Properties

Label 1216.2.n.f.255.6
Level $1216$
Weight $2$
Character 1216.255
Analytic conductor $9.710$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(255,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 6 x^{14} - 9 x^{13} + 12 x^{12} - 9 x^{11} + 3 x^{10} + 6 x^{9} - 10 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 255.6
Root \(0.570443 - 1.29406i\) of defining polynomial
Character \(\chi\) \(=\) 1216.255
Dual form 1216.2.n.f.639.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.637123 - 1.10353i) q^{3} +(1.60333 - 2.77705i) q^{5} -1.25044i q^{7} +(0.688149 + 1.19191i) q^{9} -2.11093i q^{11} +(-2.12978 + 1.22963i) q^{13} +(-2.04303 - 3.53864i) q^{15} +(0.765026 - 1.32506i) q^{17} +(-3.76307 - 2.19984i) q^{19} +(-1.37990 - 0.796684i) q^{21} +(7.61951 - 4.39913i) q^{23} +(-2.64132 - 4.57491i) q^{25} +5.57648 q^{27} +(5.20937 - 3.00763i) q^{29} -7.78947 q^{31} +(-2.32947 - 1.34492i) q^{33} +(-3.47253 - 2.00487i) q^{35} +9.97599i q^{37} +3.13370i q^{39} +(1.09450 + 0.631908i) q^{41} +(-5.04619 - 2.91342i) q^{43} +4.41331 q^{45} +(-6.12910 + 3.53864i) q^{47} +5.43640 q^{49} +(-0.974831 - 1.68846i) q^{51} +(-6.18988 + 3.57373i) q^{53} +(-5.86215 - 3.38451i) q^{55} +(-4.82513 + 2.75109i) q^{57} +(-2.83541 + 4.91107i) q^{59} +(-2.80998 - 4.86704i) q^{61} +(1.49041 - 0.860489i) q^{63} +7.88599i q^{65} +(-0.0235835 - 0.0408478i) q^{67} -11.2111i q^{69} +(3.12595 - 5.41430i) q^{71} +(0.658098 - 1.13986i) q^{73} -6.73139 q^{75} -2.63959 q^{77} +(3.77194 - 6.53320i) q^{79} +(1.48846 - 2.57808i) q^{81} -7.84164i q^{83} +(-2.45317 - 4.24902i) q^{85} -7.66492i q^{87} +(-6.02458 + 3.47830i) q^{89} +(1.53758 + 2.66316i) q^{91} +(-4.96285 + 8.59591i) q^{93} +(-12.1425 + 6.92315i) q^{95} +(8.51935 + 4.91865i) q^{97} +(2.51603 - 1.45263i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{5} - 4 q^{9} + 18 q^{13} + 2 q^{17} - 2 q^{25} + 6 q^{29} + 18 q^{33} - 48 q^{41} - 24 q^{45} + 16 q^{49} - 6 q^{53} - 26 q^{57} + 26 q^{61} + 16 q^{73} - 80 q^{77} + 12 q^{81} - 14 q^{85} + 18 q^{89}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.637123 1.10353i 0.367843 0.637123i −0.621385 0.783505i \(-0.713430\pi\)
0.989228 + 0.146382i \(0.0467630\pi\)
\(4\) 0 0
\(5\) 1.60333 2.77705i 0.717030 1.24193i −0.245141 0.969487i \(-0.578834\pi\)
0.962171 0.272445i \(-0.0878324\pi\)
\(6\) 0 0
\(7\) 1.25044i 0.472622i −0.971677 0.236311i \(-0.924062\pi\)
0.971677 0.236311i \(-0.0759384\pi\)
\(8\) 0 0
\(9\) 0.688149 + 1.19191i 0.229383 + 0.397303i
\(10\) 0 0
\(11\) 2.11093i 0.636469i −0.948012 0.318234i \(-0.896910\pi\)
0.948012 0.318234i \(-0.103090\pi\)
\(12\) 0 0
\(13\) −2.12978 + 1.22963i −0.590695 + 0.341038i −0.765372 0.643588i \(-0.777445\pi\)
0.174678 + 0.984626i \(0.444112\pi\)
\(14\) 0 0
\(15\) −2.04303 3.53864i −0.527509 0.913673i
\(16\) 0 0
\(17\) 0.765026 1.32506i 0.185546 0.321375i −0.758214 0.652005i \(-0.773928\pi\)
0.943760 + 0.330630i \(0.107261\pi\)
\(18\) 0 0
\(19\) −3.76307 2.19984i −0.863308 0.504678i
\(20\) 0 0
\(21\) −1.37990 0.796684i −0.301118 0.173851i
\(22\) 0 0
\(23\) 7.61951 4.39913i 1.58878 0.917282i 0.595270 0.803526i \(-0.297045\pi\)
0.993509 0.113756i \(-0.0362881\pi\)
\(24\) 0 0
\(25\) −2.64132 4.57491i −0.528265 0.914981i
\(26\) 0 0
\(27\) 5.57648 1.07319
\(28\) 0 0
\(29\) 5.20937 3.00763i 0.967356 0.558503i 0.0689265 0.997622i \(-0.478043\pi\)
0.898429 + 0.439119i \(0.144709\pi\)
\(30\) 0 0
\(31\) −7.78947 −1.39903 −0.699515 0.714618i \(-0.746601\pi\)
−0.699515 + 0.714618i \(0.746601\pi\)
\(32\) 0 0
\(33\) −2.32947 1.34492i −0.405509 0.234121i
\(34\) 0 0
\(35\) −3.47253 2.00487i −0.586965 0.338884i
\(36\) 0 0
\(37\) 9.97599i 1.64004i 0.572334 + 0.820021i \(0.306038\pi\)
−0.572334 + 0.820021i \(0.693962\pi\)
\(38\) 0 0
\(39\) 3.13370i 0.501793i
\(40\) 0 0
\(41\) 1.09450 + 0.631908i 0.170932 + 0.0986875i 0.583025 0.812454i \(-0.301869\pi\)
−0.412093 + 0.911142i \(0.635202\pi\)
\(42\) 0 0
\(43\) −5.04619 2.91342i −0.769537 0.444292i 0.0631725 0.998003i \(-0.479878\pi\)
−0.832709 + 0.553710i \(0.813211\pi\)
\(44\) 0 0
\(45\) 4.41331 0.657898
\(46\) 0 0
\(47\) −6.12910 + 3.53864i −0.894022 + 0.516164i −0.875256 0.483660i \(-0.839307\pi\)
−0.0187658 + 0.999824i \(0.505974\pi\)
\(48\) 0 0
\(49\) 5.43640 0.776629
\(50\) 0 0
\(51\) −0.974831 1.68846i −0.136504 0.236431i
\(52\) 0 0
\(53\) −6.18988 + 3.57373i −0.850246 + 0.490890i −0.860734 0.509055i \(-0.829995\pi\)
0.0104881 + 0.999945i \(0.496661\pi\)
\(54\) 0 0
\(55\) −5.86215 3.38451i −0.790452 0.456367i
\(56\) 0 0
\(57\) −4.82513 + 2.75109i −0.639104 + 0.364391i
\(58\) 0 0
\(59\) −2.83541 + 4.91107i −0.369138 + 0.639367i −0.989431 0.145004i \(-0.953681\pi\)
0.620293 + 0.784371i \(0.287014\pi\)
\(60\) 0 0
\(61\) −2.80998 4.86704i −0.359782 0.623160i 0.628142 0.778098i \(-0.283815\pi\)
−0.987924 + 0.154938i \(0.950482\pi\)
\(62\) 0 0
\(63\) 1.49041 0.860489i 0.187774 0.108411i
\(64\) 0 0
\(65\) 7.88599i 0.978137i
\(66\) 0 0
\(67\) −0.0235835 0.0408478i −0.00288118 0.00499036i 0.864581 0.502493i \(-0.167584\pi\)
−0.867462 + 0.497503i \(0.834250\pi\)
\(68\) 0 0
\(69\) 11.2111i 1.34966i
\(70\) 0 0
\(71\) 3.12595 5.41430i 0.370982 0.642559i −0.618735 0.785600i \(-0.712355\pi\)
0.989717 + 0.143041i \(0.0456879\pi\)
\(72\) 0 0
