0 0
\(361\) −31.2088 −1.64257
\(362\) 0 0
\(363\) − 8.70892i − 0.457100i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.5324 1.48938 0.744690 0.667411i \(-0.232597\pi\)
0.744690 + 0.667411i \(0.232597\pi\)
\(368\) 0 0
\(369\) −8.72532 −0.454222
\(370\) 0 0
\(371\) − 11.9136i − 0.618523i
\(372\) 0 0
\(373\) 37.5798i 1.94581i 0.231211 + 0.972904i \(0.425731\pi\)
−0.231211 + 0.972904i \(0.574269\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.45836 0.435628
\(378\) 0 0
\(379\) 6.74456i 0.346445i 0.984883 + 0.173222i \(0.0554179\pi\)
−0.984883 + 0.173222i \(0.944582\pi\)
\(380\) 0 0
\(381\) 11.5290i 0.590648i
\(382\) 0 0
\(383\) 21.8312 1.11552 0.557762 0.830001i \(-0.311660\pi\)
0.557762 + 0.830001i \(0.311660\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.01641i 0.0516669i
\(388\) 0 0
\(389\) 8.81344i 0.446859i 0.974720 + 0.223429i \(0.0717252\pi\)
−0.974720 + 0.223429i \(0.928275\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) −7.37270 −0.371904
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.821644i 0.0412372i 0.999787 + 0.0206186i \(0.00656356\pi\)
−0.999787 + 0.0206186i \(0.993436\pi\)
\(398\) 0 0
\(399\) 18.7253 0.937439
\(400\) 0 0
\(401\) −12.7253 −0.635472 −0.317736 0.948179i \(-0.602923\pi\)
−0.317736 + 0.948179i \(0.602923\pi\)
\(402\) 0 0
\(403\) 28.4999i 1.41968i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.9136 −0.590535
\(408\) 0 0
\(409\) 2.25827 0.111664 0.0558321 0.998440i \(-0.482219\pi\)
0.0558321 + 0.998440i \(0.482219\pi\)
\(410\) 0 0
\(411\) 3.88792i 0.191777i
\(412\) 0 0
\(413\) − 17.9672i − 0.884107i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.6291 0.716392
\(418\) 0 0
\(419\) 33.4579i 1.63453i 0.576264 + 0.817263i \(0.304510\pi\)
−0.576264 + 0.817263i \(0.695490\pi\)
\(420\) 0 0
\(421\) − 11.3398i − 0.552669i −0.961061 0.276335i \(-0.910880\pi\)
0.961061 0.276335i \(-0.0891198\pi\)
\(422\) 0 0
\(423\) −7.08582 −0.344524
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9.51627i 0.460525i
\(428\) 0 0
\(429\) 5.85907i 0.282878i
\(430\) 0 0
\(431\) −10.6597 −0.513459 −0.256730 0.966483i \(-0.582645\pi\)
−0.256730 + 0.966483i \(0.582645\pi\)
\(432\) 0 0
\(433\) 26.5132 1.27414 0.637072 0.770805i \(-0.280146\pi\)
0.637072 + 0.770805i \(0.280146\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 34.2088i 1.63643i
\(438\) 0 0
\(439\) −32.8789 −1.56923 −0.784613 0.619986i \(-0.787138\pi\)
−0.784613 + 0.619986i \(0.787138\pi\)
\(440\) 0 0
\(441\) 0.0164068 0.000781274 0
\(442\) 0 0
\(443\) − 5.70892i − 0.271239i −0.990761 0.135619i \(-0.956698\pi\)
0.990761 0.135619i \(-0.0433024\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −11.0715 −0.523662
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 13.2069i 0.621890i
\(452\) 0 0
\(453\) 0.637339i 0.0299448i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.94229 −0.184413 −0.0922064 0.995740i \(-0.529392\pi\)
−0.0922064 + 0.995740i \(0.529392\pi\)
\(458\) 0 0
\(459\) 3.31415i 0.154691i
\(460\) 0 0
\(461\) − 33.8969i − 1.57874i −0.613920 0.789369i \(-0.710408\pi\)
0.613920 0.789369i \(-0.289592\pi\)
