L(s) = 1 | − i·3-s − 2.64·7-s − 9-s + 1.51i·11-s + 3.87i·13-s + 3.31·17-s − 7.08i·19-s + 2.64i·21-s − 4.82·23-s + i·27-s − 2.18i·29-s + 7.36·31-s + 1.51·33-s + 7.87i·37-s + 3.87·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.998·7-s − 0.333·9-s + 0.456i·11-s + 1.07i·13-s + 0.803·17-s − 1.62i·19-s + 0.576i·21-s − 1.00·23-s + 0.192i·27-s − 0.405i·29-s + 1.32·31-s + 0.263·33-s + 1.29i·37-s + 0.619·39-s + ⋯ |
Λ(s)=(=(2400s/2ΓC(s)L(s)(0.947+0.318i)Λ(2−s)
Λ(s)=(=(2400s/2ΓC(s+1/2)L(s)(0.947+0.318i)Λ(1−s)
Degree: |
2 |
Conductor: |
2400
= 25⋅3⋅52
|
Sign: |
0.947+0.318i
|
Analytic conductor: |
19.1640 |
Root analytic conductor: |
4.37768 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2400(1201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2400, ( :1/2), 0.947+0.318i)
|
Particular Values
L(1) |
≈ |
1.451136222 |
L(21) |
≈ |
1.451136222 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1 |
good | 7 | 1+2.64T+7T2 |
| 11 | 1−1.51iT−11T2 |
| 13 | 1−3.87iT−13T2 |
| 17 | 1−3.31T+17T2 |
| 19 | 1+7.08iT−19T2 |
| 23 | 1+4.82T+23T2 |
| 29 | 1+2.18iT−29T2 |
| 31 | 1−7.36T+31T2 |
| 37 | 1−7.87iT−37T2 |
| 41 | 1−8.72T+41T2 |
| 43 | 1+1.01iT−43T2 |
| 47 | 1−7.08T+47T2 |
| 53 | 1−4.50iT−53T2 |
| 59 | 1−6.79iT−59T2 |
| 61 | 1+3.60iT−61T2 |
| 67 | 1+1.01iT−67T2 |
| 71 | 1−6.72T+71T2 |
| 73 | 1−15.5T+73T2 |
| 79 | 1−7.36T+79T2 |
| 83 | 1+7.74iT−83T2 |
| 89 | 1−14.7T+89T2 |
| 97 | 1−11.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.045157984358803352914362327837, −8.055143406604106310796091804194, −7.31192131440921268728700779226, −6.54735641707656188606800181013, −6.12636039955725407700081250723, −4.92944873048515401704111303829, −4.09126826011184126008985000217, −2.97894481934235703887237635005, −2.17599943435635160806574549861, −0.77879348686956699590168710429,
0.74398117371210092262737769271, 2.43128340145661761596844591996, 3.46838988394947283658350777304, 3.86966211653493866683065667606, 5.20617190738389387383026705024, 5.88314782351001109771632358779, 6.42673546360306079418320552004, 7.76942306960994776842173358833, 8.086511302344515980232351432067, 9.161021473544472458876143679823