\(73\) 0.658098 1.13986i 0.0770245 0.133410i −0.824940 0.565220i \(-0.808791\pi\)
0.901965 + 0.431809i \(0.142125\pi\)
\(74\) 0 0
\(75\) −6.73139 −0.777274
\(76\) 0 0
\(77\) −2.63959 −0.300809
\(78\) 0 0
\(79\) 3.77194 6.53320i 0.424377 0.735042i −0.571985 0.820264i \(-0.693826\pi\)
0.996362 + 0.0852216i \(0.0271598\pi\)
\(80\) 0 0
\(81\) 1.48846 2.57808i 0.165384 0.286454i
\(82\) 0 0
\(83\) 7.84164i 0.860732i −0.902655 0.430366i \(-0.858385\pi\)
0.902655 0.430366i \(-0.141615\pi\)
\(84\) 0 0
\(85\) −2.45317 4.24902i −0.266084 0.460871i
\(86\) 0 0
\(87\) 7.66492i 0.821766i
\(88\) 0 0
\(89\) −6.02458 + 3.47830i −0.638605 + 0.368699i −0.784077 0.620664i \(-0.786863\pi\)
0.145472 + 0.989362i \(0.453530\pi\)
\(90\) 0 0
\(91\) 1.53758 + 2.66316i 0.161182 + 0.279175i
\(92\) 0 0
\(93\) −4.96285 + 8.59591i −0.514624 + 0.891354i
\(94\) 0 0
\(95\) −12.1425 + 6.92315i −1.24579 + 0.710300i
\(96\) 0 0
\(97\) 8.51935 + 4.91865i 0.865009 + 0.499413i 0.865687 0.500586i \(-0.166882\pi\)
−0.000677265 1.00000i \(0.500216\pi\)
\(98\) 0 0
\(99\) 2.51603 1.45263i 0.252871 0.145995i
\(100\) 0 0
\(101\) 3.13338 + 5.42717i 0.311783 + 0.540024i 0.978748 0.205065i \(-0.0657405\pi\)
−0.666965 + 0.745089i \(0.732407\pi\)
\(102\) 0 0
\(103\) −0.526662 −0.0518936 −0.0259468 0.999663i \(-0.508260\pi\)
−0.0259468 + 0.999663i \(0.508260\pi\)
\(104\) 0 0
\(105\) −4.42486 + 2.55469i −0.431822 + 0.249312i
\(106\) 0 0
\(107\) 6.91564 0.668560 0.334280 0.942474i \(-0.391507\pi\)
0.334280 + 0.942474i \(0.391507\pi\)
\(108\) 0 0
\(109\) 10.4902 + 6.05651i 1.00478 + 0.580109i 0.909658 0.415357i \(-0.136343\pi\)
0.0951195 + 0.995466i \(0.469677\pi\)
\(110\) 0 0
\(111\) 11.0088 + 6.35593i 1.04491 + 0.603278i
\(112\) 0 0
\(113\) 4.95424i 0.466056i 0.972470 + 0.233028i \(0.0748633\pi\)
−0.972470 + 0.233028i \(0.925137\pi\)
\(114\) 0 0
\(115\) 28.2130i 2.63087i
\(116\) 0 0
\(117\) −2.93121 1.69233i −0.270990 0.156456i
\(118\) 0 0
\(119\) −1.65691 0.956619i −0.151889 0.0876931i
\(120\) 0 0
\(121\) 6.54398 0.594907
\(122\) 0 0
\(123\) 1.39466 0.805207i 0.125752 0.0726030i
\(124\) 0 0
\(125\) −0.906349 −0.0810663
\(126\) 0 0
\(127\) −2.86262 4.95820i −0.254016 0.439969i 0.710612 0.703584i \(-0.248418\pi\)
−0.964628 + 0.263616i \(0.915085\pi\)
\(128\) 0 0
\(129\) −6.43009 + 3.71241i −0.566138 + 0.326860i
\(130\) 0 0
\(131\) 16.1689 + 9.33512i 1.41268 + 0.815613i 0.995640 0.0932738i \(-0.0297332\pi\)
0.417043 + 0.908887i \(0.363067\pi\)
\(132\) 0 0
\(133\) −2.75077 + 4.70549i −0.238522 + 0.408018i
\(134\) 0 0
\(135\) 8.94093 15.4861i 0.769512 1.33283i
\(136\) 0 0
\(137\) −9.96622 17.2620i −0.851471 1.47479i −0.879880 0.475195i \(-0.842377\pi\)
0.0284092 0.999596i \(-0.490956\pi\)
\(138\) 0 0
\(139\) −9.04013 + 5.21932i −0.766774 + 0.442697i −0.831723 0.555191i \(-0.812645\pi\)
0.0649485 + 0.997889i \(0.479312\pi\)
\(140\) 0 0
\(141\) 9.01819i 0.759469i
\(142\) 0 0
\(143\) 2.59566 + 4.49581i 0.217060 + 0.375959i
\(144\) 0 0
\(145\) 19.2889i 1.60185i
\(146\) 0 0
\(147\) 3.46366 5.99923i 0.285677 0.494808i
\(148\) 0 0
\(149\) 4.83307 8.37113i 0.395941 0.685789i −0.597280 0.802033i \(-0.703752\pi\)
0.993221 + 0.116243i \(0.0370853\pi\)
\(150\) 0 0
\(151\) 11.1033 0.903573 0.451787 0.892126i \(-0.350787\pi\)
0.451787 + 0.892126i \(0.350787\pi\)
\(152\) 0 0
\(153\) 2.10581 0.170244
\(154\) 0 0
\(155\) −12.4891 + 21.6317i −1.00315 + 1.73750i
\(156\) 0 0
\(157\) 5.65983 9.80311i 0.451704 0.782374i −0.546788 0.837271i \(-0.684150\pi\)
0.998492 + 0.0548972i \(0.0174831\pi\)
\(158\) 0 0
\(159\) 9.10762i 0.722281i
\(160\) 0 0
\(161\) −5.50085 9.52774i −0.433527 0.750891i
\(162\) 0 0
\(163\) 15.6778i 1.22798i 0.789312 + 0.613992i \(0.210437\pi\)
−0.789312 + 0.613992i \(0.789563\pi\)
\(164\) 0 0
\(165\) −7.46982 + 4.31270i −0.581524 + 0.335743i
\(166\) 0 0
\(167\) 1.80453 + 3.12555i 0.139639 + 0.241862i 0.927360 0.374170i \(-0.122072\pi\)
−0.787721 + 0.616032i \(0.788739\pi\)
\(168\) 0 0
\(169\) −3.47603 + 6.02065i −0.267387 + 0.463127i
\(170\) 0 0
\(171\) 0.0324579 5.99905i 0.00248212 0.458759i
\(172\) 0 0
\(173\) 4.46906 + 2.58021i 0.339776 + 0.196170i 0.660173 0.751113i \(-0.270483\pi\)
−0.320397 + 0.947283i \(0.603816\pi\)
\(174\) 0 0
\(175\) −5.72065 + 3.30282i −0.432440 + 0.249669i
\(176\) 0 0
\(177\) 3.61301 + 6.25791i 0.271570 + 0.470373i
\(178\) 0 0
\(179\) 2.76216 0.206454 0.103227 0.994658i \(-0.467083\pi\)
0.103227 + 0.994658i \(0.467083\pi\)
\(180\) 0 0
\(181\) −2.07870 + 1.20014i −0.154509 + 0.0892056i −0.575261 0.817970i \(-0.695099\pi\)
0.420752 + 0.907176i \(0.361766\pi\)
\(182\) 0 0
\(183\) −7.16122 −0.529373
\(184\) 0 0
\(185\) 27.7038 + 15.9948i 2.03682 + 1.17596i
\(186\) 0 0
\(187\) −2.79711 1.61491i −0.204545 0.118094i
\(188\) 0 0
\(189\) 6.97305i 0.507215i
\(190\) 0 0
\(191\) 4.38525i 0.317305i 0.987334 + 0.158653i \(0.0507150\pi\)
−0.987334 + 0.158653i \(0.949285\pi\)
\(192\) 0 0
\(193\) −7.76503 4.48314i −0.558939 0.322703i 0.193781 0.981045i \(-0.437925\pi\)
−0.752719 + 0.658341i \(0.771258\pi\)
\(194\) 0 0
\(195\) 8.70243 + 5.02435i 0.623194 + 0.359801i
\(196\) 0 0
\(197\) −1.39218 −0.0991890 −0.0495945 0.998769i \(-0.515793\pi\)
−0.0495945 + 0.998769i \(0.515793\pi\)
\(198\) 0 0
\(199\) 0.241956 0.139694i 0.0171518 0.00990261i −0.491400 0.870934i \(-0.663515\pi\)