\(462\) 0 0
\(463\) −22.8688 −1.06280 −0.531402 0.847120i \(-0.678335\pi\)
−0.531402 + 0.847120i \(0.678335\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 15.7417i − 0.728440i −0.931313 0.364220i \(-0.881336\pi\)
0.931313 0.364220i \(-0.118664\pi\)
\(468\) 0 0
\(469\) 2.68601i 0.124028i
\(470\) 0 0
\(471\) −0.129135 −0.00595024
\(472\) 0 0
\(473\) 1.53847 0.0707388
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 4.50820i − 0.206416i
\(478\) 0 0
\(479\) −20.6925 −0.945465 −0.472732 0.881206i \(-0.656732\pi\)
−0.472732 + 0.881206i \(0.656732\pi\)
\(480\) 0 0
\(481\) −30.4671 −1.38918
\(482\) 0 0
\(483\) − 12.7581i − 0.580515i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −30.8401 −1.39750 −0.698750 0.715366i \(-0.746260\pi\)
−0.698750 + 0.715366i \(0.746260\pi\)
\(488\) 0 0
\(489\) 19.4835 0.881072
\(490\) 0 0
\(491\) 10.9737i 0.495238i 0.968858 + 0.247619i \(0.0796481\pi\)
−0.968858 + 0.247619i \(0.920352\pi\)
\(492\) 0 0
\(493\) − 7.24186i − 0.326157i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.7727 −0.797213
\(498\) 0 0
\(499\) − 3.71729i − 0.166409i −0.996533 0.0832044i \(-0.973485\pi\)
0.996533 0.0832044i \(-0.0265154\pi\)
\(500\) 0 0
\(501\) 1.80052i 0.0804412i
\(502\) 0 0
\(503\) −39.9451 −1.78107 −0.890533 0.454919i \(-0.849668\pi\)
−0.890533 + 0.454919i \(0.849668\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.98359i 0.0880945i
\(508\) 0 0
\(509\) − 0.0728979i − 0.00323114i −0.999999 0.00161557i \(-0.999486\pi\)
0.999999 0.00161557i \(-0.000514253\pi\)
\(510\) 0 0
\(511\) −40.9997 −1.81372
\(512\) 0 0
\(513\) 7.08582 0.312846
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.7253i 0.471699i
\(518\) 0 0
\(519\) −23.2335 −1.01984
\(520\) 0 0
\(521\) −11.9672 −0.524292 −0.262146 0.965028i \(-0.584430\pi\)
−0.262146 + 0.965028i \(0.584430\pi\)
\(522\) 0 0
\(523\) − 16.0656i − 0.702501i −0.936282 0.351250i \(-0.885757\pi\)
0.936282 0.351250i \(-0.114243\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24.4010 1.06292
\(528\) 0 0
\(529\) 0.307491 0.0133692
\(530\) 0 0
\(531\) − 6.79893i − 0.295048i
\(532\) 0 0
\(533\) 33.7745i 1.46294i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.85664 0.123273
\(538\) 0 0
\(539\) − 0.0248338i − 0.00106967i
\(540\) 0 0
\(541\) 15.8559i 0.681698i 0.940118 + 0.340849i \(0.110715\pi\)
−0.940118 + 0.340849i \(0.889285\pi\)
\(542\) 0 0
\(543\) 5.28530 0.226814
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.95078i 0.211680i 0.994383 + 0.105840i \(0.0337531\pi\)
−0.994383 + 0.105840i \(0.966247\pi\)
\(548\) 0 0
\(549\) 3.60104i 0.153688i
\(550\) 0 0
\(551\) −15.4835 −0.659618
\(552\) 0 0
\(553\) −19.4569 −0.827393
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.26634i 0.0536565i 0.999640 + 0.0268283i \(0.00854073\pi\)
−0.999640 + 0.0268283i \(0.991459\pi\)
\(558\) 0 0
\(559\) 3.93437 0.166406
\(560\) 0 0
\(561\) 5.01641 0.211793
\(562\) 0 0
\(563\) 5.70892i 0.240602i 0.992737 + 0.120301i \(0.0383860\pi\)
−0.992737 + 0.120301i \(0.961614\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.64265 −0.110981
\(568\) 0 0
