L(s) = 1 | + (0.637 − 1.10i)3-s + (1.60 − 2.77i)5-s − 1.25i·7-s + (0.688 + 1.19i)9-s − 2.11i·11-s + (−2.12 + 1.22i)13-s + (−2.04 − 3.53i)15-s + (0.765 − 1.32i)17-s + (−3.76 − 2.19i)19-s + (−1.37 − 0.796i)21-s + (7.61 − 4.39i)23-s + (−2.64 − 4.57i)25-s + 5.57·27-s + (5.20 − 3.00i)29-s − 7.78·31-s + ⋯ |
L(s) = 1 | + (0.367 − 0.637i)3-s + (0.717 − 1.24i)5-s − 0.472i·7-s + (0.229 + 0.397i)9-s − 0.636i·11-s + (−0.590 + 0.341i)13-s + (−0.527 − 0.913i)15-s + (0.185 − 0.321i)17-s + (−0.863 − 0.504i)19-s + (−0.301 − 0.173i)21-s + (1.58 − 0.917i)23-s + (−0.528 − 0.914i)25-s + 1.07·27-s + (0.967 − 0.558i)29-s − 1.39·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.417 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.417 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.024725675\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.024725675\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (3.76 + 2.19i)T \) |
good | 3 | \( 1 + (-0.637 + 1.10i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.60 + 2.77i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 1.25iT - 7T^{2} \) |
| 11 | \( 1 + 2.11iT - 11T^{2} \) |
| 13 | \( 1 + (2.12 - 1.22i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.765 + 1.32i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-7.61 + 4.39i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.20 + 3.00i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.78T + 31T^{2} \) |
| 37 | \( 1 - 9.97iT - 37T^{2} \) |
| 41 | \( 1 + (-1.09 - 0.631i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.04 + 2.91i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.12 - 3.53i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.18 - 3.57i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.83 - 4.91i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.80 + 4.86i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0235 + 0.0408i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.12 + 5.41i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.658 + 1.13i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.77 + 6.53i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.84iT - 83T^{2} \) |
| 89 | \( 1 + (6.02 - 3.47i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.51 - 4.91i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.237958454183641360794270438557, −8.703962697591025673673070488733, −7.941962984474611954283387533436, −7.00732368273116638523484716669, −6.24980003929915021151682406471, −4.93922424151873473921896351062, −4.65015965061072872611120592445, −2.98714430545485521610856607887, −1.87957751273009574078253571767, −0.839731580083763358103983801992,
1.87798175826145707021823497522, 2.91037463125627058054135140436, 3.66993057422961581593509505151, 4.89622299182986509117394761913, 5.80904243089063513602267832452, 6.77691428508652248315426730802, 7.32004513085687527246207507840, 8.572156971654281768047756971871, 9.396250486259978805584418989875, 9.930297564976434082742544978558