0.508551 + 0.861032i \(0.330181\pi\)
\(200\) 0 0
\(201\) −0.0601024 −0.00423929
\(202\) 0 0
\(203\) −3.76086 6.51400i −0.263961 0.457193i
\(204\) 0 0
\(205\) 3.50968 2.02631i 0.245126 0.141524i
\(206\) 0 0
\(207\) 10.4867 + 6.05451i 0.728877 + 0.420817i
\(208\) 0 0
\(209\) −4.64371 + 7.94357i −0.321212 + 0.549468i
\(210\) 0 0
\(211\) 0.0832510 0.144195i 0.00573123 0.00992679i −0.863146 0.504955i \(-0.831509\pi\)
0.868877 + 0.495028i \(0.164842\pi\)
\(212\) 0 0
\(213\) −3.98323 6.89915i −0.272926 0.472722i
\(214\) 0 0
\(215\) −16.1814 + 9.34234i −1.10356 + 0.637142i
\(216\) 0 0
\(217\) 9.74027i 0.661212i
\(218\) 0 0
\(219\) −0.838578 1.45246i −0.0566659 0.0981481i
\(220\) 0 0
\(221\) 3.76279i 0.253113i
\(222\) 0 0
\(223\) −5.86577 + 10.1598i −0.392801 + 0.680352i −0.992818 0.119636i \(-0.961827\pi\)
0.600017 + 0.799987i \(0.295161\pi\)
\(224\) 0 0
\(225\) 3.63525 6.29643i 0.242350 0.419762i
\(226\) 0 0
\(227\) 8.78264 0.582924 0.291462 0.956582i \(-0.405858\pi\)
0.291462 + 0.956582i \(0.405858\pi\)
\(228\) 0 0
\(229\) 6.53352 0.431747 0.215874 0.976421i \(-0.430740\pi\)
0.215874 + 0.976421i \(0.430740\pi\)
\(230\) 0 0
\(231\) −1.68174 + 2.91286i −0.110651 + 0.191652i
\(232\) 0 0
\(233\) 13.1315 22.7444i 0.860274 1.49004i −0.0113904 0.999935i \(-0.503626\pi\)
0.871664 0.490103i \(-0.163041\pi\)
\(234\) 0 0
\(235\) 22.6944i 1.48042i
\(236\) 0 0
\(237\) −4.80638 8.32490i −0.312208 0.540761i
\(238\) 0 0
\(239\) 23.5704i 1.52464i 0.647198 + 0.762322i \(0.275941\pi\)
−0.647198 + 0.762322i \(0.724059\pi\)
\(240\) 0 0
\(241\) −13.5642 + 7.83128i −0.873746 + 0.504457i −0.868591 0.495529i \(-0.834974\pi\)
−0.00515448 + 0.999987i \(0.501641\pi\)
\(242\) 0 0
\(243\) 6.46806 + 11.2030i 0.414926 + 0.718673i
\(244\) 0 0
\(245\) 8.71633 15.0971i 0.556866 0.964520i
\(246\) 0 0
\(247\) 10.7195 + 0.0579979i 0.682065 + 0.00369032i
\(248\) 0 0
\(249\) −8.65348 4.99609i −0.548392 0.316614i
\(250\) 0 0
\(251\) −22.1575 + 12.7926i −1.39857 + 0.807463i −0.994243 0.107153i \(-0.965827\pi\)
−0.404324 + 0.914616i \(0.632493\pi\)
\(252\) 0 0
\(253\) −9.28625 16.0842i −0.583821 1.01121i
\(254\) 0 0
\(255\) −6.25189 −0.391509
\(256\) 0 0
\(257\) 17.4440 10.0713i 1.08813 0.628229i 0.155049 0.987907i \(-0.450447\pi\)
0.933077 + 0.359677i \(0.117113\pi\)
\(258\) 0 0
\(259\) 12.4744 0.775120
\(260\) 0 0
\(261\) 7.16964 + 4.13939i 0.443790 + 0.256222i
\(262\) 0 0
\(263\) 3.14828 + 1.81766i 0.194131 + 0.112082i 0.593915 0.804528i \(-0.297581\pi\)
−0.399784 + 0.916609i \(0.630915\pi\)
\(264\) 0 0
\(265\) 22.9194i 1.40793i
\(266\) 0 0
\(267\) 8.86441i 0.542493i
\(268\) 0 0
\(269\) −15.9194 9.19106i −0.970622 0.560389i −0.0711964 0.997462i \(-0.522682\pi\)
−0.899426 + 0.437073i \(0.856015\pi\)
\(270\) 0 0
\(271\) 16.7304 + 9.65930i 1.01630 + 0.586761i 0.913030 0.407893i \(-0.133736\pi\)
0.103269 + 0.994653i \(0.467070\pi\)
\(272\) 0 0
\(273\) 3.91850 0.237159
\(274\) 0 0
\(275\) −9.65730 + 5.57564i −0.582357 + 0.336224i
\(276\) 0 0
\(277\) 16.5581 0.994879 0.497440 0.867499i \(-0.334274\pi\)
0.497440 + 0.867499i \(0.334274\pi\)
\(278\) 0 0
\(279\) −5.36031 9.28434i −0.320914 0.555839i
\(280\) 0 0
\(281\) 3.45491 1.99469i 0.206103 0.118993i −0.393396 0.919369i \(-0.628700\pi\)
0.599499 + 0.800376i \(0.295367\pi\)
\(282\) 0 0
\(283\) 12.8457 + 7.41645i 0.763596 + 0.440862i 0.830585 0.556892i \(-0.188006\pi\)
−0.0669896 + 0.997754i \(0.521339\pi\)
\(284\) 0 0
\(285\) −0.0963638 + 17.8105i −0.00570810 + 1.05500i
\(286\) 0 0
\(287\) 0.790163 1.36860i 0.0466419 0.0807861i
\(288\) 0 0
\(289\) 7.32947 + 12.6950i 0.431145 + 0.746766i
\(290\) 0 0
\(291\) 10.8558 6.26757i 0.636375 0.367412i
\(292\) 0 0
\(293\) 22.9900i 1.34309i 0.740963 + 0.671546i \(0.234369\pi\)
−0.740963 + 0.671546i \(0.765631\pi\)
\(294\) 0 0
\(295\) 9.09217 + 15.7481i 0.529367 + 0.916890i
\(296\) 0 0
\(297\) 11.7715i 0.683055i
\(298\) 0 0
\(299\) −10.8186 + 18.7383i −0.625655 + 1.08367i
\(300\) 0 0
\(301\) −3.64306 + 6.30996i −0.209982 + 0.363700i
\(302\) 0 0
\(303\) 7.98539 0.458749
\(304\) 0 0
\(305\) −18.0213 −1.03190
\(306\) 0 0
\(307\) 10.3144 17.8650i 0.588673 1.01961i −0.405734 0.913991i \(-0.632984\pi\)
0.994407 0.105620i \(-0.0336827\pi\)
\(308\) 0 0
\(309\) −0.335549 + 0.581187i −0.0190887 + 0.0330626i
\(310\) 0 0
\(311\) 3.16368i 0.179396i 0.995969 + 0.0896978i \(0.0285901\pi\)
−0.995969 + 0.0896978i \(0.971410\pi\)
\(312\) 0 0
\(313\) −7.67203 13.2883i −0.433649 0.751101i 0.563536 0.826092i \(-0.309441\pi\)
−0.997184 + 0.0749904i \(0.976107\pi\)
\(314\) 0 0
\(315\) 5.51858i 0.310937i
\(316\) 0 0
\(317\) 2.28007 1.31640i 0.128061 0.0739362i −0.434601 0.900623i \(-0.643111\pi\)
0.562662 + 0.826687i \(0.309777\pi\)
\(318\) 0 0
\(319\) −6.34889 10.9966i −0.355470 0.615692i
\(320\) 0 0
\(321\) 4.40611 7.63161i 0.245925 0.425955i
\(322\) 0 0
\(323\) −5.79377 + 3.30337i −0.322374 + 0.183804i
\(324\) 0 0
\(325\) 11.2509 + 6.49569i 0.624086 + 0.360316i
\(326\) 0 0
\(327\) 13.3671 7.71749i 0.739201 0.426778i
\(328\) 0 0
\(329\) 4.42486 + 7.66408i 0.243950 + 0.422534i
\(330\) 0 0
\(331\) 9.30930 0.511685 0.255843 0.966718i \(-0.417647\pi\)
0.255843 + 0.966718i \(0.417647\pi\)
\(332\) 0 0
\(333\) −11.8905 + 6.86496i −0.651593 + 0.376198i