\(569\) −2.75814 −0.115627 −0.0578135 0.998327i \(-0.518413\pi\)
−0.0578135 + 0.998327i \(0.518413\pi\)
\(570\) 0 0
\(571\) − 25.7735i − 1.07859i −0.842118 0.539294i \(-0.818691\pi\)
0.842118 0.539294i \(-0.181309\pi\)
\(572\) 0 0
\(573\) − 5.96719i − 0.249283i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −32.7135 −1.36188 −0.680941 0.732338i \(-0.738429\pi\)
−0.680941 + 0.732338i \(0.738429\pi\)
\(578\) 0 0
\(579\) 14.9409i 0.620921i
\(580\) 0 0
\(581\) 20.4587i 0.848769i
\(582\) 0 0
\(583\) −6.82376 −0.282611
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 43.4835i − 1.79475i −0.441264 0.897377i \(-0.645470\pi\)
0.441264 0.897377i \(-0.354530\pi\)
\(588\) 0 0
\(589\) − 52.1705i − 2.14965i
\(590\) 0 0
\(591\) −3.23353 −0.133009
\(592\) 0 0
\(593\) 7.83021 0.321548 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 8.12080i − 0.332362i
\(598\) 0 0
\(599\) 32.7581 1.33846 0.669231 0.743055i \(-0.266624\pi\)
0.669231 + 0.743055i \(0.266624\pi\)
\(600\) 0 0
\(601\) 17.8074 0.726377 0.363189 0.931716i \(-0.381688\pi\)
0.363189 + 0.931716i \(0.381688\pi\)
\(602\) 0 0
\(603\) 1.01641i 0.0413913i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.41188 0.138484 0.0692420 0.997600i \(-0.477942\pi\)
0.0692420 + 0.997600i \(0.477942\pi\)
\(608\) 0 0
\(609\) 5.77454 0.233996
\(610\) 0 0
\(611\) 27.4282i 1.10963i
\(612\) 0 0
\(613\) 36.6290i 1.47943i 0.672920 + 0.739716i \(0.265040\pi\)
−0.672920 + 0.739716i \(0.734960\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.3979 1.62636 0.813180 0.582012i \(-0.197734\pi\)
0.813180 + 0.582012i \(0.197734\pi\)
\(618\) 0 0
\(619\) 24.5172i 0.985430i 0.870191 + 0.492715i \(0.163996\pi\)
−0.870191 + 0.492715i \(0.836004\pi\)
\(620\) 0 0
\(621\) − 4.82778i − 0.193732i
\(622\) 0 0
\(623\) −39.0006 −1.56252
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 10.7253i − 0.428328i
\(628\) 0 0
\(629\) 26.0852i 1.04009i
\(630\) 0 0
\(631\) −18.7805 −0.747640 −0.373820 0.927501i \(-0.621952\pi\)
−0.373820 + 0.927501i \(0.621952\pi\)
\(632\) 0 0
\(633\) 13.7141 0.545087
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 0.0635083i − 0.00251629i
\(638\) 0 0
\(639\) −6.72532 −0.266050
\(640\) 0 0
\(641\) −15.5163 −0.612856 −0.306428 0.951894i \(-0.599134\pi\)
−0.306428 + 0.951894i \(0.599134\pi\)
\(642\) 0 0
\(643\) − 17.4506i − 0.688186i −0.938936 0.344093i \(-0.888186\pi\)
0.938936 0.344093i \(-0.111814\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.1403 0.516600 0.258300 0.966065i \(-0.416838\pi\)
0.258300 + 0.966065i \(0.416838\pi\)
\(648\) 0 0
\(649\) −10.2911 −0.403960
\(650\) 0 0
\(651\) 19.4569i 0.762577i
\(652\) 0 0
\(653\) − 14.7993i − 0.579141i −0.957157 0.289570i \(-0.906488\pi\)
0.957157 0.289570i \(-0.0935124\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −15.5146 −0.605284
\(658\) 0 0
\(659\) − 7.99614i − 0.311485i −0.987798 0.155743i \(-0.950223\pi\)
0.987798 0.155743i \(-0.0497771\pi\)
\(660\) 0 0
\(661\) − 0.915029i − 0.0355905i −0.999842 0.0177953i \(-0.994335\pi\)
0.999842 0.0177953i \(-0.00566470\pi\)
\(662\) 0 0
\(663\) 12.8286 0.498223
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.5494i 0.408473i
