Properties

Label 120.6.a.g
Level $120$
Weight $6$
Character orbit 120.a
Self dual yes
Analytic conductor $19.246$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,6,Mod(1,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.2460583776\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1489}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 372 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{1489}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} - 25 q^{5} + (\beta + 8) q^{7} + 81 q^{9} + ( - 4 \beta + 32) q^{11} + (3 \beta + 582) q^{13} - 225 q^{15} + ( - 5 \beta + 1082) q^{17} + ( - 7 \beta + 1320) q^{19} + (9 \beta + 72) q^{21}+ \cdots + ( - 324 \beta + 2592) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} - 50 q^{5} + 16 q^{7} + 162 q^{9} + 64 q^{11} + 1164 q^{13} - 450 q^{15} + 2164 q^{17} + 2640 q^{19} + 144 q^{21} + 40 q^{23} + 1250 q^{25} + 1458 q^{27} + 1940 q^{29} + 6328 q^{31} + 576 q^{33}+ \cdots + 5184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−18.7938
19.7938
0 9.00000 0 −25.0000 0 −146.350 0 81.0000 0
1.2 0 9.00000 0 −25.0000 0 162.350 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.6.a.g 2
3.b odd 2 1 360.6.a.n 2
4.b odd 2 1 240.6.a.o 2
5.b even 2 1 600.6.a.k 2
5.c odd 4 2 600.6.f.k 4
8.b even 2 1 960.6.a.bi 2
8.d odd 2 1 960.6.a.bn 2
12.b even 2 1 720.6.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.a.g 2 1.a even 1 1 trivial
240.6.a.o 2 4.b odd 2 1
360.6.a.n 2 3.b odd 2 1
600.6.a.k 2 5.b even 2 1
600.6.f.k 4 5.c odd 4 2
720.6.a.bf 2 12.b even 2 1
960.6.a.bi 2 8.b even 2 1
960.6.a.bn 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - 16T_{7} - 23760 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(120))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 16T - 23760 \) Copy content Toggle raw display
$11$ \( T^{2} - 64T - 380160 \) Copy content Toggle raw display
$13$ \( T^{2} - 1164 T + 124308 \) Copy content Toggle raw display
$17$ \( T^{2} - 2164 T + 575124 \) Copy content Toggle raw display
$19$ \( T^{2} - 2640 T + 575024 \) Copy content Toggle raw display
$23$ \( T^{2} - 40 T - 22894464 \) Copy content Toggle raw display
$29$ \( T^{2} - 1940 T - 23454876 \) Copy content Toggle raw display
$31$ \( T^{2} - 6328 T + 5984640 \) Copy content Toggle raw display
$37$ \( T^{2} - 3532 T - 26065644 \) Copy content Toggle raw display
$41$ \( T^{2} - 2404 T - 266241660 \) Copy content Toggle raw display
$43$ \( T^{2} - 31928 T + 216730896 \) Copy content Toggle raw display
$47$ \( T^{2} - 38232 T + 352818560 \) Copy content Toggle raw display
$53$ \( T^{2} + 24572 T + 116543940 \) Copy content Toggle raw display
$59$ \( T^{2} - 5184 T - 24157440 \) Copy content Toggle raw display
$61$ \( T^{2} + 53956 T - 61333692 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2079363344 \) Copy content Toggle raw display
$71$ \( T^{2} + 71552 T + 249200640 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 2299236900 \) Copy content Toggle raw display
$79$ \( T^{2} - 29288 T - 482190848 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 4235146128 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 4838673508 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 2349969404 \) Copy content Toggle raw display
show more
show less