\(334\) 0 0
\(335\) −0.151248 −0.00826358
\(336\) 0 0
\(337\) −3.28961 1.89926i −0.179196 0.103459i 0.407719 0.913108i \(-0.366324\pi\)
−0.586915 + 0.809648i \(0.699658\pi\)
\(338\) 0 0
\(339\) 5.46715 + 3.15646i 0.296935 + 0.171435i
\(340\) 0 0
\(341\) 16.4430i 0.890439i
\(342\) 0 0
\(343\) 15.5510i 0.839674i
\(344\) 0 0
\(345\) −31.1339 17.9751i −1.67619 0.967749i
\(346\) 0 0
\(347\) −3.07657 1.77626i −0.165159 0.0953546i 0.415142 0.909757i \(-0.363732\pi\)
−0.580301 + 0.814402i \(0.697065\pi\)
\(348\) 0 0
\(349\) 1.91850 0.102695 0.0513475 0.998681i \(-0.483648\pi\)
0.0513475 + 0.998681i \(0.483648\pi\)
\(350\) 0 0
\(351\) −11.8767 + 6.85700i −0.633930 + 0.366000i
\(352\) 0 0
\(353\) −7.11843 −0.378876 −0.189438 0.981893i \(-0.560667\pi\)
−0.189438 + 0.981893i \(0.560667\pi\)
\(354\) 0 0
\(355\) −10.0238 17.3618i −0.532010 0.921469i
\(356\) 0 0
\(357\) −2.11131 + 1.21897i −0.111743 + 0.0645146i
\(358\) 0 0
\(359\) 7.25210 + 4.18700i 0.382751 + 0.220982i 0.679015 0.734125i \(-0.262407\pi\)
−0.296263 + 0.955106i \(0.595741\pi\)
\(360\) 0 0
\(361\) 9.32139 + 16.5563i 0.490600 + 0.871385i
\(362\) 0 0
\(363\) 4.16932 7.22147i 0.218833 0.379029i
\(364\) 0 0
\(365\) −2.11029 3.65513i −0.110458 0.191318i
\(366\) 0 0
\(367\) 19.7381 11.3958i 1.03032 0.594857i 0.113246 0.993567i \(-0.463875\pi\)
0.917077 + 0.398710i \(0.130542\pi\)
\(368\) 0 0
\(369\) 1.73939i 0.0905489i
\(370\) 0 0
\(371\) 4.46874 + 7.74008i 0.232005 + 0.401845i
\(372\) 0 0
\(373\) 23.5670i 1.22025i −0.792305 0.610125i \(-0.791119\pi\)
0.792305 0.610125i \(-0.208881\pi\)
\(374\) 0 0
\(375\) −0.577455 + 1.00018i −0.0298197 + 0.0516492i
\(376\) 0 0
\(377\) −7.39654 + 12.8112i −0.380941 + 0.659809i
\(378\) 0 0
\(379\) 38.1884 1.96161 0.980804 0.194995i \(-0.0624689\pi\)
0.980804 + 0.194995i \(0.0624689\pi\)
\(380\) 0 0
\(381\) −7.29535 −0.373752
\(382\) 0 0
\(383\) −10.8906 + 18.8631i −0.556483 + 0.963857i 0.441303 + 0.897358i \(0.354516\pi\)
−0.997786 + 0.0664990i \(0.978817\pi\)
\(384\) 0 0
\(385\) −4.23213 + 7.33026i −0.215689 + 0.373585i
\(386\) 0 0
\(387\) 8.01946i 0.407652i
\(388\) 0 0
\(389\) 13.4725 + 23.3351i 0.683084 + 1.18314i 0.974035 + 0.226399i \(0.0726952\pi\)
−0.290950 + 0.956738i \(0.593971\pi\)
\(390\) 0 0
\(391\) 13.4618i 0.680792i
\(392\) 0 0
\(393\) 20.6032 11.8952i 1.03929 0.600035i
\(394\) 0 0
\(395\) −12.0953 20.9497i −0.608582 1.05410i
\(396\) 0 0
\(397\) −2.35770 + 4.08365i −0.118329 + 0.204953i −0.919106 0.394011i \(-0.871087\pi\)
0.800776 + 0.598964i \(0.204421\pi\)
\(398\) 0 0
\(399\) 3.44007 + 6.03353i 0.172219 + 0.302054i
\(400\) 0 0
\(401\) 4.16941 + 2.40721i 0.208210 + 0.120210i 0.600479 0.799640i \(-0.294976\pi\)
−0.392269 + 0.919850i \(0.628310\pi\)
\(402\) 0 0
\(403\) 16.5899 9.57816i 0.826400 0.477122i
\(404\) 0 0
\(405\) −4.77297 8.26703i −0.237171 0.410792i
\(406\) 0 0
\(407\) 21.0586 1.04384
\(408\) 0 0
\(409\) 12.2147 7.05216i 0.603978 0.348707i −0.166627 0.986020i \(-0.553288\pi\)
0.770605 + 0.637313i \(0.219954\pi\)
\(410\) 0 0
\(411\) −25.3988 −1.25283
\(412\) 0 0
\(413\) 6.14100 + 3.54551i 0.302179 + 0.174463i
\(414\) 0 0
\(415\) −21.7766 12.5727i −1.06897 0.617171i
\(416\) 0 0
\(417\) 13.3014i 0.651373i
\(418\) 0 0
\(419\) 31.5299i 1.54034i 0.637840 + 0.770169i \(0.279828\pi\)
−0.637840 + 0.770169i \(0.720172\pi\)
\(420\) 0 0
\(421\) −23.2374 13.4161i −1.13252 0.653862i −0.187954 0.982178i \(-0.560186\pi\)
−0.944568 + 0.328316i \(0.893519\pi\)
\(422\) 0 0
\(423\) −8.43547 4.87022i −0.410147 0.236798i
\(424\) 0 0
\(425\) −8.08272 −0.392069
\(426\) 0 0
\(427\) −6.08594 + 3.51372i −0.294519 + 0.170041i
\(428\) 0 0
\(429\) 6.61502 0.319376
\(430\) 0 0
\(431\) −3.89128 6.73989i −0.187436 0.324649i 0.756958 0.653463i \(-0.226684\pi\)
−0.944395 + 0.328814i \(0.893351\pi\)
\(432\) 0 0
\(433\) −13.2846 + 7.66988i −0.638418 + 0.368591i −0.784005 0.620755i \(-0.786826\pi\)
0.145587 + 0.989345i \(0.453493\pi\)
\(434\) 0 0
\(435\) −21.2858 12.2894i −1.02058 0.589231i
\(436\) 0 0
\(437\) −38.3501 0.207494i −1.83454 0.00992577i
\(438\) 0 0
\(439\) −12.6149 + 21.8497i −0.602077 + 1.04283i 0.390429 + 0.920633i \(0.372327\pi\)
−0.992506 + 0.122195i \(0.961007\pi\)
\(440\) 0 0
\(441\) 3.74105 + 6.47969i 0.178145 + 0.308557i
\(442\) 0 0
\(443\) 2.05095 1.18412i 0.0974435 0.0562590i −0.450486 0.892783i \(-0.648749\pi\)
0.547930 + 0.836524i \(0.315416\pi\)
\(444\) 0 0
\(445\) 22.3074i 1.05747i
\(446\) 0 0
\(447\) −6.15852 10.6669i −0.291288 0.504526i
\(448\) 0 0
\(449\) 11.6774i 0.551093i 0.961288 + 0.275546i \(0.0888587\pi\)
−0.961288 + 0.275546i \(0.911141\pi\)
\(450\) 0 0
\(451\) 1.33391 2.31041i 0.0628115 0.108793i
\(452\) 0 0
\(453\) 7.07416 12.2528i 0.332373 0.575687i
\(454\) 0 0
\(455\) 9.86096 0.462289
\(456\) 0 0
\(457\) −8.71735 −0.407781 −0.203890 0.978994i \(-0.565359\pi\)
−0.203890 + 0.978994i \(0.565359\pi\)
\(458\) 0 0
\(459\) 4.26615 7.38919i 0.199127 0.344898i
\(460\) 0 0
\(461\) 10.5590 18.2887i 0.491781 0.851789i −0.508174 0.861254i \(-0.669679\pi\)
0.999955 + 0.00946495i \(0.00301283\pi\)
\(462\) 0 0
\(463\) 0.355651i 0.0165285i −0.999966 0.00826426i \(-0.997369\pi\)
0.999966 0.00826426i \(-0.00263062\pi\)
\(464\) 0 0
\(465\) 15.9142 + 27.5641i 0.738001 + 1.27826i
\(466\) 0 0