\(668\) 0 0
\(669\) − 9.84472i − 0.380619i
\(670\) 0 0
\(671\) 5.45065 0.210420
\(672\) 0 0
\(673\) 34.3978 1.32594 0.662969 0.748647i \(-0.269296\pi\)
0.662969 + 0.748647i \(0.269296\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 40.1676i − 1.54377i −0.635764 0.771884i \(-0.719315\pi\)
0.635764 0.771884i \(-0.280685\pi\)
\(678\) 0 0
\(679\) −29.4506 −1.13021
\(680\) 0 0
\(681\) −5.70892 −0.218766
\(682\) 0 0
\(683\) − 33.2580i − 1.27258i −0.771449 0.636291i \(-0.780468\pi\)
0.771449 0.636291i \(-0.219532\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.769233 −0.0293481
\(688\) 0 0
\(689\) −17.4506 −0.664817
\(690\) 0 0
\(691\) 50.2241i 1.91062i 0.295611 + 0.955308i \(0.404477\pi\)
−0.295611 + 0.955308i \(0.595523\pi\)
\(692\) 0 0
\(693\) 4.00000i 0.151947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 28.9170 1.09531
\(698\) 0 0
\(699\) − 18.4008i − 0.695983i
\(700\) 0 0
\(701\) 23.7543i 0.897188i 0.893736 + 0.448594i \(0.148075\pi\)
−0.893736 + 0.448594i \(0.851925\pi\)
\(702\) 0 0
\(703\) 55.7715 2.10346
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35.2252i 1.32478i
\(708\) 0 0
\(709\) − 36.3146i − 1.36382i −0.731435 0.681911i \(-0.761149\pi\)
0.731435 0.681911i \(-0.238851\pi\)
\(710\) 0 0
\(711\) −7.36266 −0.276121
\(712\) 0 0
\(713\) −35.5453 −1.33118
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.0328i 0.374682i
\(718\) 0 0
\(719\) −30.7253 −1.14586 −0.572931 0.819604i \(-0.694194\pi\)
−0.572931 + 0.819604i \(0.694194\pi\)
\(720\) 0 0
\(721\) −2.53268 −0.0943219
\(722\) 0 0
\(723\) − 10.7581i − 0.400099i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.47445 −0.203036 −0.101518 0.994834i \(-0.532370\pi\)
−0.101518 + 0.994834i \(0.532370\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 3.36852i − 0.124589i
\(732\) 0 0
\(733\) − 17.1455i − 0.633285i −0.948545 0.316643i \(-0.897444\pi\)
0.948545 0.316643i \(-0.102556\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.53847 0.0566701
\(738\) 0 0
\(739\) − 11.6019i − 0.426782i −0.976967 0.213391i \(-0.931549\pi\)
0.976967 0.213391i \(-0.0684508\pi\)
\(740\) 0 0
\(741\) − 27.4282i − 1.00760i
\(742\) 0 0
\(743\) 23.6613 0.868048 0.434024 0.900901i \(-0.357093\pi\)
0.434024 + 0.900901i \(0.357093\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 7.74173i 0.283255i
\(748\) 0 0
\(749\) 10.5706i 0.386241i
\(750\) 0 0
\(751\) 11.4283 0.417024 0.208512 0.978020i \(-0.433138\pi\)
0.208512 + 0.978020i \(0.433138\pi\)
\(752\) 0 0
\(753\) 12.6580 0.461283
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.1784i 0.697049i 0.937300 + 0.348525i \(0.113317\pi\)
−0.937300 + 0.348525i \(0.886683\pi\)
\(758\) 0 0
\(759\) −7.30749 −0.265245
\(760\) 0 0
\(761\) 4.03281 0.146189 0.0730947 0.997325i \(-0.476712\pi\)
0.0730947 + 0.997325i \(0.476712\pi\)
\(762\) 0 0
\(763\) − 2.03281i − 0.0735928i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −26.3177 −0.950279
\(768\) 0 0
\(769\) −2.95078 −0.106408 −0.0532039 0.998584i \(-0.516943\pi\)
−0.0532039 + 0.998584i \(0.516943\pi\)
\(770\) 0 0
\(771\) 13.3110i 0.479383i
