Properties

Label 2-120-1.1-c5-0-4
Degree $2$
Conductor $120$
Sign $1$
Analytic cond. $19.2460$
Root an. cond. $4.38703$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 25·5-s + 162.·7-s + 81·9-s − 585.·11-s + 1.04e3·13-s − 225·15-s + 310.·17-s + 239.·19-s + 1.46e3·21-s + 4.80e3·23-s + 625·25-s + 729·27-s − 3.96e3·29-s + 1.15e3·31-s − 5.26e3·33-s − 4.05e3·35-s + 7.16e3·37-s + 9.40e3·39-s + 1.75e4·41-s + 9.78e3·43-s − 2.02e3·45-s + 1.55e4·47-s + 9.55e3·49-s + 2.79e3·51-s − 1.81e4·53-s + 1.46e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.25·7-s + 0.333·9-s − 1.45·11-s + 1.71·13-s − 0.258·15-s + 0.260·17-s + 0.152·19-s + 0.723·21-s + 1.89·23-s + 0.200·25-s + 0.192·27-s − 0.876·29-s + 0.216·31-s − 0.842·33-s − 0.560·35-s + 0.860·37-s + 0.990·39-s + 1.63·41-s + 0.807·43-s − 0.149·45-s + 1.02·47-s + 0.568·49-s + 0.150·51-s − 0.887·53-s + 0.652·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(19.2460\)
Root analytic conductor: \(4.38703\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 120,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.502821729\)
\(L(\frac12)\) \(\approx\) \(2.502821729\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
5 \( 1 + 25T \)
good7 \( 1 - 162.T + 1.68e4T^{2} \)
11 \( 1 + 585.T + 1.61e5T^{2} \)
13 \( 1 - 1.04e3T + 3.71e5T^{2} \)
17 \( 1 - 310.T + 1.41e6T^{2} \)
19 \( 1 - 239.T + 2.47e6T^{2} \)
23 \( 1 - 4.80e3T + 6.43e6T^{2} \)
29 \( 1 + 3.96e3T + 2.05e7T^{2} \)
31 \( 1 - 1.15e3T + 2.86e7T^{2} \)
37 \( 1 - 7.16e3T + 6.93e7T^{2} \)
41 \( 1 - 1.75e4T + 1.15e8T^{2} \)
43 \( 1 - 9.78e3T + 1.47e8T^{2} \)
47 \( 1 - 1.55e4T + 2.29e8T^{2} \)
53 \( 1 + 1.81e4T + 4.18e8T^{2} \)
59 \( 1 - 8.14e3T + 7.14e8T^{2} \)
61 \( 1 + 5.50e4T + 8.44e8T^{2} \)
67 \( 1 - 6.11e4T + 1.35e9T^{2} \)
71 \( 1 + 6.78e4T + 1.80e9T^{2} \)
73 \( 1 + 5.21e4T + 2.07e9T^{2} \)
79 \( 1 + 1.17e4T + 3.07e9T^{2} \)
83 \( 1 + 4.18e4T + 3.93e9T^{2} \)
89 \( 1 + 7.63e4T + 5.58e9T^{2} \)
97 \( 1 - 3.34e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75366421285115969011068167676, −11.17462892252557285212086323208, −10.80395342419124902533379327597, −9.099392800209928155301232543114, −8.152480311760291994472945971957, −7.45036133110053448989074028921, −5.61695442556017967373050057504, −4.35186694482245600665525263586, −2.87337773203800534518115890780, −1.18597407581890137401017874695, 1.18597407581890137401017874695, 2.87337773203800534518115890780, 4.35186694482245600665525263586, 5.61695442556017967373050057504, 7.45036133110053448989074028921, 8.152480311760291994472945971957, 9.099392800209928155301232543114, 10.80395342419124902533379327597, 11.17462892252557285212086323208, 12.75366421285115969011068167676

Graph of the $Z$-function along the critical line