\(467\) 4.47951i 0.207287i 0.994615 + 0.103643i \(0.0330501\pi\)
−0.994615 + 0.103643i \(0.966950\pi\)
\(468\) 0 0
\(469\) −0.0510778 + 0.0294898i −0.00235855 + 0.00136171i
\(470\) 0 0
\(471\) −7.21202 12.4916i −0.332312 0.575582i
\(472\) 0 0
\(473\) −6.15002 + 10.6521i −0.282778 + 0.489786i
\(474\) 0 0
\(475\) −0.124583 + 23.0262i −0.00571627 + 1.05651i
\(476\) 0 0
\(477\) −8.51912 4.91852i −0.390064 0.225203i
\(478\) 0 0
\(479\) −21.4965 + 12.4110i −0.982199 + 0.567073i −0.902933 0.429781i \(-0.858591\pi\)
−0.0792655 + 0.996854i \(0.525257\pi\)
\(480\) 0 0
\(481\) −12.2668 21.2466i −0.559316 0.968764i
\(482\) 0 0
\(483\) −14.0189 −0.637880
\(484\) 0 0
\(485\) 27.3186 15.7724i 1.24048 0.716189i
\(486\) 0 0
\(487\) 36.2102 1.64084 0.820420 0.571761i \(-0.193739\pi\)
0.820420 + 0.571761i \(0.193739\pi\)
\(488\) 0 0
\(489\) 17.3010 + 9.98871i 0.782376 + 0.451705i
\(490\) 0 0
\(491\) 5.16077 + 2.97957i 0.232902 + 0.134466i 0.611910 0.790927i \(-0.290401\pi\)
−0.379008 + 0.925393i \(0.623735\pi\)
\(492\) 0 0
\(493\) 9.20366i 0.414512i
\(494\) 0 0
\(495\) 9.31619i 0.418732i
\(496\) 0 0
\(497\) −6.77026 3.90881i −0.303688 0.175334i
\(498\) 0 0
\(499\) −20.1581 11.6383i −0.902402 0.521002i −0.0244234 0.999702i \(-0.507775\pi\)
−0.877979 + 0.478700i \(0.841108\pi\)
\(500\) 0 0
\(501\) 4.59884 0.205461
\(502\) 0 0
\(503\) −16.4493 + 9.49702i −0.733439 + 0.423451i −0.819679 0.572823i \(-0.805848\pi\)
0.0862401 + 0.996274i \(0.472515\pi\)
\(504\) 0 0
\(505\) 20.0953 0.894231
\(506\) 0 0
\(507\) 4.42931 + 7.67179i 0.196713 + 0.340716i
\(508\) 0 0
\(509\) −11.3577 + 6.55740i −0.503423 + 0.290652i −0.730126 0.683312i \(-0.760539\pi\)
0.226703 + 0.973964i \(0.427205\pi\)
\(510\) 0 0
\(511\) −1.42532 0.822911i −0.0630526 0.0364035i
\(512\) 0 0
\(513\) −20.9847 12.2674i −0.926496 0.541618i
\(514\) 0 0
\(515\) −0.844413 + 1.46257i −0.0372093 + 0.0644483i
\(516\) 0 0
\(517\) 7.46982 + 12.9381i 0.328522 + 0.569017i
\(518\) 0 0
\(519\) 5.69468 3.28783i 0.249969 0.144320i
\(520\) 0 0
\(521\) 24.9294i 1.09218i 0.837727 + 0.546089i \(0.183884\pi\)
−0.837727 + 0.546089i \(0.816116\pi\)
\(522\) 0 0
\(523\) 15.1705 + 26.2761i 0.663359 + 1.14897i 0.979727 + 0.200335i \(0.0642031\pi\)
−0.316368 + 0.948636i \(0.602464\pi\)
\(524\) 0 0
\(525\) 8.41720i 0.367357i
\(526\) 0 0
\(527\) −5.95915 + 10.3215i −0.259584 + 0.449613i
\(528\) 0 0
\(529\) 27.2047 47.1198i 1.18281 2.04869i
\(530\) 0 0
\(531\) −7.80473 −0.338696
\(532\) 0 0
\(533\) −3.10805 −0.134625
\(534\) 0 0
\(535\) 11.0880 19.2051i 0.479378 0.830307i
\(536\) 0 0
\(537\) 1.75984 3.04813i 0.0759425 0.131536i
\(538\) 0 0
\(539\) 11.4759i 0.494300i
\(540\) 0 0
\(541\) −12.1933 21.1195i −0.524233 0.907998i −0.999602 0.0282117i \(-0.991019\pi\)
0.475369 0.879787i \(-0.342315\pi\)
\(542\) 0 0
\(543\) 3.05854i 0.131255i
\(544\) 0 0
\(545\) 33.6384 19.4212i 1.44091 0.831911i
\(546\) 0 0
\(547\) −18.7226 32.4286i −0.800522 1.38655i −0.919273 0.393621i \(-0.871222\pi\)
0.118751 0.992924i \(-0.462111\pi\)
\(548\) 0 0
\(549\) 3.86737 6.69849i 0.165056 0.285885i
\(550\) 0 0
\(551\) −26.2195 0.141861i −1.11699 0.00604348i
\(552\) 0 0
\(553\) −8.16937 4.71659i −0.347397 0.200570i
\(554\) 0 0
\(555\) 35.3014 20.3813i 1.49846 0.865137i
\(556\) 0 0
\(557\) 7.69507 + 13.3283i 0.326051 + 0.564736i 0.981724 0.190308i \(-0.0609487\pi\)
−0.655674 + 0.755044i \(0.727615\pi\)
\(558\) 0 0
\(559\) 14.3297 0.606082
\(560\) 0 0
\(561\) −3.56421 + 2.05780i −0.150481 + 0.0868803i
\(562\) 0 0
\(563\) −25.2567 −1.06444 −0.532222 0.846605i \(-0.678643\pi\)
−0.532222 + 0.846605i \(0.678643\pi\)
\(564\) 0 0
\(565\) 13.7582 + 7.94327i 0.578810 + 0.334176i
\(566\) 0 0
\(567\) −3.22374 1.86123i −0.135384 0.0781641i
\(568\) 0 0
\(569\) 46.3413i 1.94273i −0.237599 0.971363i \(-0.576361\pi\)
0.237599 0.971363i \(-0.423639\pi\)
\(570\) 0 0
\(571\) 32.1609i 1.34589i −0.739692 0.672946i \(-0.765029\pi\)
0.739692 0.672946i \(-0.234971\pi\)
\(572\) 0 0
\(573\) 4.83925 + 2.79394i 0.202163 + 0.116719i
\(574\) 0 0
\(575\) −40.2512 23.2390i −1.67859 0.969135i
\(576\) 0 0
\(577\) −39.2983 −1.63601 −0.818004 0.575212i \(-0.804919\pi\)
−0.818004 + 0.575212i \(0.804919\pi\)
\(578\) 0 0
\(579\) −9.89455 + 5.71262i −0.411204 + 0.237408i
\(580\) 0 0
\(581\) −9.80550 −0.406801
\(582\) 0 0
\(583\) 7.54389 + 13.0664i 0.312436 + 0.541155i
\(584\) 0 0
\(585\) −9.39938 + 5.42674i −0.388617 + 0.224368i
\(586\) 0 0
\(587\) −15.4560 8.92352i −0.637937 0.368313i 0.145883 0.989302i \(-0.453398\pi\)
−0.783819 + 0.620989i \(0.786731\pi\)
\(588\) 0 0
\(589\) 29.3123 + 17.1356i 1.20779 + 0.706060i
\(590\) 0 0
\(591\) −0.886993 + 1.53632i −0.0364860 + 0.0631956i
\(592\) 0 0
\(593\) 11.7249 + 20.3082i 0.481485 + 0.833957i 0.999774 0.0212488i \(-0.00676420\pi\)
−0.518289 + 0.855205i \(0.673431\pi\)
\(594\) 0 0
\(595\) −5.31315 + 3.06755i −0.217818 + 0.125757i
\(596\) 0 0
\(597\) 0.356008i 0.0145704i
\(598\) 0 0
\(599\) −7.40584 12.8273i −0.302595 0.524109i 0.674128 0.738614i \(-0.264519\pi\)
−0.976723 + 0.214505i \(0.931186\pi\)
\(600\) 0 0
\(601\) 4.30046i 0.175419i −0.996146 0.0877097i \(-0.972045\pi\)
0.996146 0.0877097i \(-0.0279548\pi\)
\(602\) 0 0
\(603\) 0.0324579 0.0562188i 0.00132179 0.00228940i
\(604\) 0 0
\(605\) 10.4921 18.1729i 0.426566 0.738835i