\(772\) 0 0
\(773\) 45.2663i 1.62812i 0.580783 + 0.814059i \(0.302747\pi\)
−0.580783 + 0.814059i \(0.697253\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −20.7999 −0.746193
\(778\) 0 0
\(779\) − 61.8260i − 2.21515i
\(780\) 0 0
\(781\) 10.1797i 0.364257i
\(782\) 0 0
\(783\) 2.18513 0.0780903
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 52.9997i − 1.88924i −0.328171 0.944618i \(-0.606432\pi\)
0.328171 0.944618i \(-0.393568\pi\)
\(788\) 0 0
\(789\) − 18.4256i − 0.655970i
\(790\) 0 0
\(791\) 38.2088 1.35855
\(792\) 0 0
\(793\) 13.9391 0.494993
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 16.5738i − 0.587075i −0.955948 0.293538i \(-0.905167\pi\)
0.955948 0.293538i \(-0.0948326\pi\)
\(798\) 0 0
\(799\) 23.4835 0.830785
\(800\) 0 0
\(801\) −14.7581 −0.521453
\(802\) 0 0
\(803\) 23.4835i 0.828713i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.86940 −0.136209
\(808\) 0 0
\(809\) −37.5491 −1.32016 −0.660078 0.751197i \(-0.729477\pi\)
−0.660078 + 0.751197i \(0.729477\pi\)
\(810\) 0 0
\(811\) − 32.1102i − 1.12754i −0.825931 0.563771i \(-0.809350\pi\)
0.825931 0.563771i \(-0.190650\pi\)
\(812\) 0 0
\(813\) − 17.3955i − 0.610086i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −7.20207 −0.251969
\(818\) 0 0
\(819\) 10.2293i 0.357442i
\(820\) 0 0
\(821\) 29.3809i 1.02540i 0.858568 + 0.512699i \(0.171354\pi\)
−0.858568 + 0.512699i \(0.828646\pi\)
\(822\) 0 0
\(823\) −28.3866 −0.989495 −0.494748 0.869037i \(-0.664740\pi\)
−0.494748 + 0.869037i \(0.664740\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.45065i − 0.0504439i −0.999682 0.0252219i \(-0.991971\pi\)
0.999682 0.0252219i \(-0.00802924\pi\)
\(828\) 0 0
\(829\) 37.4621i 1.30111i 0.759458 + 0.650556i \(0.225464\pi\)
−0.759458 + 0.650556i \(0.774536\pi\)
\(830\) 0 0
\(831\) −0.887271 −0.0307791
\(832\) 0 0
\(833\) −0.0543744 −0.00188396
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7.36266i 0.254491i
\(838\) 0 0
\(839\) 48.7581 1.68332 0.841659 0.540010i \(-0.181579\pi\)
0.841659 + 0.540010i \(0.181579\pi\)
\(840\) 0 0
\(841\) 24.2252 0.835351
\(842\) 0 0
\(843\) 13.4835i 0.464395i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −23.0146 −0.790791
\(848\) 0 0
\(849\) 28.4342 0.975861
\(850\) 0 0
\(851\) − 37.9988i − 1.30258i
\(852\) 0 0
\(853\) − 4.37073i − 0.149651i −0.997197 0.0748255i \(-0.976160\pi\)
0.997197 0.0748255i \(-0.0238400\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.5130 0.700712 0.350356 0.936617i \(-0.386061\pi\)
0.350356 + 0.936617i \(0.386061\pi\)
\(858\) 0 0
\(859\) 10.1131i 0.345054i 0.985005 + 0.172527i \(0.0551932\pi\)
−0.985005 + 0.172527i \(0.944807\pi\)
\(860\) 0 0
\(861\) 23.0580i 0.785813i
\(862\) 0 0
\(863\) −13.2861 −0.452266 −0.226133 0.974096i \(-0.572608\pi\)
−0.226133 + 0.974096i \(0.572608\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.01641i 0.204328i
\(868\) 0 0
\(869\) 11.1444i 0.378047i
\(870\) 0 0
\(871\) 3.93437 0.133311
\(872\) 0 0
\(873\) −11.1444 −0.377180
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 33.6454i − 1.13612i −0.822986 0.568062i \(-0.807693\pi\)
0.822986 0.568062i \(-0.192307\pi\)
\(878\) 0 0
\(879\) −7.99166 −0.269552
\(880\) 0 0
\(881\) −32.7909 −1.10476 −0.552378 0.833594i \(-0.686279\pi\)
−0.552378 + 0.833594i \(0.686279\pi\)
\(882\) 0 0
\(883\) − 33.4506i − 1.12570i −0.826558 0.562852i \(-0.809704\pi\)
0.826558 0.562852i \(-0.190296\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 34.8924 1.17157 0.585785 0.810466i \(-0.300786\pi\)
0.585785 + 0.810466i \(0.300786\pi\)
\(888\) 0 0
\(889\) 30.4671 1.02183
\(890\) 0 0
\(891\) 1.51363i 0.0507086i
\(892\) 0 0
\(893\) − 50.2088i − 1.68017i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −18.6877 −0.623964
\(898\) 0 0
\(899\) − 16.0884i − 0.536578i
\(900\) 0 0
\(901\) 14.9409i 0.497752i
\(902\) 0 0
\(903\) 2.68601 0.0893847
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 30.9836i − 1.02879i −0.857552 0.514397i \(-0.828016\pi\)
0.857552 0.514397i \(-0.171984\pi\)
\(908\) 0 0
\(909\) 13.3295i 0.442112i
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 11.7181 0.387814
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19.4835i 0.643400i
\(918\) 0 0
\(919\) 15.6043 0.514737 0.257368 0.966313i \(-0.417145\pi\)
0.257368 + 0.966313i \(0.417145\pi\)
\(920\) 0 0
\(921\) 17.4506 0.575018
\(922\) 0 0
\(923\) 26.0328i 0.856880i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −0.958386 −0.0314775
\(928\) 0 0
\(929\) −38.9341 −1.27739 −0.638693 0.769461i \(-0.720525\pi\)
−0.638693 + 0.769461i \(0.720525\pi\)
\(930\) 0 0
\(931\) 0.116255i 0.00381011i
\(932\) 0 0
\(933\) 21.4506i 0.702263i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 19.6027 0.640393 0.320197 0.947351i \(-0.396251\pi\)
0.320197 + 0.947351i \(0.396251\pi\)
\(938\) 0 0
\(939\) 7.73879i 0.252546i
\(940\) 0 0
\(941\) − 25.0476i − 0.816530i −0.912864 0.408265i \(-0.866134\pi\)
0.912864 0.408265i \(-0.133866\pi\)
\(942\) 0 0
\(943\) −42.1240 −1.37175
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 7.93437i − 0.257832i −0.991655 0.128916i \(-0.958850\pi\)
0.991655 0.128916i \(-0.0411498\pi\)
\(948\) 0 0
\(949\) 60.0550i 1.94947i
\(950\) 0 0
\(951\) −11.2335 −0.364272
\(952\) 0 0
\(953\) −11.4809 −0.371903 −0.185952 0.982559i \(-0.559537\pi\)
−0.185952 + 0.982559i \(0.559537\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 3.30749i − 0.106916i
\(958\) 0 0
\(959\) 10.2744 0.331778
\(960\) 0 0
\(961\) 23.2088 0.748670
\(962\) 0 0
\(963\) 4.00000i 0.128898i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −15.8993 −0.511285 −0.255643 0.966771i \(-0.582287\pi\)
−0.255643 + 0.966771i \(0.582287\pi\)
\(968\) 0 0
\(969\) −23.4835 −0.754397
\(970\) 0 0
\(971\) − 40.6600i − 1.30484i −0.757857 0.652421i \(-0.773754\pi\)
0.757857 0.652421i \(-0.226246\pi\)
\(972\) 0 0
\(973\) − 38.6597i − 1.23937i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.5676 −0.849972 −0.424986 0.905200i \(-0.639721\pi\)
−0.424986 + 0.905200i \(0.639721\pi\)
\(978\) 0 0
\(979\) 22.3384i 0.713938i
\(980\) 0 0
\(981\) − 0.769233i − 0.0245597i
\(982\) 0 0
\(983\) −9.88057 −0.315141 −0.157571 0.987508i \(-0.550366\pi\)
−0.157571 + 0.987508i \(0.550366\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 18.7253i 0.596034i