\(606\) 0 0
\(607\) −20.1844 −0.819260 −0.409630 0.912252i \(-0.634342\pi\)
−0.409630 + 0.912252i \(0.634342\pi\)
\(608\) 0 0
\(609\) −9.58452 −0.388385
\(610\) 0 0
\(611\) 8.70243 15.0730i 0.352062 0.609790i
\(612\) 0 0
\(613\) −0.467103 + 0.809046i −0.0188661 + 0.0326771i −0.875304 0.483572i \(-0.839339\pi\)
0.856438 + 0.516250i \(0.172672\pi\)
\(614\) 0 0
\(615\) 5.16404i 0.208234i
\(616\) 0 0
\(617\) −4.11324 7.12434i −0.165593 0.286815i 0.771273 0.636505i \(-0.219620\pi\)
−0.936866 + 0.349690i \(0.886287\pi\)
\(618\) 0 0
\(619\) 7.04730i 0.283255i 0.989920 + 0.141627i \(0.0452335\pi\)
−0.989920 + 0.141627i \(0.954766\pi\)
\(620\) 0 0
\(621\) 42.4901 24.5316i 1.70507 0.984421i
\(622\) 0 0
\(623\) 4.34940 + 7.53338i 0.174255 + 0.301819i
\(624\) 0 0
\(625\) 11.7534 20.3576i 0.470138 0.814302i
\(626\) 0 0
\(627\) 5.80735 + 10.1855i 0.231923 + 0.406770i
\(628\) 0 0
\(629\) 13.2188 + 7.63188i 0.527068 + 0.304303i
\(630\) 0 0
\(631\) −17.5204 + 10.1154i −0.697476 + 0.402688i −0.806407 0.591362i \(-0.798591\pi\)
0.108931 + 0.994049i \(0.465257\pi\)
\(632\) 0 0
\(633\) −0.106082 0.183740i −0.00421639 0.00730300i
\(634\) 0 0
\(635\) −18.3589 −0.728549
\(636\) 0 0
\(637\) −11.5783 + 6.68475i −0.458750 + 0.264860i
\(638\) 0 0
\(639\) 8.60447 0.340387
\(640\) 0 0
\(641\) −6.91570 3.99278i −0.273154 0.157705i 0.357166 0.934041i \(-0.383743\pi\)
−0.630320 + 0.776335i \(0.717076\pi\)
\(642\) 0 0
\(643\) −9.89926 5.71534i −0.390389 0.225391i 0.291940 0.956437i \(-0.405699\pi\)
−0.682328 + 0.731046i \(0.739033\pi\)
\(644\) 0 0
\(645\) 23.8089i 0.937473i
\(646\) 0 0
\(647\) 48.3776i 1.90192i −0.309312 0.950961i \(-0.600099\pi\)
0.309312 0.950961i \(-0.399901\pi\)
\(648\) 0 0
\(649\) 10.3669 + 5.98534i 0.406937 + 0.234945i
\(650\) 0 0
\(651\) 10.7487 + 6.20575i 0.421274 + 0.243222i
\(652\) 0 0
\(653\) −32.2260 −1.26110 −0.630551 0.776148i \(-0.717171\pi\)
−0.630551 + 0.776148i \(0.717171\pi\)
\(654\) 0 0
\(655\) 51.8481 29.9345i 2.02587 1.16964i
\(656\) 0 0
\(657\) 1.81148 0.0706724
\(658\) 0 0
\(659\) 13.5111 + 23.4019i 0.526317 + 0.911608i 0.999530 + 0.0306595i \(0.00976076\pi\)
−0.473213 + 0.880948i \(0.656906\pi\)
\(660\) 0 0
\(661\) −23.1686 + 13.3764i −0.901155 + 0.520282i −0.877575 0.479440i \(-0.840840\pi\)
−0.0235802 + 0.999722i \(0.507507\pi\)
\(662\) 0 0
\(663\) 4.15235 + 2.39736i 0.161264 + 0.0931057i
\(664\) 0 0
\(665\) 8.65699 + 15.1835i 0.335703 + 0.588790i
\(666\) 0 0
\(667\) 26.4619 45.8334i 1.02461 1.77467i
\(668\) 0 0
\(669\) 7.47444 + 12.9461i 0.288978 + 0.500525i
\(670\) 0 0
\(671\) −10.2740 + 5.93168i −0.396622 + 0.228990i
\(672\) 0 0
\(673\) 29.5414i 1.13874i 0.822083 + 0.569368i \(0.192812\pi\)
−0.822083 + 0.569368i \(0.807188\pi\)
\(674\) 0 0
\(675\) −14.7293 25.5119i −0.566930 0.981952i
\(676\) 0 0
\(677\) 15.6682i 0.602176i −0.953596 0.301088i \(-0.902650\pi\)
0.953596 0.301088i \(-0.0973498\pi\)
\(678\) 0 0
\(679\) 6.15048 10.6529i 0.236034 0.408822i
\(680\) 0 0
\(681\) 5.59562 9.69190i 0.214425 0.371394i
\(682\) 0 0
\(683\) −29.7127 −1.13693 −0.568463 0.822709i \(-0.692462\pi\)
−0.568463 + 0.822709i \(0.692462\pi\)
\(684\) 0 0
\(685\) −63.9165 −2.44212
\(686\) 0 0
\(687\) 4.16265 7.20993i 0.158815 0.275076i
\(688\) 0 0
\(689\) 8.78872 15.2225i 0.334824 0.579932i
\(690\) 0 0
\(691\) 32.8555i 1.24988i 0.780671 + 0.624942i \(0.214877\pi\)
−0.780671 + 0.624942i \(0.785123\pi\)
\(692\) 0 0
\(693\) −1.81643 3.14615i −0.0690005 0.119512i
\(694\) 0 0
\(695\) 33.4732i 1.26971i
\(696\) 0 0
\(697\) 1.67464 0.966852i 0.0634314 0.0366221i
\(698\) 0 0
\(699\) −16.7328 28.9820i −0.632892 1.09620i
\(700\) 0 0
\(701\) 8.96916 15.5350i 0.338761 0.586751i −0.645439 0.763812i \(-0.723326\pi\)
0.984200 + 0.177061i \(0.0566590\pi\)
\(702\) 0 0
\(703\) 21.9456 37.5403i 0.827693 1.41586i
\(704\) 0 0
\(705\) 25.0439 + 14.4591i 0.943209 + 0.544562i
\(706\) 0 0
\(707\) 6.78635 3.91810i 0.255227 0.147355i
\(708\) 0 0
\(709\) −3.51145 6.08201i −0.131875 0.228415i 0.792524 0.609841i \(-0.208767\pi\)
−0.924399 + 0.381426i \(0.875433\pi\)
\(710\) 0 0
\(711\) 10.3826 0.389379
\(712\) 0 0
\(713\) −59.3520 + 34.2669i −2.22275 + 1.28330i
\(714\) 0 0
\(715\) 16.6468 0.622554
\(716\) 0 0
\(717\) 26.0107 + 15.0173i 0.971386 + 0.560830i
\(718\) 0 0
\(719\) −23.4325 13.5288i −0.873886 0.504538i −0.00524853 0.999986i \(-0.501671\pi\)
−0.868638 + 0.495448i \(0.835004\pi\)
\(720\) 0 0
\(721\) 0.658560i 0.0245260i
\(722\) 0 0
\(723\) 19.9580i 0.742245i
\(724\) 0 0
\(725\) −27.5193 15.8882i −1.02204 0.590075i
\(726\) 0 0
\(727\) −23.9684 13.8381i −0.888938 0.513229i −0.0153429 0.999882i \(-0.504884\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(728\) 0 0
\(729\) 25.4145 0.941279
\(730\) 0 0
\(731\) −7.72093 + 4.45768i −0.285569 + 0.164873i
\(732\) 0 0
\(733\) 2.82689 0.104414 0.0522068 0.998636i \(-0.483374\pi\)
0.0522068 + 0.998636i \(0.483374\pi\)
\(734\) 0 0
\(735\) −11.1068 19.2375i −0.409679 0.709584i
\(736\) 0 0
\(737\) −0.0862268 + 0.0497831i −0.00317621 + 0.00183378i
\(738\) 0 0
\(739\) −21.3233 12.3110i −0.784392 0.452869i 0.0535927 0.998563i \(-0.482933\pi\)
−0.837984 + 0.545694i \(0.816266\pi\)
\(740\) 0 0
\(741\) 6.89364 11.7923i 0.253244 0.433202i
\(742\) 0 0