\(988\) 0 0
\(989\) 4.90699i 0.156033i
\(990\) 0 0
\(991\) 53.0549 1.68534 0.842672 0.538427i \(-0.180981\pi\)
0.842672 + 0.538427i \(0.180981\pi\)
\(992\) 0 0
\(993\) −8.00084 −0.253899
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.3051i 1.02311i 0.859250 + 0.511556i \(0.170931\pi\)
−0.859250 + 0.511556i \(0.829069\pi\)
\(998\) 0 0
\(999\) −7.87086 −0.249023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.k.f.1201.2 12
3.2 odd 2 7200.2.k.u.3601.3 12
4.3 odd 2 600.2.k.f.301.6 12
5.2 odd 4 480.2.d.a.49.4 6
5.3 odd 4 480.2.d.b.49.4 6
5.4 even 2 inner 2400.2.k.f.1201.11 12
8.3 odd 2 600.2.k.f.301.5 12
8.5 even 2 inner 2400.2.k.f.1201.8 12
12.11 even 2 1800.2.k.u.901.7 12
15.2 even 4 1440.2.d.e.1009.3 6
15.8 even 4 1440.2.d.f.1009.3 6
15.14 odd 2 7200.2.k.u.3601.9 12
20.3 even 4 120.2.d.b.109.6 yes 6
20.7 even 4 120.2.d.a.109.1 6
20.19 odd 2 600.2.k.f.301.7 12
24.5 odd 2 7200.2.k.u.3601.4 12
24.11 even 2 1800.2.k.u.901.8 12
40.3 even 4 120.2.d.a.109.2 yes 6
40.13 odd 4 480.2.d.a.49.3 6
40.19 odd 2 600.2.k.f.301.8 12
40.27 even 4 120.2.d.b.109.5 yes 6
40.29 even 2 inner 2400.2.k.f.1201.5 12
40.37 odd 4 480.2.d.b.49.3 6
60.23 odd 4 360.2.d.e.109.1 6
60.47 odd 4 360.2.d.f.109.6 6
60.59 even 2 1800.2.k.u.901.6 12
80.3 even 4 3840.2.f.l.769.6 12
80.13 odd 4 3840.2.f.m.769.12 12
80.27 even 4 3840.2.f.l.769.1 12
80.37 odd 4 3840.2.f.m.769.7 12
80.43 even 4 3840.2.f.l.769.7 12
80.53 odd 4 3840.2.f.m.769.1 12
80.67 even 4 3840.2.f.l.769.12 12
80.77 odd 4 3840.2.f.m.769.6 12
120.29 odd 2 7200.2.k.u.3601.10 12
120.53 even 4 1440.2.d.e.1009.4 6
120.59 even 2 1800.2.k.u.901.5 12
120.77 even 4 1440.2.d.f.1009.4 6
120.83 odd 4 360.2.d.f.109.5 6
120.107 odd 4 360.2.d.e.109.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.d.a.109.1 6 20.7 even 4
120.2.d.a.109.2 yes 6 40.3 even 4
120.2.d.b.109.5 yes 6 40.27 even 4
120.2.d.b.109.6 yes 6 20.3 even 4
360.2.d.e.109.1 6 60.23 odd 4
360.2.d.e.109.2 6 120.107 odd 4
360.2.d.f.109.5 6 120.83 odd 4
360.2.d.f.109.6 6 60.47 odd 4
480.2.d.a.49.3 6 40.13 odd 4
480.2.d.a.49.4 6 5.2 odd 4
480.2.d.b.49.3 6 40.37 odd 4
480.2.d.b.49.4 6 5.3 odd 4
600.2.k.f.301.5 12 8.3 odd 2
600.2.k.f.301.6 12 4.3 odd 2
600.2.k.f.301.7 12 20.19 odd 2
600.2.k.f.301.8 12 40.19 odd 2
1440.2.d.e.1009.3 6 15.2 even 4
1440.2.d.e.1009.4 6 120.53 even 4
1440.2.d.f.1009.3 6 15.8 even 4
1440.2.d.f.1009.4 6 120.77 even 4
1800.2.k.u.901.5 12 120.59 even 2
1800.2.k.u.901.6 12 60.59 even 2
1800.2.k.u.901.7 12 12.11 even 2
1800.2.k.u.901.8 12 24.11 even 2
2400.2.k.f.1201.2 12 1.1 even 1 trivial
2400.2.k.f.1201.5 12 40.29 even 2 inner
2400.2.k.f.1201.8 12 8.5 even 2 inner
2400.2.k.f.1201.11 12 5.4 even 2 inner
3840.2.f.l.769.1 12 80.27 even 4
3840.2.f.l.769.6 12 80.3 even 4
3840.2.f.l.769.7 12 80.43 even 4
3840.2.f.l.769.12 12 80.67 even 4
3840.2.f.m.769.1 12 80.53 odd 4
3840.2.f.m.769.6 12 80.77 odd 4
3840.2.f.m.769.7 12 80.37 odd 4
3840.2.f.m.769.12 12 80.13 odd 4
7200.2.k.u.3601.3 12 3.2 odd 2
7200.2.k.u.3601.4 12 24.5 odd 2
7200.2.k.u.3601.9 12 15.14 odd 2
7200.2.k.u.3601.10 12 120.29 odd 2