\(743\) −3.96328 + 6.86460i −0.145399 + 0.251838i −0.929522 0.368768i \(-0.879780\pi\)
0.784123 + 0.620605i \(0.213113\pi\)
\(744\) 0 0
\(745\) −15.4980 26.8433i −0.567803 0.983463i
\(746\) 0 0
\(747\) 9.34651 5.39621i 0.341971 0.197437i
\(748\) 0 0
\(749\) 8.64759i 0.315976i
\(750\) 0 0
\(751\) −7.13985 12.3666i −0.260537 0.451263i 0.705848 0.708363i \(-0.250566\pi\)
−0.966385 + 0.257101i \(0.917233\pi\)
\(752\) 0 0
\(753\) 32.6019i 1.18808i
\(754\) 0 0
\(755\) 17.8022 30.8344i 0.647889 1.12218i
\(756\) 0 0
\(757\) 17.1966 29.7854i 0.625021 1.08257i −0.363515 0.931588i \(-0.618424\pi\)
0.988537 0.150981i \(-0.0482431\pi\)
\(758\) 0 0
\(759\) −23.6659 −0.859019
\(760\) 0 0
\(761\) −31.6267 −1.14647 −0.573233 0.819392i \(-0.694311\pi\)
−0.573233 + 0.819392i \(0.694311\pi\)
\(762\) 0 0
\(763\) 7.57331 13.1174i 0.274172 0.474880i
\(764\) 0 0
\(765\) 3.37630 5.84792i 0.122070 0.211432i
\(766\) 0 0
\(767\) 13.9460i 0.503561i
\(768\) 0 0
\(769\) 11.7685 + 20.3836i 0.424383 + 0.735052i 0.996363 0.0852153i \(-0.0271578\pi\)
−0.571980 + 0.820268i \(0.693824\pi\)
\(770\) 0 0
\(771\) 25.6666i 0.924359i
\(772\) 0 0
\(773\) 10.5693 6.10219i 0.380152 0.219481i −0.297733 0.954649i \(-0.596230\pi\)
0.677884 + 0.735169i \(0.262897\pi\)
\(774\) 0 0
\(775\) 20.5745 + 35.6361i 0.739058 + 1.28009i
\(776\) 0 0
\(777\) 7.94771 13.7658i 0.285122 0.493847i
\(778\) 0 0
\(779\) −2.72857 4.78564i −0.0977612 0.171463i
\(780\) 0 0
\(781\) −11.4292 6.59865i −0.408969 0.236118i
\(782\) 0 0
\(783\) 29.0499 16.7720i 1.03816 0.599382i
\(784\) 0 0
\(785\) −18.1491 31.4352i −0.647770 1.12197i
\(786\) 0 0
\(787\) 36.6534 1.30655 0.653276 0.757120i \(-0.273394\pi\)
0.653276 + 0.757120i \(0.273394\pi\)
\(788\) 0 0
\(789\) 4.01169 2.31615i 0.142820 0.0824571i
\(790\) 0 0
\(791\) 6.19498 0.220268
\(792\) 0 0
\(793\) 11.9693 + 6.91048i 0.425042 + 0.245398i
\(794\) 0 0
\(795\) 25.2923 + 14.6025i 0.897025 + 0.517898i
\(796\) 0 0
\(797\) 14.7351i 0.521944i −0.965346 0.260972i \(-0.915957\pi\)
0.965346 0.260972i \(-0.0840430\pi\)
\(798\) 0 0
\(799\) 10.8286i 0.383088i
\(800\) 0 0
\(801\) −8.29162 4.78717i −0.292970 0.169146i
\(802\) 0 0
\(803\) −2.40616 1.38920i −0.0849115 0.0490237i
\(804\) 0 0
\(805\) −35.2786 −1.24341
\(806\) 0 0
\(807\) −20.2852 + 11.7117i −0.714073 + 0.412271i
\(808\) 0 0
\(809\) 14.1872 0.498796 0.249398 0.968401i \(-0.419767\pi\)
0.249398 + 0.968401i \(0.419767\pi\)
\(810\) 0 0
\(811\) −21.0255 36.4173i −0.738307 1.27879i −0.953257 0.302160i \(-0.902292\pi\)
0.214950 0.976625i \(-0.431041\pi\)
\(812\) 0 0
\(813\) 21.3186 12.3083i 0.747677 0.431672i
\(814\) 0 0
\(815\) 43.5381 + 25.1367i 1.52507 + 0.880501i
\(816\) 0 0
\(817\) 12.5801 + 22.0642i 0.440122 + 0.771929i
\(818\) 0 0
\(819\) −2.11616 + 3.66530i −0.0739447 + 0.128076i
\(820\) 0 0
\(821\) 22.3593 + 38.7274i 0.780343 + 1.35159i 0.931742 + 0.363122i \(0.118289\pi\)
−0.151398 + 0.988473i \(0.548378\pi\)
\(822\) 0 0
\(823\) −34.6560 + 20.0087i −1.20803 + 0.697458i −0.962329 0.271887i \(-0.912352\pi\)
−0.245703 + 0.969345i \(0.579019\pi\)
\(824\) 0 0
\(825\) 14.2095i 0.494711i
\(826\) 0 0
\(827\) −13.1881 22.8424i −0.458594 0.794309i 0.540293 0.841477i \(-0.318314\pi\)
−0.998887 + 0.0471684i \(0.984980\pi\)
\(828\) 0 0
\(829\) 39.6736i 1.37792i 0.724798 + 0.688961i \(0.241933\pi\)
−0.724798 + 0.688961i \(0.758067\pi\)
\(830\) 0 0
\(831\) 10.5495 18.2723i 0.365960 0.633860i
\(832\) 0 0
\(833\) 4.15898 7.20357i 0.144100 0.249589i
\(834\) 0 0
\(835\) 11.5730 0.400502
\(836\) 0 0
\(837\) −43.4378 −1.50143
\(838\) 0 0
\(839\) −7.96193 + 13.7905i −0.274876 + 0.476100i −0.970104 0.242690i \(-0.921970\pi\)
0.695228 + 0.718790i \(0.255304\pi\)
\(840\) 0 0
\(841\) 3.59168 6.22098i 0.123851 0.214516i
\(842\) 0 0
\(843\) 5.08346i 0.175084i
\(844\) 0 0
\(845\) 11.1464 + 19.3062i 0.383449 + 0.664152i
\(846\) 0 0
\(847\) 8.18285i 0.281166i
\(848\) 0 0
\(849\) 16.3685 9.45038i 0.561767 0.324336i
\(850\) 0 0
\(851\) 43.8856 + 76.0122i 1.50438 + 2.60566i
\(852\) 0 0
\(853\) −19.4390 + 33.6693i −0.665578 + 1.15281i 0.313550 + 0.949572i \(0.398482\pi\)
−0.979128 + 0.203243i \(0.934852\pi\)
\(854\) 0 0
\(855\) −16.6076 9.70859i −0.567968 0.332027i
\(856\) 0 0
\(857\) 28.7983 + 16.6267i 0.983730 + 0.567957i 0.903394 0.428811i \(-0.141067\pi\)
0.0803358 + 0.996768i \(0.474401\pi\)
\(858\) 0 0
\(859\) −28.1710 + 16.2645i −0.961183 + 0.554939i −0.896537 0.442969i \(-0.853925\pi\)
−0.0646461 + 0.997908i \(0.520592\pi\)
\(860\) 0 0
\(861\) −1.00686 1.74394i −0.0343138 0.0594332i
\(862\) 0 0
\(863\) −20.4964 −0.697707 −0.348853 0.937177i \(-0.613429\pi\)
−0.348853 + 0.937177i \(0.613429\pi\)
\(864\) 0 0
\(865\) 14.3307 8.27386i 0.487260 0.281320i
\(866\) 0 0
\(867\) 18.6791 0.634375
\(868\) 0 0
\(869\) −13.7911 7.96231i −0.467832 0.270103i
\(870\) 0 0
\(871\) 0.100455 + 0.0579979i 0.00340380 + 0.00196518i
\(872\) 0 0
\(873\) 13.5391i 0.458228i
\(874\) 0 0
\(875\) 1.13333i 0.0383137i
\(876\) 0 0
\(877\) 29.2384 + 16.8808i 0.987312 + 0.570025i 0.904470 0.426538i \(-0.140267\pi\)
0.0828424 + 0.996563i \(0.473600\pi\)
\(878\) 0 0
\(879\) 25.3702 + 14.6475i 0.855715 + 0.494047i
\(880\) 0 0
\(881\) −37.8371 −1.27476 −0.637382 0.770548i \(-0.719983\pi\)
−0.637382 + 0.770548i \(0.719983\pi\)
\(882\) 0 0
\(883\) −23.2555 + 13.4265i −0.782609 + 0.451839i −0.837354 0.546661i \(-0.815899\pi\)
0.0547454 + 0.998500i \(0.482565\pi\)
\(884\) 0 0
\(885\) 23.1713 0.778896
\(886\) 0 0
\(887\) 4.11911 + 7.13451i 0.138306 + 0.239554i 0.926856 0.375418i \(-0.122501\pi\)
−0.788549 + 0.614972i \(0.789168\pi\)
\(888\) 0 0
\(889\) −6.19993 + 3.57953i −0.207939 + 0.120054i
\(890\) 0 0
\(891\) −5.44215 3.14203i −0.182319 0.105262i
\(892\) 0 0
\(893\) 30.8487 + 0.166907i 1.03231 + 0.00558533i
\(894\) 0 0
\(895\) 4.42865 7.67065i 0.148033 0.256401i
\(896\) 0 0
\(897\) 13.7855 + 23.8773i 0.460286 + 0.797239i
\(898\) 0 0
\(899\) −40.5782 + 23.4279i −1.35336 + 0.781363i
\(900\) 0 0
\(901\) 10.9360i 0.364330i
\(902\) 0 0
\(903\) 4.64215 + 8.04044i 0.154481 + 0.267569i
\(904\) 0 0
\(905\) 7.69687i 0.255853i
\(906\) 0 0
\(907\) −12.9847 + 22.4902i −0.431150 + 0.746774i −0.996973 0.0777533i \(-0.975225\pi\)
0.565823 + 0.824527i \(0.308559\pi\)
\(908\) 0 0
\(909\) −4.31246 + 7.46940i −0.143035 + 0.247744i
\(910\) 0 0
\(911\) 35.0480 1.16119 0.580597 0.814191i \(-0.302819\pi\)
0.580597 + 0.814191i \(0.302819\pi\)
\(912\) 0 0
\(913\) −16.5531 −0.547829
\(914\) 0 0
\(915\) −11.4818 + 19.8870i −0.379576 + 0.657445i
\(916\) 0 0
\(917\) 11.6730 20.2182i 0.385477 0.667665i
\(918\) 0 0
\(919\) 6.29627i 0.207695i −0.994593 0.103847i \(-0.966885\pi\)
0.994593 0.103847i \(-0.0331153\pi\)
\(920\) 0 0
\(921\) −13.1431 22.7644i −0.433078 0.750114i
\(922\) 0 0
\(923\) 15.3750i 0.506075i
\(924\) 0 0
\(925\) 45.6392 26.3498i 1.50061 0.866376i
\(926\) 0 0
\(927\) −0.362422 0.627733i −0.0119035 0.0206175i
\(928\) 0 0
\(929\) −1.85864 + 3.21925i −0.0609799 + 0.105620i −0.894904 0.446259i \(-0.852756\pi\)
0.833924 + 0.551880i \(0.186089\pi\)
\(930\) 0 0
\(931\) −20.4576 11.9592i −0.670469 0.391948i
\(932\) 0 0
\(933\) 3.49121 + 2.01565i 0.114297 + 0.0659895i
\(934\) 0 0
\(935\) −8.96938 + 5.17848i −0.293330 + 0.169354i
\(936\) 0 0
\(937\) −21.7674 37.7022i −0.711109 1.23168i −0.964441 0.264298i \(-0.914860\pi\)
0.253332 0.967379i \(-0.418473\pi\)
\(938\) 0 0
\(939\) −19.5521 −0.638059
\(940\) 0 0
\(941\) −34.9810 + 20.1963i −1.14035 + 0.658380i −0.946517 0.322655i \(-0.895425\pi\)
−0.193831 + 0.981035i \(0.562091\pi\)
\(942\) 0 0
\(943\) 11.1194 0.362097
\(944\) 0 0
\(945\) −19.3645 11.1801i −0.629927 0.363688i
\(946\) 0 0
\(947\) 21.1885 + 12.2332i 0.688533 + 0.397525i 0.803062 0.595895i \(-0.203203\pi\)
−0.114529 + 0.993420i \(0.536536\pi\)
\(948\) 0 0
\(949\) 3.23686i 0.105073i
\(950\) 0 0
\(951\) 3.35483i 0.108788i
\(952\) 0 0
\(953\) −43.7145 25.2386i −1.41605 0.817557i −0.420101 0.907477i \(-0.638006\pi\)
−0.995949 + 0.0899200i \(0.971339\pi\)
\(954\) 0 0
\(955\) 12.1780 + 7.03099i 0.394072 + 0.227518i
\(956\) 0 0
\(957\) −16.1801 −0.523028
\(958\) 0 0
\(959\) −21.5851 + 12.4622i −0.697019 + 0.402424i
\(960\) 0 0
\(961\) 29.6759 0.957286
\(962\) 0 0
\(963\) 4.75899 + 8.24281i 0.153356 + 0.265621i
\(964\) 0 0
\(965\) −24.8998 + 14.3759i −0.801552 + 0.462776i
\(966\) 0 0
\(967\) −43.6786 25.2179i −1.40461 0.810952i −0.409749 0.912198i \(-0.634384\pi\)
−0.994861 + 0.101246i \(0.967717\pi\)
\(968\) 0 0
\(969\) −0.0459798 + 8.49825i −0.00147709 + 0.273003i
\(970\) 0 0
\(971\) −5.26456 + 9.11849i −0.168948 + 0.292626i −0.938050 0.346499i \(-0.887370\pi\)
0.769102 + 0.639126i \(0.220704\pi\)
\(972\) 0 0
\(973\) 6.52645 + 11.3041i 0.209228 + 0.362394i
\(974\) 0 0
\(975\) 14.3364 8.27711i 0.459132 0.265080i
\(976\) 0 0
\(977\) 6.92660i 0.221602i −0.993843 0.110801i \(-0.964658\pi\)
0.993843 0.110801i \(-0.0353415\pi\)
\(978\) 0 0
\(979\) 7.34243 + 12.7175i 0.234665 + 0.406452i
\(980\) 0 0
\(981\) 16.6711i 0.532268i
\(982\) 0 0
\(983\) −17.5996 + 30.4835i −0.561341 + 0.972272i 0.436038 + 0.899928i \(0.356381\pi\)
−0.997380 + 0.0723437i \(0.976952\pi\)
\(984\) 0 0
\(985\) −2.23213 + 3.86616i −0.0711215 + 0.123186i
\(986\) 0 0
\(987\) 11.2767 0.358942
\(988\) 0 0
\(989\) −51.2660 −1.63016
\(990\) 0 0
\(991\) −24.9524 + 43.2188i −0.792638 + 1.37289i 0.131690 + 0.991291i \(0.457960\pi\)
−0.924328 + 0.381599i \(0.875374\pi\)
\(992\) 0 0
\(993\) 5.93117 10.2731i 0.188220 0.326007i
\(994\) 0 0
\(995\) 0.895899i 0.0284019i
\(996\) 0 0
\(997\) 2.63314 + 4.56074i 0.0833925 + 0.144440i 0.904705 0.426038i \(-0.140091\pi\)
−0.821313 + 0.570478i \(0.806758\pi\)
\(998\) 0 0
\(999\) 55.6309i 1.76008i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.n.f.255.6 16
4.3 odd 2 inner 1216.2.n.f.255.3 16
8.3 odd 2 76.2.f.a.27.7 yes 16
8.5 even 2 76.2.f.a.27.4 16
19.12 odd 6 inner 1216.2.n.f.639.3 16
24.5 odd 2 684.2.r.a.559.5 16
24.11 even 2 684.2.r.a.559.2 16
76.31 even 6 inner 1216.2.n.f.639.6 16
152.69 odd 6 76.2.f.a.31.7 yes 16
152.107 even 6 76.2.f.a.31.4 yes 16
456.107 odd 6 684.2.r.a.487.5 16
456.221 even 6 684.2.r.a.487.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.2.f.a.27.4 16 8.5 even 2
76.2.f.a.27.7 yes 16 8.3 odd 2
76.2.f.a.31.4 yes 16 152.107 even 6
76.2.f.a.31.7 yes 16 152.69 odd 6
684.2.r.a.487.2 16 456.221 even 6
684.2.r.a.487.5 16 456.107 odd 6
684.2.r.a.559.2 16 24.11 even 2
684.2.r.a.559.5 16 24.5 odd 2
1216.2.n.f.255.3 16 4.3 odd 2 inner
1216.2.n.f.255.6 16 1.1 even 1 trivial
1216.2.n.f.639.3 16 19.12 odd 6 inner
1216.2.n.f.639.6 16 76.31 even 6 inner